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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

1 SPLOŠNI MODEL IZRAVNAVE

Pri posredni in pogojni izravnavi smo videli, da v primeru nadštevilnih opazovanj le izravnava poda
optimalno oceno izravnanih opazovanj in izravnanih neznank. Glede na obliko podatkov in funk-
cijskih zvez med opazovanji oz. neznankami smo izbrali ali pogojno metodo izravnave ali posredni
model izravnave. Oba modela sta samo posebna primera modela izravnave, ki ga poimenujemo splo-
šni model izravnave.

1.1 Osnovne nastavitve splošnega modela izravnave

Tako kot pri vseh metodah izravnave, tudi pri splošnem modelu določimo tri količine, in sicer:

• n - število pridobljenih opazovanj,

• n0 - minimalno število opazovanj, potrebnih za rešitev modela in

• r = n − n0 - število število nadštevilnih opazovanj.

Pri posredni metodi izravnave smo nastavili točno u = n0 neznank. V primeru splošnega modela
izravnave pa imamo bolj proste roke, nastavimo u neznank, kjer pa velja:

0 ≤ u ≤ n0 (1–1)

Enačba (1–1) nam pove, da lahko nastavimo toliko neznank, kolikor jih želimo. Edini pogoj je, da
število teh neznank ne sme presegati števila n0.

Pojavi pa se vprašanje, koliko enačb moramo sestaviti. Ker vsako nadštevilno opazovanje poda
možnost sestave ene pogojne enačbe in ker moramo vsako uvedeno neznanko povezati z opazovanji
velja, da je število sestavljenih enačb enako:

c = r + u (1–2)

Enačba (1–2) pove, da pri r nadštevilnih opazovanjih, kjer uvedemo u neznank, potrebujemo za
izravnavo c sestavljenih enačb.

1.2 Sestava enačb splošnega modela izravnave

Pri splošnem modelu izravnave moramo prvo nastaviti dve količini, in sicer:

• l - vektor opazovanj, velikosti n×1 (l =
[

l1 l2 · · · ln
]T

) s pripadajočo variančno–kovariančno
matriko Σ,

• x - vektor neznank, velikosti u × 1 (x =
[

x1 x2 · · · xu

]T

).
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

Sestavimo c enačb, ki povezujejo vsa (izravnana) opazovanja in vse uvedene neznanke. Splošna oblika
enačb je:

F1 ≡ f1(l̂1, l̂2, . . . , l̂n, x1, x2, . . . , xu) = 0

F2 ≡ f1(l̂1, l̂2, . . . , l̂n, x1, x2, . . . , xu) = 0
...

Fc ≡ fc(l̂1, l̂2, . . . , l̂n, x1, x2, . . . , xu) = 0

(1–3)

Enačba (1–3) prikazuje sestavljenih c enačb, ki vsebujejo n + u neznanih parametrov, in sicer vsa
izravnana opazovanja in vse neznanke. Matrično lahko enačbe (1–3) zapišemo v obliki:

F
(

l̂, x
)

= 0 (1–4)

V enačbi (1–4) imamo na levi strani enačbe (1–3), na desni strani enačaja pa ničelni vektor velikosti
c × 1.

Numeričnih vrednosti argumenta funkcije F (izravnana opazovanja l̂ in neznanke x) ne poznamo,
lahko pa jih nadomestimo z:

• l̂ = l + v, kjer je v vektor popravkov opazovanj,

• x = x0 + ∆, kjer je x0 vektor približnih vrednosti neznank in ∆ popravki približnih vrednosti
neznank.

Sistem nelinearnih enačb (1–4) tako lahko zapišemo kot:

F (l + v, x0 + ∆) = 0 (1–5)

Pričakovane vrednosti popravkov opazovanj so majhnega velikostnega reda v primerjavi z opazovanji,
prav tako pričakujemo, da bodo popravki neznank majhni. Zato lahko enačbo (1–5) (oz. sistem c

enačb) razvijemo v Taylorjevo vrsto, kjer zanemarimo vse člene drugega in višjih redov. Razvoj
naredimo tako za opazovanja (približne vrednosti so opazovane vrednosti l, prirastki so popravki
opazovanj v) kot tudi za neznanke (približne vrednosti so približne vrednosti neznank x0, prirastki
so popravki neznank ∆). Linearizirana oblika je tako dana z:

F (l + v, x0 + ∆) ≈ F (l, x0) +
∂F
∂l

v +
∂F
∂x0

∆ = 0 (1–6)

Enačbo (1–6) preuredimo, da dobimo:

∂F
∂l

v +
∂F
∂x0

∆ = −F (l, x0) (1–7)

V enačbi (1–7) elemente označimo kot:

• ∂F/∂l = A → matrika koeficientov/parcialnih odvodov po opazovanjih, velikosti c × n,

• ∂F/∂x0 = B → matrika koeficientov/parcialnih odvodov po neznankah, velikosti c × u,

• −F (l, x0) = f → odstopanja enačb oz. prosti členi enačb splošnega modela izravnave,
velikosti c × 1.

Tako lahko zapišemo končno obliko sistema lineariziranih enačb za splošni model izravnave:

Av + B∆ = f (1–8)

2



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

1.3 Rešitev matematičnega modela izravnave

Do končnih rezultatov izravnave po splošnem modelu pridem z nizom matričnih izračunov. Prvo
rešimo funkcionalni model izravnave:

• Matrika kofaktorjev in matrika uteži ekvivalentnih opazovanj / enačb:

Qe =AQAT

Pe =Q−1

e

(1–9)

• Sistem normalnih enačb:
N =BTPeB

t =BTPef
(1–10)

• Rešitev funkcionalnega modela:

∆ =N−1t

v =QATPe(f − B∆)

l̂ =l + v

V drugem koraku pridobimo rešitev stohastičnega modela:

• Referenčna varianca a-posteriori:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
(1–11)

• Matrike kofaktorjev vektorjev funkcionalnega modela:

Q∆∆ =N−1

Qvv =QATPe

(

I − BQ∆∆BTPe

)

AQ

Ql̂l̂ =Q − Qvv

(1–12)

• Variančno-kovariančne matrike (Σ∆∆, Σvv in Σl̂l̂) za vse tri izračunane vektorje, ki predstavljajo
rešitev funkcionalnega modela (∆, v in l̂), izračunamo tako, da matrike kofaktorjev iz enačbe
(1–12) pomnožimo z ustrezno referenčno varianco σ2, torej:

Σii = σ2Qii i = {∆, v, l̂} (1–13)

1.4 Posebna primera splošnega modela: posredna in pogojna izravnava

Prikažimo, v katerih primerih se splošni model izravnave pretvori v pogojno oziroma posredno iz-
ravnavo.

3
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1.4.1 Pogojna izravnava

V primeru, da izberemo število neznank u = 0, torej ko nimamo nobene neznanke, potem nimamo
vektorja ∆ in matrike B. V tem primeru imamo osnovni matrični sistem v obliki:

Av = f (1–14)

Rešitev funkcionalnega modela je dana z:

Qe =AQAT

Pe =Qe
−1

k =Pef

v =QATk

l̂ =l + v

(1–15)

Rešitev stohastičnega modela je dana z:

Qvv = QATPeAQ

Ql̂l̂ = Q − Qvv

(1–16)

1.4.2 Posredna izravnava

V primeru, ko pa izberemo točno toliko neznank, kot je število nujno potrebnih opazovanj za rešitev
modela u = n0 in hkrati za vsako opazovanje sestavimo svojo enačbo (popravkov), kjer opazovanje
nastopa linearno v enačbi, potem dobimo posredni model izravnave. Pri posrednem modelu izravnave
velja, da je A enotska matrika in u = n0. Osnovni matrični sistem ima obliko:

v + B∆ = f (1–17)

Rešitev funkcionalnega modela je dana z:

Qe =Q

Pe =Q−1

e = P

N =BTPB

t =BTPf

∆ =N−1t

v =f − B∆

l̂ =l + v

(1–18)

Rešitev stohastičnega modela je dana z:

Q∆∆ =N−1

Qvv =Q − BQ∆∆BT

Ql̂l̂ =Q − Qvv = BQ∆∆BT

(1–19)
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1.5 Postopek izračuna pri splošnem modelu izravnave po MNK

Pri splošnem modelu izravnave postopamo po naslednjih korakih:

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.

5



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

1.6 Primer 1 – pravokotni trikotnik

Opazovali smo stranice v pravokotnem trikotniku in dobili: a = 216,7 m, b = 163,3 m in c = 271,3 m,
kot prikazuje slika 1–1. Dolžine smo izmerili z razdaljemerom, ki ima podano natančnost kot σd =
2,0 cm. S splošnim modelom izravnaj opazovanja in določi površino parcele S ter njeno natančnost
σS . Za izračun natančnosti uporabi referenčno varianco a-priori σ2

0
.

a

b
c

Slika 1–1: Skica opazovanj v pravokotnem trikotniku

Uporabo splošnega modela izravnave na tem pravokotnem trikotniku bomo prikazali s štirimi reši-
tvami, in sicer:

• uvedli bomo dve neznanki, x ≃ a in y ≃ b, a prikazali dva različna niza enačb,

• uvedli bomo eno samo neznanko, x ≃ a, in

• za neznanko bomo nastavili kar S.

1.6.1 Rešitev 1 – dve neznanki in 1. niz enačb

Za rešitev bomo uporabili korake iz poglavja 1.5.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Iz naloge vidimo, da imamo n = 3 opazovanj (a, b in c), kjer bi potrebovali samo n0 = 2
opazovanj za enolično rešitev. To pomeni, da imamo r = n − n0 = 1 nadštevilnih opazovanj.
Ker imamo opazovanja izmerjena z enako natančnostjo, velja, da je:

l =







a

b

c







σ2

0
= σ2

d = 4,0 × 10−4 m2 Q = P = I (1–20)

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
V tem primeru si bomo izbrali u = 2 neznanki, in sicer x naj predstavlja stranico a, y pa
stranico b, kjer jim bomo približne vrednosti nastavili iz opazovanj. Velja:

x =

[

x

y

]

x0 =

[

x0

y0

]

=

[

a

b

]

=

[

216,7 m
163,3 m

]

(1–21)

6
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3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 1 in u = 2, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
1 + 2 = 3. Enačbe za splošni model izravnave imajo samo eno pravilo, v vseh enačbah morajo
biti vsa opazovanja in vse neznanke. Primer treh takih enačb je:

F1 ≡ â − x = 0

F2 ≡ y − b̂ = 0

F3 ≡ ĉ2 − x2 − b̂2 = 0

(1–22)

V enačbah (1–22) nastopajo vsa tri opazovanja, kot tudi obe neznanki, zato je ta niz enačb
pravilen.

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–22) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f . Matrika A predstavlja parcialne odvode vseh enačb iz (1–22) po vseh opa-
zovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj l iz enačbe (1–20). Dobimo:

A =








∂F1

∂a
∂F1

∂b
∂F1

∂c

∂F2

∂a
∂F2

∂b
∂F2

∂c

∂F3

∂a
∂F3

∂b
∂F3

∂c








=







1 0 0
0 −1 0
0 −2b 2c







=







1,0 0,0 0,0
0,0 −1,0 0,0
0,0 −326,6 542,6







(1–23)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–22) po obeh neznankah, kjer je vrstni
red odvodov podan z vektorjem neznank x iz enačbe (1–21). Dobimo:

B =








∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y

∂F3

∂x
∂F3

∂y








=







−1 0
0 1

−2x0 0







=







−1,0 0,0
0,0 1,0

−433,4 0,0







(1–24)

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar se
nahaja na levi strani enačaja v enačbah (1–22) prenesemo na desno stran. Pri tem se spremeni
predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto neznank
uporabimo njihove približne vrednosti. Dobimo:

f =







x0 − a

b − y0

b2 + x2
0

− c2







=







0,000
0,000
22,090







(1–25)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela je predstavljena v prvem delu poglavja 1.3, kjer moramo upo-
rabiti 7 enačb za izračun rešitve. Končni vektorji so enaki:

∆ =

[

−0,0163 m
−0,0123 m

]

v =







−0,0163 m
−0,0123 m
0,0204 m







l̂ =







216,6837 m
163,2877 m
271,3204 m







(1–26)
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Na osnovi približnih vrednosti neznank x0 iz enačbe (1–21) in popravkov približnih vrednosti
neznank ∆ iz enačbe (1–26) izračunamo končne vrednosti neznank x:

x = x0 + ∆ =

[

216,6837 m
163,2877 m

]

(1–27)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

Rešitev stohastičnega modela je predstavljena v drugem delu poglavja 1.3, kjer dobimo matrike
kofaktorjev Q∆∆, Qvv in Ql̂l̂:

Q∆∆ =

[

0,681 −0,240
−0,240 0,819

]

Qvv =







0,319 0,240 −0,399
0,240 0,181 −0,301

−0,399 −0,301 0,500







Ql̂l̂ =







0,681 −0,240 0,399
−0,240 0,819 0,301

0,399 0,301 0,500







(1–28)

Izračunamo tudi referenčno varianco a-posteriori σ̂2
0 in referenčni standardni odklon a-posteriori

σ̂0 in dobimo:

σ̂2

0 =
vTPv

r
= 8,286 × 10−4 m2

σ̂0 =
√

σ̂2
0 = 0,029 m

(1–29)

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Za izračun vseh kovariančnih matrik uporabimo referenčno varianco a-priori σ2

0
, kjer dobimo:

Σ∆∆ =

[

2,724 × 10−4 −9,614 × 10−5

−9,614 × 10−5 3,276 × 10−4

]

m2

Σvv =







1,276 × 10−4 9,614 × 10−5 −1,597 × 10−4

9,614 × 10−5 7,245 × 10−5 −1,204 × 10−4

−1,597 × 10−4 −1,204 × 10−4 2,000 × 10−4







m2

Σl̂l̂ =







2,724 × 10−4 −9,614 × 10−5 1,597 × 10−4

−9,614 × 10−5 3,276 × 10−4 1,204 × 10−4

1,597 × 10−4 1,204 × 10−4 2,000 × 10−4







m2

(1–30)

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Prvo izračunajmo natančnosti in korelacije neznank. Dobimo:

σx = 0,017 m σy = 0,018 m ρxy = −0,322 (1–31)

Izračunajmo tudi natančnosti in korelacije popravkov opazovanj:

σva
=0,011 m σvb

= 0,009 m σvc
= 0,014 m

ρvavb
=1,000 ρvavc

= −1,000 ρvbvc
= −1,000

(1–32)
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

Na koncu še natančnosti in korelacije izravnanih opazovanj:

σâ =0,017 m σb̂ = 0,018 m σĉ = 0,014 m

ρâb̂ = − 0,322 ρâĉ = 0,684 ρb̂ĉ = 0,470
(1–33)

Naloga na koncu zahteva še izračun površine S s pripadajočo natančnostjo σS . Uporabili bomo
izravnani neznanki iz enačbe (1–27), kjer dobimo:

S =
x y

2
= 17 690,90 m2 (1–34)

Natančnost površine σS izračunamo s pomočjo zakona o prenosu varianc in kovarianc. Izhajamo iz
enačbe (1–34) in kovariančne matrike neznank iz enačbe (1–30). Za natančnost površine dobimo:

σS = 1,99 m2 (1–35)

1.6.2 Rešitev 2 – dve neznanki in 2. niz enačb

Pri tej rešitvi bomo uporabili drugačne enačbe in pokazali, da to ne bo vplivalo na rezultate. V
nadaljevanju tako prikazujemo le tiste podatke in rezultate, ki so drugačni kot v primeru rešitve 1
iz poglavja 1.6.1.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Povsem enako kot poglavje 1.6.1 (enačba (1–20)).

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Tu si izberemo enaki neznanki in jima izračunamo enaki približni vrednosti (enačba (1–21)).

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Sestavili bomo c = r + u = 1 + 2 = 3 enačb, ki pa bodo drugačne kot so predstavljene v enačbi
(1–22) v poglavju 1.6.1. Tu bodo enačbe oblike:

F1 ≡ â2 + b̂2 − ĉ2 = 0

F2 ≡ x2 + b̂2 − ĉ2 = 0

F3 ≡ â2 + y2 − ĉ2 = 0

(1–36)

V enačbah (1–36) nastopajo vsa tri opazovanja, kot tudi obe neznanki, zato je ta niz enačb
pravilen.

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
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Matrični model sestavimo na osnovi enačb iz (1–36). Matriki A in B ter vektor f so:

A =







2a 2b −2c

0 2b −2c

2a 0 −2c







=







433,40 326,60 −542,60
0,00 326,60 −542,60

433,40 0,00 −542,60







B =







0 0
2x0 0
0 2y0







=







0,00 0,00
433,40 0,00
0,00 326,60







f =







c2 − a2 − b2

c2 − x2
0

− b2

c2 − a2 − y2
0







=







−22,09
−22,09
−22,09







(1–37)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Vektorji ∆, v in l̂, ki predstavljajo rešitev funkcionalnega modela imajo vrednosti:

∆ =

[

−0,0163 m
−0,0123 m

]

v =







−0,0163 m
−0,0123 m
0,0204 m







l̂ =







216,6837 m
163,2877 m
271,3204 m







(1–38)

Če primerjamo vrednosti iz enačbe (1–26) prejšnjega poglavja 1.6.1, vidimo, da smo v enačbi
(1–38) dobili povsem enake rezultate. Izračunajmo še neznanke x:

x = x0 + ∆ =

[

216,6837 m
163,2877 m

]

(1–39)

Spet, vrednosti v enačbi (1–39) so popolnoma enake kot tiste iz enačbe (1–27).

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

Za rešitve glej v poglavje 1.6.1, enačbi (1–28) in (1–29).

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Za rešitve glej v poglavje 1.6.1, enačba (1–30).

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Za rešitve glej v poglavje 1.6.1, enačbe (1–31), (1–32) in (1–33).

Za izračun površine tudi tu uporabimo izračunani neznanki iz enačbe (1–39) in pripadajočo kovari-
ančno matriko iz enačbe (1–30). Rezultati so identični kot v prejšnjem poglavju (glej enačbi (1–34)
in (1–35)).

1.6.3 Rešitev 3 – samo ena neznanka, stranica

Pri tej rešitvi bomo pokazali, da lahko v funkcionalni model uvedemo tudi drugačno število neznank,
kar tudi ne bo vplivalo na končne rezultate. V nadaljevanju tako prikazujemo le tiste podatke in
rezultate, ki so drugačni kot v primeru rešitve 1 in 2 iz poglavij 1.6.1 in 1.6.2.
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Povsem enako kot poglavje 1.6.1 (enačba (1–20)).

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
V tem primeru bomo nastavili u = 1 neznanko, in sicer:

x =
[

x
]

x0 =
[

x0

]

=
[

a
]

=
[

216,7 m
]

(1–40)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Sestavili bomo c = r + u = 1 + 1 = 2 enačb, torej manj enačb kot v obeh prejšnjih primerih
(enačbi (1–22) in (1–36)). Tu imamo:

F1 ≡ â2 + b̂2 − ĉ2 = 0

F2 ≡ x − â = 0
(1–41)

Tudi v enačbah (1–41) nastopajo vsa tri opazovanja, kot tudi ena uvedena neznanka, zato je
ta niz enačb pravilen.

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Matrični model sestavimo na osnovi enačb iz (1–41). Matriki A in B ter vektor f so manjše
dimenzije kot v poglavjih 1.6.1 in 1.6.2 in imajo obliko:

A =

[

2a 2b −2c

−1 0 0

]

=

[

433,4 326,6 −542,6
−1,0 0,0 0,0

]

B =

[

0
1

]

=

[

0,0
1,0

]

f =

[

c2 − a2 − b2

a − x0

]

=

[

−22,1
0,0

]

(1–42)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Vektorji ∆, v in l̂, ki predstavljajo rešitev funkcionalnega modela imajo vrednosti:

∆ =
[

−0,0163 m
]

v =







−0,0163 m
−0,0123 m
0,0204 m







l̂ =







216,6837 m
163,2877 m
271,3204 m







(1–43)

Če primerjamo vrednosti iz enačb (1–26) in (1–38) poglavij 1.6.1 in 1.6.2, vidimo, da dobimo
povsem enake rezultate. Izračunajmo še neznanko x:

x = x0 + ∆ =
[

216,6837 m
]

(1–44)

Spet, vrednost v (1–44) je neznanka x, izračunana popolnoma enako kot v poglavju 1.6.1 ali
1.6.2.
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6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

Ker imamo samo eno neznanko, je matrika Q∆∆ enaka:

Q∆∆ =
[

0,681
]

(1–45)

Za matriki Qvv in Ql̂l̂ glej poglavje 1.6.1, enačbi (1–28) in (1–29).

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Kovariančna matrika neznank Σ∆∆ ima samo en element, to je varianco σ2

x in ima vrednost:

Σ∆∆ =
[

2,724 × 10−4

]

m2 (1–46)

Za matriki Σvv in Σl̂l̂ glej poglavje 1.6.1, enačba (1–30).

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Natančnost neznanke je σx = 0,017 m. Za ostale rešitve glej v poglavje 1.6.1, enačbi (1–32) in

(1–33).

Ker imamo tu izračunano le eno neznanko (x), bomo za izračun površine uporabili izravnana opazo-
vanja iz vektorja l̂ iz enačbe (1–43), kjer dobimo:

S =
â b̂

2
= 17 690,90 m2 (1–47)

Za izračun natančnosti površine σS bomo seveda uporabili zakon o prenosu varianc, le da tu izhajamo
iz kovariančne matrike izravnanih opazovanj Σl̂l̂. Na koncu dobimo:

σS = 1,99 m2 (1–48)

Rezultat iz (1–48) tudi v tem primeru povsem enak kot pri ostalih dveh rešitvah (enačba (1–35)).

1.6.4 Rešitev 4 – samo ena neznanka, površina trikotnika

Na koncu uporabimo za neznanko še iskano količino, in sicer površino trikotnika S in pokažimo, da
vrsta neznanke ne vpliva na rezultate.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Povsem enako kot poglavje 1.6.1 (enačba (1–20)).

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
V tem primeru bomo nastavili u = 1 neznanko, in sicer:

x =
[

S
]

x0 =
[

S0

]

=
[

ab
2

]

=
[

17 693,6 m2

]

(1–49)
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3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Sestavili bomo c = r + u = 1 + 1 = 2 enačb, v katerih bomo povezali vsa tri opazovanja in
neznanko, površino S:

F1 ≡ â2 + b̂2 − ĉ2 = 0

F2 ≡ âb̂ − 2S = 0
(1–50)

Tudi v enačbah (1–50) nastopajo vsa tri opazovanja, kot tudi ena uvedena neznanka, zato je
ta niz enačb pravilen.

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Matrični model tudi tu sestavimo na osnovi enačb iz (1–50) in za matriki A in B ter vektor f
dobimo:

A =

[

2a 2b −2c

b a 0

]

=

[

433,4 326,6 −542,6
163,3 216,7 0,0

]

B =

[

0
−2

]

=

[

0,0
−2,0

]

f =

[

c2 − a2 − b2

2S0 − ab

]

=

[

−22,1
0,0

]

(1–51)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Vektorji ∆, v in l̂, ki predstavljajo rešitev funkcionalnega modela imajo vrednosti:

∆ =
[

−2,6547 m
]

v =







−0,0163 m
−0,0123 m
0,0204 m







l̂ =







216,6837 m
163,2877 m
271,3204 m







(1–52)

Vektor ∆ se nanaša na površino trikotnika, zato njegove vrednosti ne moremo primerjati z
vektorji ∆ iz prejšnjih treh primerov. Lahko pa primerjamo oba ostala vektorja, v in l̂, ki tudi
tu dobita enake vrednosti kot v poglavju 1.6.1. Izračunajmo še neznanko x, torej površino S:

x = x0 + ∆ =
[

17 690,9 m2
]

(1–53)

Površino S iz enačbe (1–53) pa lahko primerjamo z izračunano površino iz poglavja 1.6.1
(enačba (1–34)), kjer ugotovimo, da dobimo povsem enako vrednost.

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0.
Ker imamo samo eno neznanko, je matrika Q∆∆ enaka:

Q∆∆ =
[

9 901,031
]

(1–54)

Za matriki Qvv in Ql̂l̂ glej poglavje 1.6.1, enačbi (1–28) in (1–29).

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Kovariančna matrika neznank Σ∆∆ ima samo en element, to je varianco σ2

S in ima vrednost:

Σ∆∆ =
[

3,960
]

m2 (1–55)

Za matriki Σvv in Σl̂l̂ glej poglavje 1.6.1, enačba (1–30).
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8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Izračunali bomo natančnost neznanke, to je σS = 1,99 m, kjer dobimo enako vrednost kot v
primeru enačbe (1–35). Za ostale rešitve glej v poglavje 1.6.1, enačbi (1–32) in (1–33).
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1.7 Primer 2 – višina reperja

Dano imamo višino izhodiščnega reperja A, in sicer HA = 320,00 m. Da bi določili višino reperja B

smo s trigonometričnim višinomerstvom opazovali poševno dolžino s = 51,00 m in zenitno razdaljo
z = 78◦40′, z geometričnim nivelmanom višinsko razliko ∆h = 10,00 m, izmerili pa smo tudi hori-
zontalno dolžino d = 50,00 m, kot to prikazuje slika 1–2. Če so opazovanja enake natančnosti in
medseboj nekorelirana, s splošnim modelom izravnave izravnaj opazovanja in določi višino reperja B

s pripadajočo natančnostjo σHB
.

z
s

d

∆h

b

A

b

B

Slika 1–2: Prikaz izmerjenih opazovanj za določitev višine novega reperja

Rešitev bomo dobili po korakih, ki so predstavljeni v poglavju 1.5.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Iz naloge vidimo, da imamo n = 4 opazovanj (s, d, ∆h in z) v pravokotnem trikotniku, kjer bi
potrebovali samo n0 = 2 opazovanj za enolično rešitev. To pomeni, da imamo r = n − n0 = 2
nadštevilnih opazovanj. Ker imamo opazovanja izmerjena z enako natančnostjo, velja, da je:

l =









s

d

∆h

z









Q = P = I (1–56)

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
V tem primeru si bomo izbrali u = 1 neznanko, in sicer točno tisto, po čemer nas sprašuje
naloga, neznanka naj bo višina HB. Njeno približno vrednost bomo izračunali iz opazovanj,
zato je:

x =
[

HB

]

x0 =
[

HB,0

]

=
[

HA + ∆h
]

=
[

330,00 m
]

(1–57)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 1, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
2 + 1 = 3. Enačbe za splošni model izravnave imajo samo eno pravilo, v vseh enačbah morajo
biti vsa opazovanja in vse neznanke. V našem primeru bomo sestavili:

F1 ≡ ∆ĥ2 + d̂2 − ŝ2 = 0

F2 ≡ HB − ∆ĥ − HA = 0

F3 ≡ d̂ − ŝ sin ẑ = 0

(1–58)

V enačbah (1–58) nastopajo vsa tri opazovanja, kot tudi neznanka, zato je ta niz enačb pravilen.
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4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–58) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f . Matrika A predstavlja parcialne odvode vseh enačb iz (1–58) po vseh opa-
zovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj l iz enačbe (1–56). Dobimo:

A =








∂F1

∂s
∂F1

∂d
∂F1

∂∆h
∂F1

∂z

∂F2

∂s
∂F2

∂d
∂F2

∂∆h
∂F2

∂z

∂F3

∂s
∂F3

∂d
∂F3

∂∆h
∂F3

∂z








=







−2s 2d 2∆h 0
0 0 −1 0

sin z 1 0 −s cos z







=







−102,000 100,000 20,000 0,000
0,000 0,000 −1,000 0,000

−0,981 1,000 0,000 −10,022







(1–59)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–58) po neznanki, višini HB:

B =








∂F1

∂HB

∂F2

∂HB

∂F3

∂HB








=







0
1
0







(1–60)

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar se
nahaja na levi strani enačaja v enačbah (1–58) prenesemo na desno stran. Pri tem se spremeni
predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto neznank
uporabimo njihove približne vrednosti. Dobimo:

f =







s2 − d2 − ∆h2

HA + ∆h − HB,0

s sin z − d







=







1,0000
0,0000
0,0055







(1–61)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela pomeni izračun vektorjev ∆, v in l̂, kjer dobimo:

∆ =
[

0,0010 m
]

v =









−0,0049 m
0,0048 m
0,0010 m
0,0004









l̂ =









50,9951 m
50,0048 m
10,0010 m

1,3734









(1–62)

V enačbi (1–62) je popravek vz izračunan v radianih, njegova vrednost v ločnih minutah pa je
vz = 1,40′. Tudi izravnana zenitna razdalja ẑ je v enačbi (1–62) podana v radianih, v ločnih
enotah pa je enaka ẑ = 78◦41,40′.

Na osnovi približnih vrednosti neznank x0 iz enačbe (1–57) in popravkov približnih vrednosti
neznank ∆ iz enačbe (1–62) izračunamo končne vrednosti neznank x:

x = x0 + ∆ =
[

330,0010 m
]

(1–63)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

16



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

Rešitev stohastičnega modela pomeni izračunati matrike kofaktorjev Q∆∆, Qvv in Ql̂l̂:

Q∆∆ =
[

9,804 × 10−1

]

Qvv =









5,001 × 10−1 −4,903 × 10−1 −9,806 × 10−2 −1,340 × 10−5

−4,903 × 10−1 4,807 × 10−1 9,606 × 10−2 −3,849 × 10−3

−9,806 × 10−2 9,606 × 10−2 1,960 × 10−2 1,918 × 10−2

−1,340 × 10−5 −3,849 × 10−3 1,918 × 10−2 9,996 × 10−1









Ql̂l̂ =









4,999 × 10−1 4,903 × 10−1 9,806 × 10−2 1,340 × 10−5

4,903 × 10−1 5,193 × 10−1 −9,606 × 10−2 3,849 × 10−3

9,806 × 10−2 −9,606 × 10−2 9,804 × 10−1 −1,918 × 10−2

1,340 × 10−5 3,849 × 10−3 −1,918 × 10−2 −1,918 × 10−2









(1–64)

Izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni standardni odklon a-posteriori
σ̂0 in dobimo:

σ̂2

0
=

vTPv
r

= 2,412 × 10−5 m2

σ̂0 =
√

σ̂2
0 = 0,005 m

(1–65)

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Pri izračunu kovariančnih matrik uporabimo referenčno varianco a-posteriori σ̂2

0
, prikažimo pa

le kovariančno matriko neznank Σ∆∆:

Σ∆∆ =
[

2,364 × 10−5 m2
]

(1–66)

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Izračunajmo natančnosti neznanke, σHB

:

σHB
= 0,0049 m (1–67)

Izračunajmo tudi natančnosti popravkov opazovanj (korelacije izračunajte sami):

σvs
= 0,0035 m σvd

= 0,0034 m σv∆h
= 0,0007 m σvz

= 16,88′ (1–68)

Na koncu še natančnosti izravnanih opazovanj (korelacije izračunajte sami):

σŝ = 0,0035 m σd̂ = 0,0035 m σ
∆ĥ = 0,0049 m σẑ = 0,33′ (1–69)
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1.8 Primer 3 – premica v ravnini, opazovani obe koordinati točk

V ravnini imamo štiri točke, za katere imamo opazovane tako koordinate x, kot tudi koordinate y,
vrednosti opazovanj pa so predstavljene v preglednici 1–1.

Preglednica 1–1: Opazovane vse koordinate štirih točk na premici

Točka x y

T1 1,3 0,7
T2 2,2 1,1
T3 2,8 1,9
T4 4,1 2,6

Točke v ravnini prikazuje slika 1–3. Če so opazovanja enake natančnosti in medseboj neodvisna, s
splošnim modelom izravnave po MNK izravnaj opazovanja in določi premico, ki se optimalno prilega
točkam.

x

y

b

T1
b

T2

b

T3

b

T4

Slika 1–3: Točke premice v ravnini

Primer, ki ga obravnavamo je praktični identičen primeru 7 pri poglavju Zakon o prenosu varianc in

kovarianc pri MNK. Tudi tu bomo podrobno raziskali predvsem količino n0, zato se bo katera izmed
enačb ponovila. Poudarek tu pa bo v tem, da bo rešitev s splošnim modelom veliko bolj enostavna,
kot s posrednim modelom izravnave.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Iz podatkov je razvidno, da je število opazovanj enako n = 8, opazovane imamo tako 4 koordi-
nate x in 4 koordinate y. Vektor opazovanj nastavimo kot:

l =




















x1

y1

x2

y2

x3

y3

x4

y4




















=




















1,3
0,7
2,2
1,1
2,8
1,9
4,1
2,6




















(1–70)
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Ker so opazovanja enake natančnosti in medseboj nekorelirana, velja Q = P = I8×8.

Kako določimo n0? Tu bomo privzeli enako logiko, kot pri prej omenjenem primeru 7 poglavja
Zakon o prenosu varianc in kovarianc pri MNK, ko smo nalogo rešili s posredno izravnavo po
MNK. Tam smo ugotovili, da bi morali uvesti dve neznanki, s katerima bomo parametrizirali
premico, torej a (naklonski koeficient) in b (prosti člen). Dodatno pa bi morali za vsako merjeno
koordinato xi uvesti neznanko pi, kar skupaj znese dodatnih 4 neznanke p1, p2, p3 in p4. Število
neznank bi pri tem bilo:

u = 2
︸︷︷︸

a,b

+ 4
︸︷︷︸

p1,p2,p3,p4

= 6 (1–71)

Ker pa vemo, da pri posredni izravnavi velja, u = n0, smo s tem definirali tudi minimalno
število opazovanj, ki jih nujno potrebujemo za rešitev problema.

Na koncu tako lahko zapišemo:

• število opazovanj: n = 8,

• minimalno število opazovanj je: n0 = 6,

• število nadštevilnih opazovanj je: r = 2.

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Ker želimo določiti parametre premice, ki se optimalno prilega izmerjenim točkam, bomo uve-
dli u = 2 neznank, torej parametra a in b. Približne vrednosti neznank bomo izračunali iz
opazovanj, in sicer:

x =

[

a

b

]

x0 =

[

a0

b0

]

=

[
y2−y1

x2−x1

y1 − a0x1

]

=

[

0,4444
0,1222

]

(1–72)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 2, je število enačb, ki jih moramo sestaviti, enako c = r + u =
2 + 2 = 4. Vidimo, da moramo sestaviti toliko enačb, kot imamo izmerjenih točk. Za vsako
točko uporabimo enačbo premice in dobimo:

F1 ≡ ŷ1 − ax̂1 − b = 0

F2 ≡ ŷ2 − ax̂2 − b = 0

F3 ≡ ŷ3 − ax̂3 − b = 0

F4 ≡ ŷ4 − ax̂4 − b = 0

(1–73)

Vidimo, da v enačbah (1–73) nastopajo vsa opazovanja in tudi obe uvedeni neznanki, kar
pomeni, da enačbe (1–73) predstavljajo pravilen niz enačb za naš primer.

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–73) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f . Matrika A je velikosti c × n = 4 × 8, matrika B je velikosti c × u = 4 × 2
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in vektor f je velikosti c × 1 = 4 × 1. Matriko A dobimo z odvajanjem vseh enačb iz (1–73) po
vseh opazovanjih iz (1–70):

A =












∂F1

∂x1

∂F1

∂y1

∂F1

∂x2

∂F1

∂y2

∂F1

∂x3

∂F1

∂y3

∂F1

∂x4

∂F1

∂y4

∂F2

∂x1

∂F2

∂y1

∂F2

∂x2

∂F2

∂y2

∂F2

∂x3

∂F2

∂y3

∂F2

∂x4

∂F2

∂y4

∂F3

∂x1

∂F3

∂y1

∂F3

∂x2

∂F3

∂y2

∂F3

∂x3

∂F3

∂y3

∂F3

∂x4

∂F3

∂y4

∂F4

∂x1

∂F4

∂y1

∂F4

∂x2

∂F4

∂y2

∂F4

∂x3

∂F4

∂y3

∂F4

∂x4

∂F4

∂y4












=

=









−a0 1 0 0 0 0 0 0
0 0 −a0 1 0 0 0 0
0 0 0 0 −a0 1 0 0
0 0 0 0 0 0 −a0 1









=









−0,444 1,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 −0,444 1,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 −0,444 1,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 −0,444 1,000









(1–74)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–73) po obeh neznankah, torej:

B =











∂F1

∂a
∂F1

∂b

∂F2

∂a
∂F2

∂b

∂F3

∂a
∂F3

∂b

∂F4

∂a
∂F4

∂b











=









−x1 −1
−x2 −1
−x3 −1
−x4 −1









=









−1,3 −1,0
−2,2 −1,0
−2,8 −1,0
−4,1 −1,0









(1–75)

Vektor odstopanj f dobimo iz enačb (1–73) tako, da jih prenesemo na desno stran in uporabimo
približne vrednosti neznank ter merjena opazovanja. Dobimo:

f =









a0x1 + b0 − y1

a0x2 + b0 − y2

a0x3 + b0 − y3

a0x4 + b0 − y4









=









0,000
0,000

−0,533
−0,656









(1–76)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela pomeni izračun vektorjev ∆, v in l̂. Prikažimo tu le izračunan
vektor popravkov približnih vrednosti neznank ∆:

∆ =

[

0,2633
−0,3873

]

(1–77)

Na osnovi približnih vrednosti neznank x0 iz enačbe (1–72) in popravkov približnih vrednosti
neznank ∆ iz enačbe (1–77) izračunamo končne vrednosti neznank x:

x = x0 + ∆ =

[

0,7077
−0,2651

]

(1–78)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.
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Rešitev stohastičnega modela pomeni izračunati matrike kofaktorjev Q∆∆, Qvv in Ql̂l̂. Matrika
kofaktorjev neznank je:

Q∆∆ =

[

2,893 × 10−1 −7,521 × 10−1

−7,521 × 10−1 2,255

]

(1–79)

Izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni standardni odklon a-posteriori
σ̂0 in dobimo:

σ̂2

0
=

vTPv
r

= 3,084 × 10−2

σ̂0 =
√

σ̂2
0 = 0,176

(1–80)

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Za izračun vseh kovariančnih matrik uporabimo referenčno varianco a-posteriori σ̂2

0 , prikažimo
pa le kovariančno matriko neznank:

Σ∆∆ =

[

8,919 × 10−3 −2,319 × 10−2

−2,319 × 10−2 6,953 × 10−2

]

m2 (1–81)

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Prikažimo natančnosti in korelacijo med obema neznankama:

σa = 0,094 σb = 0,264 ρab = −0,931 (1–82)
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1.9 Primer 4 – opazovanja v valju

V valju smo izmerili tri količine (glej sliko 1–4): premer osnovne ploskve a = 10,0 m, višino b = 20,0 m
in prostorsko diagonalo d = 22,0 m. Če so opazovanja enake natančnosti in medseboj nekorelirana, s
splošnim modelom izravnavo po MNK izravnaj opazovanja in izračunaj, koliko litrov soka (beri piva)
bi lahko pretočili v valj. Izračunajte tudi natančnost določitve količine soka.

a

bd

Slika 1–4: Skica valja in opazovanj

Rešitev bomo tudi tu dobili po korakih, ki so predstavljeni v poglavju 1.5.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Iz naloge vidimo, da imamo n = 3 opazovanj (a, b in d) v valju, kjer geometrijo lahko prikažemo
v pravokotnem trikotniku. Nujno bi potrebovali samo n0 = 2 opazovanj, to pomeni, da imamo
r = n−n0 = 1 nadštevilnih opazovanj. Ker imamo opazovanja izmerjena z enako natančnostjo,
velja, da je:

l =







a

b

d







Q = P = I (1–83)

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
V tem primeru si bomo izbrali u = 1 neznanko, in sicer točno tisto, po čemer nas sprašuje
naloga, neznanka naj bo torej prostornina valja V . Njeno približno vrednost bomo izračunali
iz opazovanj, zato je:

x =
[

V
]

x0 =
[

V0

]

=
[

πa2b
4

]

=
[

1 570,80 m3

]

(1–84)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 1 in u = 1, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
1 + 1 = 2. Enačbe za splošni model izravnave imajo samo eno pravilo, v vseh enačbah morajo
biti vsa opazovanja in vse neznanke. V našem primeru bomo sestavili:

F1 ≡ πâ2b̂ − 4V = 0

F2 ≡ â2 + b̂2 − d̂2
(1–85)

V enačbah (1–85) nastopajo vsa tri opazovanja, kot tudi neznanka, zato je ta niz enačb pravilen.
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4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–85) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f . Matrika A predstavlja parcialne odvode vseh enačb iz (1–85) po vseh opa-
zovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj l iz enačbe (1–83). Dobimo:

A =





∂F1

∂a
∂F1

∂b
∂F1

∂d

∂F2

∂a
∂F2

∂b
∂F2

∂d



 =

[

2πab πa2 0
2a 2b −2d

]

=

[

1 256,637 314,159 0,000
20,000 40,000 −44,000

] (1–86)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–85) po neznanki, prostornini V :

B =





∂F1

∂V

∂F2

∂V



 =

[

−4
0

]

(1–87)

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar se
nahaja na levi strani enačaja v enačbah (1–85) prenesemo na desno stran. Pri tem se spremeni
predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto neznank
uporabimo njihove približne vrednosti. Dobimo:

f =

[

4V − πa2b

d2 − a2 − b2

]

=

[

0,0000 m3

−16,0000 m2

]

(1–88)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela pomeni izračun vektorjev ∆, v in l̂, kjer dobimo:

∆ =
[

−38,31 m3
]

v =







−0,08 m
−0,16 m
0,18 m







l̂ =







9,92 m
19,84 m
22,18 m







(1–89)

Na osnovi približnih vrednosti neznank x0 iz enačbe (1–84) in popravkov približnih vrednosti
neznank ∆ iz enačbe (1–89) izračunamo končne vrednosti neznank x:

x = x0 + ∆ =
[

1 532,48 m3
]

(1–90)

Če izravnano prostornino V iz enačbe (1–90) zapišemo v litrih, pa dobimo V = 1 532 484 L

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0.
Rešitev stohastičnega modela pomeni izračunati matrike kofaktorjev Q∆∆, Qvv in Ql̂l̂:

Q∆∆ =
[

8,230 × 104

]

Qvv =







1,016 × 10−1 2,033 × 10−1 −2,236 × 10−1

2,033 × 10−1 4,065 × 10−1 −4,472 × 10−1

−2,236 × 10−1 −4,472 × 10−1 4,919 × 10−1







Ql̂l̂ =







8,984 × 10−1 −2,033 × 10−1 2,236 × 10−1

−2,033 × 10−1 5,935 × 10−1 4,472 × 10−1

2,236 × 10−1 4,472 × 10−1 5,081 × 10−1







(1–91)
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Izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni standardni odklon a-posteriori
σ̂0 in dobimo:

σ̂2

0
=

vTPv
r

= 6,504 × 10−2 m2

σ̂0 =
√

σ̂2
0 = 0,255 m

(1–92)

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Pri izračunu kovariančnih matrik uporabimo referenčno varianco a-posteriori σ̂2

0 , prikažimo pa
le kovariančno matriko neznank Σ∆∆:

Σ∆∆ =
[

5,353 × 103 m6

]

(1–93)

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Izračunajmo natančnost prostornine valja σV :

σV = 73,16 m3 = 73 161,74 L (1–94)

Izračunajmo tudi natančnosti popravkov opazovanj (korelacije izračunajte sami):

σva
= 0,081 m σvb

= 0,163 m σvd
= 0,179 m (1–95)

Na koncu še natančnosti izravnanih opazovanj (korelacije izračunajte sami):

σâ = 0,242 m σb̂ = 0,196 m σd̂ = 0,182 m (1–96)

Primerjajte rezultate te naloge z rezultati posredne izravnave (glej primer pri posredni izravnavi
lansko leto). Dobimo malo drugačne rezultate, a so razlike veliko manjše kot je ocenjena natančnost
rezultatov. Pojavijo pa se zaradi linearizacije nelinearnih enačb v osnovni matrični model tako
splošnega kot tudi posrednega modela izravnave po MNK.
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1.10 Primer 5 – točke na paraboli

V ravnini smo izmerili koordinate x in y štirim točkam in dobili: T1(1,0; 1,4), T2(2,0; 2,1), T3(3,0; 1,5)
in T4(4,0; −0,1). Če so koordinate y izmerjene dvakrat bolj natančnost kot koordinate x, s splošnim
modelom izravnavo po MNK določite parametre parabole tako, da gre parabola skozi izhodišče
koordinatnega sistema in se optimalno prilega točkam.

x

y

b

T1

b

T2

b

T3

b

T4

Slika 1–5: Točke v ravnini, ki ležijo na paraboli

Obravnavana naloga je zelo podobna nalogi, ko smo točkam v ravnini ocenjevali parametre optimalne
premice (glej poglavje 1.8), v svojem smislu je praktično enaka, le da imamo tu malo drugačno obliko
interpolacijske krivulje. Pri premici smo prvo morali ugotoviti, koliko je minimalno število opazovanj,
ki jih potrebujemo za izračun primera, zato bomo morali tudi tu narediti enako. Na voljo imamo
n = 8 opazovanj, opazovane imamo tako 4 koordinate x kot tudi 4 koordinate y. Enačba parabole,
ki gre skozi središče ima obliko y = ax2 + bx, kar bomo seveda uporabili pri sestavi enačb splošnega
modela izravnave. Vidimo, da moramo uvesti dve neznanki, ki se nanašata na parabolo (a in b). Če
gledamo analogijo z nalogo s premico, bi enačbo parabole pri posredni izravnavi lahko uporabili le
za opazovane koordinate y, kjer pa na desni strani ne sme biti opazovanj koordinat x. Zato bi pri
posredni izravnavi morali tudi tu za vsako merjeno koordinato x uvesti eno novo neznanko (p1, p2,
p3, p4). Zato je pri tej nalogi število nadštevilnih opazovanj enako:

u = 2
︸︷︷︸

a,b

+ 4
︸︷︷︸

p1,p2,p3,p4

= 6 (1–97)

Sedaj lahko postopamo po korakih splošnega modela izravnave. Rezultate pa bomo predstavili na
sledeč način. V prvem delu bodo nastavljeni vsi podatki za izračun rezultatov. Nato pa bomo izvedli
nekaj iteracij izravnave in prikazali rezultate po opravljenih iteracijah.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Iz podatkov je razvidno, da je število opazovanj enako n = 8, in vektor opazovanj nastavimo
kot:

l =




















x1

y1

x2

y2

x3

y3

x4

y4




















=




















1,0
1,4
2,0
2,1
3,0
1,5
4,0

−0,1




















(1–98)
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Ker so koordinate y opazovane dvakrat bolj natančno, potem za vsako točko lahko nastavimo
kofaktorja opazovanj:

qxi
= 4 qyi

= 1 i = {1, 2, 3, 4} (1–99)

Matriko uteži P dobimo kot P = Q−1.

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Za neznanki nastavimo parametra parabole a in b, kjer jima približno vrednost nastavimo kot:

x =

[

a

b

]

x0 =

[

a0

b0

]

=

[

0
0

]

(1–100)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 2, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
2 + 2 = 4. Vidimo, da tudi v tem primeru za vsako izmerjeno točko sestavimo eno enačbo:

F1 ≡ ŷ1 − ax̂2

1 − bx̂1 = 0

F2 ≡ ŷ2 − ax̂2

2
− bx̂2 = 0

F3 ≡ ŷ3 − ax̂2

3
− bx̂3 = 0

F4 ≡ ŷ4 − ax̂2

4 − bx̂4 = 0

(1–101)

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–101) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f . Matrika A je velikosti c × n = 4 × 8, matrika B je velikosti c × u = 4 × 2
in vektor f je velikosti c × 1 = 4 × 1. Matriko A dobimo z odvajanjem vseh enačb iz (1–101)
po vseh opazovanjih iz (1–98):

A =












∂F1

∂x1

∂F1

∂y1

∂F1

∂x2

∂F1

∂y2

∂F1

∂x3

∂F1

∂y3

∂F1

∂x4

∂F1

∂y4

∂F2

∂x1

∂F2

∂y1

∂F2

∂x2

∂F2

∂y2

∂F2

∂x3

∂F2

∂y3

∂F2

∂x4

∂F2

∂y4

∂F3

∂x1

∂F3

∂y1

∂F3

∂x2

∂F3

∂y2

∂F3

∂x3

∂F3

∂y3

∂F3

∂x4

∂F3

∂y4

∂F4

∂x1

∂F4

∂y1

∂F4

∂x2

∂F4

∂y2

∂F4

∂x3

∂F4

∂y3

∂F4

∂x4

∂F4

∂y4












=

=









−2a0x1 − b0 1 0 0 0 0 0 0
0 0 −2a0x2 − b0 1 0 0 0 0
0 0 0 0 −2a0x3 − b0 1 0 0
0 0 0 0 0 0 −2a0x4 − b0 1









=









0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00









(1–102)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–101) po obeh neznankah, torej:

B =











∂F1

∂a
∂F1

∂b

∂F2

∂a
∂F2

∂b

∂F3

∂a
∂F3

∂b

∂F4

∂a
∂F4

∂b











=









−x2
1 −x1

−x2
2

−x2

−x2
3 −x3

−x2
4

−x4









=









−1,0 −1,0
−4,0 −2,0
−9,0 −3,0
−16,0 −4,0









(1–103)
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Vektor odstopanj f dobimo iz enačb (1–101), da le-te prenesemo na desno stran in uporabimo
približne vrednosti neznank in merjena opazovanja. Dobimo:

f =









a0x
2
1

+ b0x1 − y1

a0x
2
2 + b0x2 − y2

a0x
2
3

+ b0x3 − y3

a0x
2
4 + b0x4 − y4









=









−1,400
−2,100
−1,500
0,100









(1–104)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
V prvem koraku izračunamo vektor popravkov približnih vrednosti neznank ∆, ki ga prištejemo
vektorju približnih vrednosti neznank x0 in dobimo vektor končnih vrednosti neznank x. Sedaj
pa za približne vrednosti (x0) privzamemo izravnane vrednosti (x) in postopek ponovimo.
Dobljeni rezultati predstavljajo rezultate 2. iteracije. Postopek ponavljamo vse dokler npr.
||∆|| > 1,000 × 10−6. Rešitve vektorja ∆ so:

Iteracija 1: δa = −0,514516 δb = 2,038387 ||∆|| = 2,10

Iteracija 2: δa = −0,011549 δb = 0,049690 ||∆|| = 5,10 × 10−2

Iteracija 3: δa = −0,000331 δb = 0,001138 ||∆|| = 1,19 × 10−3

Iteracija 4: δa = −0,000002 δb = 0,000012 ||∆|| = 1,24 × 10−5

Iteracija 5: δa = 0,000000 δb = 0,000000 ||∆|| = 5,17 × 10−7

Vidimo, da smo morali izvesti 5 iteracij, da sta popravka obeh neznank (δs in δb) zanemarljivo
majhna, da lahko končamo iterativni postopek. Vzrok za nujno obdelavo v več iteracijah je
v tem, da so enačbe iz (1–101) nelinearne, saj vsebujejo produkte in kvadrate opazovanj in
neznank. Končni rezultat, to sta ocenjena parametra premice a in b, lahko zapišemo kot:

x = x0 + ∆ =

[

−0,52640
2,08923

]

(1–105)

6. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Za izračun vseh kovariančnih matrik uporabimo referenčno varianco a-posteriori σ̂2

0 , prikažimo
pa le kovariančno matriko neznank:

Σ∆∆ =

[

8,032 × 10−4 −1,982 × 10−3

−1,982 × 10−3 5,342 × 10−3

]

(1–106)

7. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Prikažimo natančnosti in korelacijo med obema neznankama:

σa = 0,028 σb = 0,073 ρab = −0,957 (1–107)

Na koncu izrišimo še graf (glej sliko 1–6), ki ponazarja opazovanja (točke v ravnini), izravnano
parabolo (rdeča črtkana črta) in območje zaupanja interpoliranih vrednosti (sivo območje). Podobno
smo tak izris naredili za premico (opazovane samo y koordinate, primer 2) pri poglavju Zakon o

prenosu varianc in kovarianc pri MNK.
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x

y

b

b

b

b

Slika 1–6: Opazovanja, optimalna parabola in natančnost interpolacije in ekstrapolacije

S slike 1–6 lahko vidimo, da imamo eno dano točko, to je izhodišče koordinatnega sistema. Ker
parabola mora iti skozi izhodišče (prosti člen je enak nič), je tam izračunan standardni odklon
interpolirane vrednosti enak nič. Z oddaljevanjem pa natančnost pada. V območju podatkov (in-
terpolacija) je natančnost še dokaj enaka, z oddaljevanjem od območja podatkov, pa se natančnost
slabša. Ker pa se krivulji (paraboli) z oddaljevanjem od temena naklon povečuje, je območje zaupa-
nja (sivo območje) na pogled pristransko. Zato je na sliki 1–7 prikazano območje zaupanja za vsako
interpolirano točko brez parabole.
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Slika 1–7: Prikaz natančnosti interpoliranih točk

S slike 1–7 lahko vidimo, kako drastično pade kakovost interpoliranih točk, če gremo izven obmo-
čja podatkov (opazovanih točk, ki so prikazane z modrimi krogci), torej če delamo ekstrapolacijo.
V številnih znanstvenih panogah tako problem kakovosti ekstrapolacije še vedno predstavlja velik
problem.
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

1.11 Primer 6 – Ravninska geodetska mreža (1)

Podane imamo koordinate dveh danih točk, in sicer A(yA, xA) = (10,0 m, 10,0 m) in B(yB, xB) =
(100,0 m, 20,0 m). Da bi določili koordinate točke T (yT , xT ), smo na točki A izmerili smerni kot νT

A =
30◦57′ in dolžino dAT = 58,3 m, na točki T pa bazni vektor rT B = (∆yB

T , ∆xB
T ) = (60,0 m, −40,0 m)

proti točki B, kot to prikazuje slika 1–8. Če je natančnost smernega kota enaka σνT
A

= 15,0′′ in če je
natančnost vseh ostalih dolžinskih količin enaka σD = 4,0 mm, s splošnim modelom izravnave izrav-
najte opazovanja in določite koordinate točke T (yT , xT ). Rešite tudi stohastični model izravnave in
določite natančnost ocenjenih koordinat točke T in parametre standardne absolutne elipse pogreškov
točke T . Pri izračunu natančnosti uporabite referenčno varianco a-priori σ2

0
.

y

x

νT
A

dAT

r
TB =

(∆y B
T ,∆x B

T )

b A

b

B

b

T

Slika 1–8: Določitev koordinat nove točke na osnovi danih točk, smernega kota, dolžine in baznega
vektorja

Nalogo smo obravnavali tudi pri poglavju Zakon o prenosu varianc in kovarianc pri MNK, razlika
je le, da imamo sedaj različne natančnosti opazovanj. Pokazali bomo, kako lahko poenostavimo
sestavljene enačbe in posledično izračun naloge z uporabo splošnega modela izravnave.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Vidimo, da imamo n = 4 opazovanj, kjer želimo določiti koordinati yT in xT točke T , torej
n0 = 2 in r = n − n0 = 2. Natančnosti opazovanj so za dolžinska opazovanja enaka, podana
pa je tudi natančnost izmerjenega smernega kota, zato bosta vektor opazovanj l in pripadajoča
kovariančna matrika Σ enaki:

l =









dAT

νT
A

∆yB
T

∆xB
T









Σ =










σ2
D 0 0 0
0 σ2

νT
A

0 0

0 0 σ2
D 0

0 0 0 σ2
D










(1–108)

Če nastavimo za referenčno varianco a-priori σ2
0

= σ2
D, bodo kofaktorji in uteži opazovanj

enaki:

qD = 1,0000 qνT
A

= 3,3053 × 10−4 pD = 1,0000 pνT
A

= 3,0254 × 103 (1–109)

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Za neznanki si izberemo koordinati točke T , torej yT in xT in na ta način definiramo vektor
neznank x in s tem u = 2. Iz opazovanj izračunamo približne vrednosti neznank in dobimo:

x =

[

yT

xT

]

x0 =

[

yT,0

xT,0

]

=

[

yB − ∆yB
T

xB − ∆xB
T

]

=

[

40,00 m
60,00 m

]

(1–110)
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 2, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
2 + 2 = 4. Enačbe za splošni model izravnave imajo samo eno pravilo, v vseh enačbah morajo
biti vsa opazovanja in vse neznanke. V našem primeru bomo sestavili:

F1 ≡ yT − yA − d̂AT sin ν̂T
A = 0

F2 ≡ xT − xA − d̂AT cos ν̂T
A = 0

F3 ≡ yT + ∆ŷB
T − yB = 0

F4 ≡ xT + ∆x̂B
T − xB = 0

(1–111)

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–111) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B,
in vektor odstopanj f . Matrika A predstavlja parcialne odvode vseh enačb iz (1–111) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj l iz enačbe (1–108).
Dobimo:

A =












∂F1

∂dAT

∂F1

∂νT
A

∂F1

∂∆yB
T

∂F1

∂∆xB
T

∂F2

∂dAT

∂F2

∂νT
A

∂F2

∂∆yB
T

∂F2

∂∆xB
T

∂F3

∂dAT

∂F3

∂νT
A

∂F3

∂∆yB
T

∂F3

∂∆xB
T

∂F4

∂dAT

∂F4

∂νT
A

∂F4

∂∆yB
T

∂F4

∂∆xB
T












=









− sin νT
A −dAT cos νT

A 0 0
− cos νT

A dAT sin νT
A 0 0

0 0 1 0
0 0 0 1









=









−0,5143 −49,9990 0,0000 0,0000
−0,8576 29,9831 0,0000 0,0000
0,0000 0,0000 1,0000 0,0000
0,0000 0,0000 0,0000 1,0000









(1–112)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–111) po obeh neznankah, koordinatah
yT in xT :

B =












∂F1

∂yT

∂F1

∂xT

∂F2

∂yT

∂F2

∂xT

∂F3

∂yT

∂F3

∂xT

∂F4

∂yT

∂F4

∂xT












=









1,0 0,0
0,0 1,0
1,0 0,0
0,0 1,0









(1–113)

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enačaja v enačbah (1–111) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove približne vrednosti. Dobimo:

f =









dAT sin νT
A − yT + yA

dAT cos νT
A − xT + xA

yB − ∆yB
T + yB

xB − ∆xB
T + xB









=









−0,0169 m
−0,0010 m
0,0000 m
0,0000 m









(1–114)
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela pomeni izračun vektorjev ∆, v in l̂, kjer dobimo:

∆ =

[

−0,0081 m
−0,0007 m

]

v =









0,0048 m
0,0001270
0,0081 m
0,0007 m









l̂ =









58,3048 m
0,5403065
60,0081 m

−39,9993 m









(1–115)

V enačbi (1–115) sta popravek vνT
A

in izravnana vrednost ν̂T
A podana v radianih. Zapišemo ju

lahko tudi vνT
A

= 26′′ in α̂ = 30◦57′26′′.

Na osnovi približnih vrednosti neznank x0 iz enačbe (1–110) in popravkov približnih vrednosti
neznank ∆ iz enačbe (1–115) izračunamo končne vrednosti neznank x:

x = x0 + ∆ =

[

39,9919 m
59,9993 m

]

(1–116)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

Prikažimo samo izračun referenčne variance a-posteriori σ̂2
0: Izračunamo tudi referenčno vari-

anco a-posteriori σ̂2
0

in referenčni standardni odklon a-posteriori σ̂0 in dobimo:

σ̂2

0
=

vTPv
r

= 6,880 × 10−5 m2

σ̂0 =
√

σ̂2
0 = 0,008 m

(1–117)

Rešitev stohastičnega modela bomo prikazali v alijeni natančnosti vseh izračunanih rezultatov.

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Pri izračunu kovariančnih matrik uporabimo referenčno varianco a-priori σ2

0. Numerične vre-
dnosti natančnosti pa podamo v naslednji alineji.

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Da dobimo natančnosti σyT

in σxT
izračunanih koordinat točke T , korenimo diagonalna ele-

menta kovariančne matrike Σ∆∆, korelacijo ρyT xT
pa dobimo iz izvendiagonalnega elementa

matrike:
σyT

= 2,89 mm σxT
= 2,85 mm ρyT xT

= −0,02 (1–118)

Izračunajmo še parametre standardne absolutne elipse pogreškov na točki T :

a = 2,91 mm b = 2,83 mm θ = −30,95◦ (1–119)

Prikažimo še popravke opazovanj in izravnana opazovanja s pripadajočimi natančnostmi v
pregledni obliki:
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

Opaz. v σv l̂ σl̂

dAT 4,8 mm 2,8 mm 58,3048 m 2,8 mm
νT

A 26,2′′ 10,9′′ 30◦57′26,2′′ 10,3′′

∆yB
T 8,1 mm 2,8 mm 58,3048 m 2,9 mm

∆xB
T 0,7 mm 2,8 mm 58,3048 m 2,9 mm

1.12 Primer 7 – Ravninska geodetska mreža (2)

V ravnini imamo podana položaja dveh danih točk, A(yA, xA) = (5,0 m, 10,0 m) in B(yB, xB) =
(20,0 m, 0,0 m). Da bi določili položaj točke T , smo s točke A opazovali dolžino a = 16,2 m (σa =
0,1 m) in kot α = 45◦ (σα = 30′), s točke B pa dolžino b = 13,2 m (σb = 0,1 m) in kot β = 60◦

(σβ = 30′), kot to prikazuje slika 1–9. S splošnim modelom izravnave po MNK izravnaj opazovanja
in izračunaj koordinate točke T (yT , xT ), natančnosti koordinat σyT

in σxT
ter korelacijo ρyT xT

. Izra-
čunajte tudi parametre 95% absolutne elipse pogreškov na točki T . Uporabite referenčno varianco
a-priori σ2

0
.

y

x

α

β

a

b
b

A

b B

b

T

Slika 1–9: Opazovanja v ravninski mreži za določitev položaja nove točke

Tudi to nalogo smo že rešili v okviru poglavja Zakon o prenosu varianc in kovarianc pri MNK, kjer
smo prikazali pogojno izravnavo po MNK, predvsem zaradi enostavne rešitve izravnave v primer-
javi s posredno izravnavo. Tu podajamo rešitev s splošnim modelom izravnave, kjer bomo ohranili
enostavnost izračuna in hkrati dobili že v postopku izravnave izravnane koordinate točke T .

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Da bi določili koordinate točke T smo izmerili n = 4 opazovanj, kjer bi nujno potrebovali le
n0 = 2 opazovanj, zato imamo r = 2 nadštevilnih opazovanj. Vektor opazovanj l in pripadajoča
kovariančna matrika Σ sta:

l =









a

α

b

β









Σ =









σ2
a 0 0 0

0 σ2
α 0 0

0 0 σ2
b 0

0 0 0 σ2
β









(1–120)

Če nastavimo za referenčno varianco a-priori σ2
0

= σ2
α, bodo kofaktorji in uteži opazovanj enaki:

qa = qb =1,3131 × 102 qα = qβ = 1,0000

pa = pb =7,6154 × 10−3 pα = pβ = 1,0000
(1–121)
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2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Za neznanki si izberemo koordinati točke T , torej yT in xT in na ta način definiramo vektor
neznank x in s tem u = 2. Iz opazovanj izračunamo približne vrednosti neznank in dobimo:

x =

[

yT

xT

]

x0 =

[

yT,0

xT,0

]

=

[

yA + a sin(νB
A − α)

xA + a cos(νB
A − α)

]

=

[

20,885 m
13,177 m

]

(1–122)

V enačbi (1–122) je smerni kot νB
A = 123◦41′24′′.

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 2, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
2 + 2 = 4. Sestavljene enačbe so:

F1 ≡ â sin α̂ − b̂ sin β̂ = 0

F2 ≡ â2 + b̂2 + 2âb̂ cos(α̂ + β̂) − D2

F3 ≡ â2 − (yT − yA)2 − (xT − xA)2 = 0

F4 ≡ b̂2 − (yT − yB)2 − (xT − xB)2 = 0

(1–123)

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–123) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B,
in vektor odstopanj f . Matrika A predstavlja parcialne odvode vseh enačb iz (1–123) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj l iz enačbe (1–120).
Dobimo:

A =












∂F1

∂a
∂F1

∂α
∂F1

∂b
∂F1

∂β

∂F2

∂a
∂F2

∂α
∂F2

∂b
∂F2

∂β

∂F3

∂a
∂F3

∂α
∂F3

∂b
∂F3

∂β

∂F4

∂a
∂F4

∂α
∂F4

∂b
∂F4

∂β












=

=









sin α a cos α − sin β −b cos β

2a + 2b cos(α + β) −2ab sin(α + β) 2b + 2a cos(α + β) −2ab sin(α + β)
2a 0 0 0
0 0 2b 0









=









0,7071 11,4551 −0,8660 −6,6000
25,5672 −413,1072 18,0143 −413,1072
32,4000 0,0000 0,0000 0,0000
0,0000 0,0000 26,4000 0,0000









(1–124)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–123) po obeh neznankah, koordinatah
yT in xT :

B =












∂F1

∂yT

∂F1

∂xT

∂F2

∂yT

∂F2

∂xT

∂F3

∂yT

∂F3

∂xT

∂F4

∂yT

∂F4

∂xT












=









0 0
0 0

−2(yT − yA) −2(xT − xA)
−2(yT − yB) −2(xT − xB)









=









0,000 0,000
0,000 0,000

−31,771 −6,354
−1,771 −26,354









(1–125)
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Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enačaja v enačbah (1–123) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove približne vrednosti. Dobimo:

f =









−0,0236 m
−0,9883 m2

0,0000 m2

0,1794 m2









(1–126)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela pomeni izračun vektorjev ∆, v in l̂. Prikažimo tu le vektor ∆
in vektor končnih koordinat točke T :

∆ =

[

−0,0155 m
−0,0022 m

]

x = x0 + ∆ =

[

20,8699 m
13,1749 m

]

(1–127)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0.
Prikažimo samo izračun referenčne variance a-posteriori σ̂2

0
:

σ̂2

0
=

vTPv
r

= 2,1450 × 10−6 m2

σ̂0 =
√

σ̂2
0 = 0,0015 m

(1–128)

Rešitev stohastičnega modela bomo prikazali v alijeni natančnosti vseh izračunanih rezultatov.

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Pri izračunu kovariančnih matrik uporabimo referenčno varianco a-priori σ2

0
. Numerične vre-

dnosti natančnosti pa podamo v naslednji alineji.

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Da dobimo natančnosti σyT

in σxT
izračunanih koordinat točke T , korenimo diagonalna ele-

menta kovariančne matrike Σ∆∆, korelacijo ρyT xT
pa dobimo iz izvendiagonalnega elementa

matrike:
σyT

= 7,61 cm σxT
= 8,13 cm ρyT xT

= −0,07 (1–129)

Izračunajmo še parametre 95% absolutne elipse pogreškov na točki T :

a = 20,19 cm b = 18,32 cm θ = −66,39◦ (1–130)

Prikažimo še popravke opazovanj in izravnana opazovanja s pripadajočimi natančnostmi v
pregledni obliki:
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Opaz. v σv l̂ σl̂

a −1,6 cm 6,6 cm 16,1844 m 7,5 cm
b 0,4 cm 5,9 cm 13,2036 m 8,1 cm
α 0,2′ 24,4′ 45,0◦0,2′ 17,4′

β 5,3′ 22,4′ 60,0◦5,3′ 19,9′

1.13 Primer 8 – Ravninska geodetska mreža (3) – opazovani koti

V ravnini imamo podane položaje treh danih točk, ki ležijo na osi y, in sicer: A(yA, xA) = (10,0 m, 0,0 m),
B(yB, xB) = (50,0 m, 0,0 m) in C(yC , xC) = (120,0 m, 0,0 m). Da bi določili položaj točke T , smo na
točki A opazovali kot α = 37◦39′, na točki B kot β = 64◦57′ in na točki C kot γ = 45◦28′, kot
to prikazuje slika 1–10. Če so opazovanja enake natančnosti in medseboj nekorelirana, s splošnim
modelom izravnave po MNK izravnajte opazovanja, izračunajte koordinate točke T , natančnosti σyT

in σxT
in korelacijo ρyT xT

ter parametre 95% absolutne elipse pogreškov na točki T .

y

x

α β γ

b

A
b

B
b

C

b

T

Slika 1–10: Opazovani koti za določitev položaja nove točke

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Da bi določili koordinate točke T smo izmerili n = 3 opazovanj, kjer bi nujno potrebovali le
n0 = 2 opazovanj, zato imamo r = 1 nadštevilnih opazovanj. Sestavimo vektor opazovanj l in
matriki Q ter P, pri tem, da so opazovanja enake natančnosti in medseboj nekorelirana:

l =







α

β

γ







Q = P = I (1–131)

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Za neznanki si izberemo koordinati točke T , torej yT in xT in na ta način definiramo vektor
neznank x in s tem u = 2:

x =

[

yT

xT

]

(1–132)
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Izračunajmo približne vrednosti neznank. S slike 1–10 vidimo, da imamo načeloma tri možnosti
izračuna koordinat s postopkom zunanjega ureza. Za naš izračuna uporabimo točki A in B ter
opazovanji α in β, kot to prikazuje slika 1–11.

y

x

rs

α
180◦ − β

β − α

β γ

a

b

A
b

B
b

C

b

T

Slika 1–11: Določitev približnih koordinat nove točke na osnovi zunanjega ureza

V prvem koraku izračunamo kot na točki T , ki je enak β − α, nato pa s sinusnim izrekom
izračunamo stranico a, pri tem, da izhajamo iz znane dolžine dAB. Dobimo:

a = dAB

sin(180◦ − β)
sin(β − α)

= 79,009 m (1–133)

Za izračun približnih vrednosti neznank uporabimo koordinate točke A, merjen kot α in dolžino
a iz enačbe (1–133):

x0 =

[

yT,0

xT,0

]

=

[

yA + a cos(α)
xA + a sin(α)

]

=

[

72,556 m
48,262 m

]

(1–134)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 1 in u = 2, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
1 + 2 = 3. Za sestavo enačb izhajamo iz enačb pravokotnega trikotnika, ki ga sestavlja točka i

(i = {A, B, C}) in točka T . Enačbe, ki jih dobimo so (izpeljite sami):

F1 ≡ (yT − yA) tan α̂ − xT = 0

F2 ≡ (yT − yB) tan β̂ − xT = 0

F3 ≡ (yC − yT ) tan γ̂ − xT = 0

(1–135)

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbe (1–135) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B,
in vektor odstopanj f . Matrika A predstavlja parcialne odvode vseh enačb iz (1–135) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj l iz enačbe (1–131).
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Dobimo:

A =








∂F1

∂α
∂F1

∂β
∂F1

∂γ

∂F2

∂α
∂F2

∂β
∂F2

∂γ

∂F3

∂α
∂F3

∂β
∂F3

∂γ








=

=







yT −yA

cos2 α
0 0

0 yT −yB

cos2 β
0

0 0 yC−yT

cos2 γ







=







99,7898 0,0000 0,0000
0,0000 125,8183 0,0000
0,0000 0,0000 96,4590







(1–136)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–135) po obeh neznankah, koordinatah
yT in xT :

B =








∂F1

∂yT

∂F1

∂xT

∂F2

∂yT

∂F2

∂xT

∂F3

∂yT

∂F3

∂xT








=







tan α −1
tan β −1

− tan γ −1







=







0,771 −1,000
2,140 −1,000

−1,016 −1,000







(1–137)

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enačaja v enačbah (1–135) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove približne vrednosti. Dobimo:

f =







0,0000 m
0,0000 m
0,0386 m







(1–138)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela pomeni izračun vektorjev ∆, v in l̂. Prikažimo tu le vektor ∆
in vektor končnih koordinat točke T :

∆ =

[

−0,0138 m
−0,0206 m

]

x = x0 + ∆ =

[

72,5423 m
48,2411 m

]

(1–139)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

Prikažimo samo izračun referenčne variance a-posteriori σ̂2
0 , kjer bomo referenčni standardni

odklon σ̂0 zapisali v ločnih sekundah, saj so opazovanja sami koti:

σ̂2

0
=

vTPv
r

= 1,6671 × 10−8

σ̂0 =
√

σ̂2
0 = 26,6′′

(1–140)

Rešitev stohastičnega modela bomo prikazali v alijeni natančnosti vseh izračunanih rezultatov.

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Pri izračunu kovariančnih matrik uporabimo referenčno varianco a-posteriori σ̂2

0
, saj referenčne

variance a-priori σ2
0 ne poznamo. Numerične vrednosti natančnosti pa podamo v naslednji

alineji.
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8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Da dobimo natančnosti σyT

in σxT
izračunanih koordinat točke T , korenimo diagonalna ele-

menta kovariančne matrike Σ∆∆, korelacijo ρyT xT
pa dobimo iz izvendiagonalnega elementa

matrike:
σyT

= 6,30 mm σxT
= 8,20 mm ρyT xT

= 0,29 (1–141)

Izračunajmo še parametre 95% absolutne elipse pogreškov na točki T :

a = 21,04 mm b = 14,05 mm θ = 66,21◦ (1–142)

Prikažimo še popravke opazovanj in izravnana opazovanja s pripadajočimi natančnostmi v
pregledni obliki:

Opaz. v σv l̂ σl̂

α −20,5′′ 20,5′′ 37◦38′39,5′′ 17,0′′

β 14,7′′ 14,7′′ 64◦57′14,7′′ 22,2′′

γ 8,6′′ 8,6′′ 45◦28′8,6′′ 25,2′′
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1.14 Primer 9 – višina točke – opazovani koti

V ravnini imamo tri točke, ki ležijo na premici, in sicer A, B in C. Točka B je od točke A oddaljena
za b = 40,0 m, točka C pa za c = 110,0 m. Določiti želimo višino točke T (oddaljenost od premice),
zato smo izmerili tri višinske kote, na točki A kot α = 37◦39′, na točki B kot β = 64◦57′ in na točki
C kot γ = 45◦28′, kot to prikazuje slika 1–12. Če so opazovanja enake natančnosti in medseboj
nekorelirana, s splošnim modelom izravnave po MNK izravnajte opazovanja, izračunajte višino h

točke T in njeno natančnost σh.

α
β γ

h

b
c

b

A
b

B
b

C

b

T

Slika 1–12: Opazovani višinski koti za določitev višine nove točke

Da rešimo nalogo, si bomo pomagali z nalogo poglavja 1.13, saj imamo zelo podobno nalogo. Tam
smo iskali koordinati yT in xT , tu pa iščemo samo višino h, ki pa je po geometriji identična koordinati
xT .

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Da bi določili višino h smo izmerili n = 3 opazovanj, kjer bi nujno potrebovali le n0 = 2 opa-
zovanj, zato imamo r = 1 nadštevilnih opazovanj. Sestavimo vektor opazovanj l in matriki Q
ter P, pri tem, da so opazovanja enake natančnosti in medseboj nekorelirana:

l =







α

β

γ







Q = P = I (1–143)

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Izbrali si bomo eno samo neznanko in to naj bo iskana višina h. Na ta način je u = 1 in je
vektor x enak:

x =
[

h
]

(1–144)

Pri izračunu približne vrednosti neznanke si tudi tu pomagamo z zunanjim urezom, uporabili
pa bomo količine s slike 1–13.

V prvem koraku izračunamo kot na točki T , ki je enak β − α, nato pa s sinusnim izrekom
izračunamo stranico a, pri tem, da izhajamo iz znane dolžine dAB. Dobimo:

a = b
sin(180◦ − β)

sin(β − α)
= 79,009 m (1–145)
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α
180◦ − β

β − α

β γ

h

b x c

a

b

A
b

B
b

C

b

T

Slika 1–13: Določitev približne višine na osnovi enačb zunanjega ureza

Za izračun približne vrednosti neznank merjen kot α in dolžino a iz enačbe (1–145):

x0 =
[

h0

]

=
[

a sin(α)
]

=
[

48,262 m
]

(1–146)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 1 in u = 1, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
1 + 1 = 2. Tudi tu bomo izhajali iz pravokotnih trikotnikov, ki jih tvori točka T s točkami i

(i = {A, B, C}), pri tem, da si bomo pomagali s stranico x, kot je prikazana na sliki 1–13. Iz
slike vidimo, da velja:

x

h
= cot α → x = h cot α

x − b

h
= cot β → x = h cot β + b

c − x

h
= cot γ → x = c − h cot γ

(1–147)

Ker imamo samo eno neznanko, to je višina h, moramo iz enačb (1–147) izločiti količino x.
To storimo tako, da desno stran prve enačbe vstavimo namesto x v drugi in tretji enačbi. Ko
dobljeni dve enačbi preuredimo, dobimo

F1 ≡ h(cot α̂ − cot β̂) − b = 0

F2 ≡ h(cot α̂ + cot γ̂) − c = 0
(1–148)

Enačbi (1–148) sta dve, kot je tudi število enačb, ki jih moramo sestaviti. Po drugi strani, v
obeh enačbah nastopajo vsa tri opazovanja in neznanka. Enačbi sta torej pravilno sestavljeni
in jih lahko uporabimo pri splošnem modelu izravnave.

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Enačbi (1–148) lineariziramo tako, da izračunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f . Matrika A predstavlja parcialne odvode vseh enačb iz (1–148) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj l iz enačbe (1–143).
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Dobimo:

A =





∂F1

∂α
∂F1

∂β
∂F1

∂γ

∂F2

∂α
∂F2

∂β
∂F2

∂γ



 =

=




− h

sin2 α
h

sin2 β
0

− h
sin2 α

0 h
sin2 γ





=

[

−129,3460 58,8038 0,0000
−129,3460 0,0000 −94,9763

]

(1–149)

Matrika B predstavlja parcialne odvode vseh enačb iz (1–148) po višini h:

B =





∂F1

∂h

∂F2

∂h



 =

[

cot α − cot β

cot α + cot γ

]

=

[

0,829
2,280

]

(1–150)

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enačaja v enačbah (1–148) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove približne vrednosti. Dobimo:

f =

[

0,0000 m
−0,0380 m

]

(1–151)

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Rešitev funkcionalnega modela pomeni izračun vektorjev ∆, v in l̂. Prikažimo tu le vektor ∆
in izravnano višino h:

∆ =
[

−0,0206 m
]

x = x0 + ∆ =
[

48,2411 m
]

(1–152)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

Prikažimo samo izračun referenčne variance a-posteriori σ̂2
0
, kjer bomo referenčni standardni

odklon σ̂0 zapisali v ločnih sekundah, saj so opazovanja sami koti:

σ̂2

0
=

vTPv
r

= 1,6668 × 10−8

σ̂0 =
√

σ̂2
0 = 26,6′′

(1–153)

Rešitev stohastičnega modela bomo prikazali v alijeni natančnosti vseh izračunanih rezultatov.

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Pri izračunu kovariančnih matrik uporabimo referenčno varianco a-priori σ2

0
. Numerične vre-

dnosti natančnosti pa podamo v naslednji alineji.

8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
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Opaz. v σv l̂ σl̂

α −20,5′′ 20,5′′ 37◦38′39,5′′ 17,0′′

β 14,6′′ 14,6′′ 64◦57′14,6′′ 22,2′′

γ 8,6′′ 8,6′′ 45◦28′8,6′′ 25,2′′

parametre elips pogreškov.
Za izračun natančnosti σh višine h korenimo kovariančno matriko Σ∆∆ in dobimo:

σh = 8,21 mm (1–154)

Prikažimo še popravke opazovanj in izravnana opazovanja s pripadajočimi natančnostmi v
pregledni obliki:

Primerjajmo rezultate te naloge z rezultati iz poglavja 1.13. Ugotovimo lahko, da dobimo povsem
enake rezultat, če tu označimo višino h s koordinato yT . Vzrok je v tem, da imamo popolnoma enak
matematični model, le da smo tu namesto dveh neznank (h in x) v matematični model uvedli le eno
(h).
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1.15 Primer 10 – višina točke – opazovane dolžine

V ravnini imamo tri točke, ki ležijo na premici, in sicer A, B in C. Točka B je od točke A oddaljena
za d = 40,0 m, točka C pa za e = 110,0 m. Določiti želimo višino točke T (oddaljenost od premice),
zato smo izmerili tri dolžine, na točki A dolžino a = 79,0 m, na točki B dolžino b = 53,2 m in na točki
C dolžino c = 67,7 m, kot to prikazuje slika 1–14. Če so opazovanja enake natančnosti in medseboj
nekorelirana, s splošnim modelom izravnave po MNK izravnajte opazovanja, izračunajte višino h

točke T in njeno natančnost σh.

a
b c

h

d
e

b

A
b

B
b

C

b

T

Slika 1–14: Opazovane dolžine za določitev višine nove točke

Pri tej nalogi imamo enak problem kot pri nalogi iz poglavja 1.14, le da tu opazujemo dolžine. Če
smo pri opazovanih kotih izhajali iz zunanjega ureza, bomo tu seveda izhajali iz ločnega preseka. Pri
nalogi bomo podali samo nastavitev in končne rezultate, vse vmesne rezultate si izračunajte sami.

Iz naloge je razvidno, da imamo n = 3 opazovanj, pri tem, da bi jih nujno potrebovali n0 = 2.
Sestavimo vektor opazovanj l in matriki Q ter P, pri tem, da so opazovanja enake natančnosti in
medseboj nekorelirana:

l =







a

b

c







Q = P = I (1–155)

Tudi tu si izberemo eno neznanko, višino h, torej u = 1 in vektor x je enak:

x =
[

h
]

(1–156)

Kako izračunati približno vrednost h0? Uporabimo ločni presek iz količin s slike 1–15.

V trikotniku ∆ABT , kjer imamo dve merjeni (a in b) in eno dano (d) stranico, na osnovi kosinusnega
izreka izračunamo kot α. Dobimo:

α = arccos

(

a2 + d2 − b2

2ad

)

(1–157)

Za izračun približne višine h0 uporabimo stranico a in kot α in dobimo:

x0 =
[

h0

]

=
[

a sin(α)
]

(1–158)
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α

a
b c

h

d x e

b

A
b

B
b

C

b

T

Slika 1–15: Določitev približne višine na osnovi enačb ločnega preseka

Sestaviti moramo c = r + u = 1 + 1 = 2 enačb, kjer si spet pomagamo s stranico x s slike 1–15. S
slike lahko vidimo, da velja:

a2 =x2 + h2 → x =
√

a2 − h2

b2 =(x − d)2 + h2

c2 =(e − x)2 + h2

(1–159)

Tudi tu moramo iz treh enačb v 1–159 eliminirati stranico x, saj ni neznanka v modelu. Desno stran
prve enačbe vstavimo v drugo in tretjo enačbo. Če ti dve enačbi preuredimo, dobimo:

F1 ≡ â2 + d2 − b̂2 − 2d
√

â2 − h2 = 0

F2 ≡ â2 + e2 − ĉ2 − 2e
√

â2 − h2 = 0
(1–160)

Enačbi 1–160 sta dve, kot je tudi število enačb, ki jih moramo sestaviti. Po drugi strani, v obeh
enačbah nastopajo vsa tri opazovanja in neznanka. Enačbi sta torej pravilno sestavljeni in jih lahko
uporabimo pri splošnem modelu izravnave.

Izvedemo celoten izračun s splošnim modelom izravnave in dobimo:

h = 48,2 m σh = 11,4 mm (1–161)

Natančnost σh iz enačbe 1–161 je izračunana na osnovi referenčne variance a-posteriori σ̂2
0 , ki je:

σ̂2

0 = 2,1 × 10−4 σ̂0 = 14,4 mm (1–162)

44



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splošni model izravnave

Popravki opazovanj, izravnana opazovanja in njihove natančnosti pa so prikazani spodaj.

Opaz. v σv l̂ σl̂

a −9,4 mm 9,4 mm 79,0 m 10,9 mm
b 9,9 mm 9,9 mm 53,3 m 10,4 mm
c −4,6 mm 4,6 mm 67,7 m 13,4 mm
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1.16 Primer 11 – točke na krožnici

V ravnini imamo štiri točke, za katere imamo opazovane tako koordinate x, kot tudi koordinate y,
vrednosti opazovanj pa so predstavljene v preglednici 1–2.

Preglednica 1–2: Opazovane vse koordinate štirih točk na krožnici

Točka x [m] y [m]
T1 10,16 2,50
T2 −0,23 7,34
T3 −5,57 −9,57
T4 6,50 −11,16

Točke v ravnini prikazuje slika 1–16. Če so opazovanja enake natančnosti in medseboj neodvisna, s
splošnim modelom izravnave po MNK izravnaj opazovanja in določi krožnico, ki se optimalno prilega
točkam. Izračunaj središče krožnice xS in yS, njen polmer R, natančnosti vseh neznank in parametre
absolutne standardne elipse pogreškov središča krožnice.

x

y

R

b (xS, yS)

b

T1

b

T2

b

T3

b

T4

Slika 1–16: Opazovane točke na krožnici v ravnini

Pri izračunu obravnavane naloge bomo imeli dva poudarka, in sicer pri nastavitvi minimalnega števila
opazovanj za rešitev problema in pri izračunu približnih vrednosti neznank. Ker skušamo določiti
krožnico, ki se optimalno prilega točkam, vidimo, da imamo enak problem kot pri primeru premice
(glej poglavje 1.8) in parabole (glej poglavje 1.10), tudi tu poskušamo na osnovi niza točk v ravnini
izračunati krivuljo, ki se optimalno prilega točkam.

1. Iz podatkov naloge sestavimo vektor opazovanj l in matriko uteži P (izračunamo uteži opazo-
vanj). Nastavimo n, n0 in r.
Iz podatkov je razvidno, da je imamo opazovane tako koordinate x kot tudi koordinate y štirih
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točk, zato je število opazovanj enako n = 8 in vektor opazovanj nastavimo kot:

l =




















x1

y1

x2

y2

x3

y3

x4

y4




















=




















10,16
2,50

−0,23
7,34

−5,57
−9,57

6,50
−11,16




















(1–163)

Opazovanja so enake natančnosti in medseboj nekorelirana, zato velja Q = P = I. Določimo
sedaj še minimalno število opazovanj za rešitev problema n0 in število nadštevilnih opazovanj
r. Ker morajo točke ležati na krožnici, potem mora za vse točke veljati:

(xi − xS)2 + (yi − yS)2 = R2 (1–164)

Iz enačbe (1–164) vidimo, da potrebujemo tri parametre, s katerimi lahko enolično določimo
krožnico, in sicer koordinate središča krožnice xS in yS in polmer R. To nam pove, da bomo
uvedli 3 neznanke. Nato bomo pa razmišljali enako kot pri premici ali paraboli. Če želimo
pri posredni izravnavi uporabiti enačbo (1–164) za sestavo enačbe popravkov, moramo ali
opazovano koordinato y ali x nadomestiti z novo neznanko. Ker imamo 4 točke, to pomeni
dodatne 4 neznanke (glej poglavji 1.8 in 1.10). Iz tega lahko sklepamo, da je n0 = 3 + 4 = 7 in
posledično, število nadštevilnih opazovanj je r = 1.

2. Izberemo si neznanke (u) in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izračunamo približne vrednosti neznank x0.
Kot smo že zapisali, si izberemo tri neznanke xS, yS in R. Vektor x je enak:

x =







xS

yS

R







(1–165)

Pojavi pa se vprašanje, kako izračunati približne vrednosti neznank. Seveda bomo izhajali iz
enačbe krožnice (1–164), uporabili pa bomo prve tri merjene točke. Zapisali bomo:

(x1 − xS)2 + (y1 − yS)2 =R2

(x2 − xS)2 + (y2 − yS)2 =R2

(x3 − xS)2 + (y3 − yS)2 =R2

(1–166)

Odstranimo polmer R iz enačb (1–166), tako da naredimo razliki: 2. - 1. enačba in 3. - 1.
enačba. Dobimo:

(x2 − xS)2 − (x1 − xS)2 + (y2 − yS)2 − (y1 − yS)2 =0

(x3 − xS)2 − (x1 − xS)2 + (y3 − yS)2 − (y1 − yS)2 =0
(1–167)

Kvadrirajmo vse elemente v enačbah (1–167) in če ustrezno preuredimo enačbi, bomo dobili:

2xS(x2 − x1) + 2yS(y2 − y1) =x2

2
− x2

1
+ y2

2
− y2

1

2xS(x3 − x1) + 2yS(y3 − y1) =x2

3
− x2

1
+ y2

3
− y2

1

(1–168)
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Vidimo, da v enačbah (1–168) ne nastopata kvadrata koordinat središča (x2
S in y2

S) in da dobimo
dve linearni enačbi z dvema neznakama. Rešitev enostavno dobimo tako, da enačbi zapišemo
v matrični obliki in rešimo kvadratni sistem. Približni vrednosti koordinat središča krožnice
sta:

xS,0 = 1,506 m yS,0 = −2,506 m (1–169)

Polmer R izračunamo tako, da uporabimo koordinate točke T1 in koordinate središča krožnice
iz enačbe (1–169). Dobimo:

R0 =
√

(x1 − xS,0)2 + (y1 − yS,0)2 = 9,998 m (1–170)

3. Sestavimo c = r + u enačb splošnega modela izravnave, v katerih povežemo opazovanja z
neznankami.
Ker imamo r = 1 in u = 3, potem je število enačb, ki jih moramo sestaviti, enako c = r + u =
1 + 3 = 4. Tudi tu za vsako točko sestavimo eno enačbo, uporabimo pa enačbo krožnice iz
enačbe (1–164). Dobimo:

F1 ≡ (x̂1 − xS)2 + (ŷ1 − yS)2 − R2

F2 ≡ (x̂2 − xS)2 + (ŷ2 − yS)2 − R2

F3 ≡ (x̂3 − xS)2 + (ŷ3 − yS)2 − R2

F4 ≡ (x̂4 − xS)2 + (ŷ4 − yS)2 − R2

(1–171)

4. Lineariziramo sestavljene enačbe in jih zapišemo v osnovni matrični obliki splošnega modela
izravnave Av + B∆ = f .
Matrika A je velikosti c×n = 4×8 in predstavlja parcialne odvode enačb (1–171) po opazovanjih
(iz enačbe (1–163)). Matrika B je velikosti c × u = 4 × 3 in predstavlja parcialne odvode enačb
(1–171) po neznankah (iz enačbe (1–165)). Vektor f je velikosti c × 1 = 4 × 1.

5. Rešimo funkcionalni model izravnave, kjer izračunamo vektorje ∆, v in l̂.
Prikažimo v tem delu le vektor ∆, popravke opazovanj in izravnana opazovanja pa na koncu,
skupaj z natančnostmi. Za rešitev neznank dobimo:

∆ =







−0,0023 m
0,0025 m

−0,0013 m







x = x0 + ∆ =







1,5034 m
−2,5037 m

9,9968 m







(1–172)

6. Rešimo stohastični model izravnave, kjer izračunamo matrike Q∆∆, Qvv in Ql̂l̂ ter referenčno
varianco a-posteriori σ̂2

0
.

Prikažimo samo izračun referenčne variance a-posteriori σ̂2
0 in referenčnega standardnega od-

klona σ̂0:

σ̂2

0 =
vTPv

r
= 1,2147 × 10−5

σ̂0 =
√

σ̂2
0 = 3,49 mm

(1–173)

7. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike
Σ∆∆, Σvv in Σl̂l̂.
Pri izračunu kovariančnih matrik uporabimo referenčno varianco a-posteriori σ̂2

0
, saj nimamo

podanih natančnosti opazovanj. Numerične vrednosti natančnosti pa podamo v naslednji ali-
neji.
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8. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi računamo tudi
parametre elips pogreškov.
Da dobimo natančnosti koordinat središča krožnice σxS

in σyS
in polmera σR, korenimo di-

agonalna elementa kovariančne matrike Σ∆∆, korelacijo ρxSyS
pa dobimo iz prvega izven-

diagonalnega elementa matrike:

σxS
= 2,92 mm σyS

= 2,25 mm ρyT xT
= −0,18 σR = 1,78 mm (1–174)

Izračunajmo še parametre standardne absolutne elipse pogreškov na središča krožnice:

a = 2,98 mm b = 2,17 mm θ = −17,16 degree (1–175)

Popravki opazovanj, izravnana opazovanja in njihove natančnosti pa so prikazani spodaj.

Opaz. v σv l̂ σl̂

x1 −1,71 mm 1,71 mm 10,1583 m 3,04 mm
y1 −0,99 mm 0,99 mm 2,4990 m 3,34 mm
x2 −0,28 mm 0,28 mm −0,2303 m 3,47 mm
y2 1,56 mm 1,56 mm 7,3416 m 3,11 mm
x3 1,05 mm 1,05 mm −5,5689 m 3,32 mm
y3 1,05 mm 1,05 mm −9,5690 m 3,32 mm
x4 0,94 mm 0,94 mm 6,5009 m 3,36 mm
y4 −1,62 mm 1,62 mm −11,1616 m 3,08 mm
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1.17 Ravninska podobnostna transformacija

V ravnini imamo k točk, ki imajo opazovane koordinate v dveh koordinatnih sistemih. Prvi koordi-
natni sistem ima oznaki u in v, drugi pa x in y. Opazovanja so koordinate vseh točk v obeh sistemih,
torej koordinate u, v, x in y. Geometrijo problema prikazuje slika 1–17. S splošnim modelom iz-
ravnave izravnajte po MNK izravnajte opazovanja (koordinate točk v obeh sistemih) in izračunajte
transformacijske parametre iz sistema uv v sistem xy. Izračunajte tudi natančnosti transformacijskih
parametrov.

x

y

u

v
b

T

b

Ti

b

Tj

b

Tk

b

Tl

Slika 1–17: Prikaz opazovanih koordinat točk v obeh koordinatnih sistemih

Pri obravnavi podobnostne transformacije obravnavamo problem, ko imamo podane koordinate (fi-
zično) istih točk v dveh koordinatnih sistemih, a same povezave med dvema koordinatnima sistemoma
ne poznamo. To pomeni da, če imamo podane koordinate ene točke samo v npr. sistemu uv, ne vemo
nič, kakšne so koordinate te točke v sistemu xy. Cilj je, da na osnovi koordinat točk v obeh sistemih
določimo povezavo med obema sistemoma. Kot prvo moramo ugotoviti, kateri in kakšni so para-
metri, ki povezujejo dva koordinatna sistema. Sliko geometrije povezave med dvema koordinatnima
sistemoma v ravnini prikazuje slika 1–18.

α

x

y

u

v

(tx, ty)m
1

b

T

xT

yT

vTuTb

Ti

b

Tj

b

Tk

b

Tl

Slika 1–18: Prikaz transformacijskih parametrov med dvema koordinatnima sistemoma
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Slika 1–18 prikazuje niz geodetskih točk, ki jim položaje lahko opišemo tako v koordinatnem sistemu
uv kot tudi v sistemu xy. Koordinati uT in vT točke T prikazujeta položaja točke T v sistemu uv

(modra barva), medtem ko koordinati xT in yT pa opisujeta položaj točke T v sistemu xy (črna
barva). Enako seveda velja za vse ostale točke (Ti, Tj , Tk in Tl), ki so podane v obeh sistemih.
Postavi pa se vprašanje, kako lahko opišemo relacijo koordinatnega sistema uv glede na sistem xy.
Te parametre, rečemo jim transformacijski parametri, predstavlja slika 1–18 v rdeči barvi. Ugotovimo
lahko, da koordinatni sistem uv lahko glede na koordinatni sistem xy:

• premaknemo, kar opišemo z dvema parametroma premika tx in ty in predstavljata vektor
premika izhodišča obeh sistemov,

• zasukamo, kar opišemo z enim parametrom zasuka α, ki predstavlja kot zasuka okoli osi z

(ali w) in

• spremenimo velikost, kar opišemo z enim parametrom merila m, ki predstavlja razmerje
med enotama v obeh sistemih.

Vidimo, da transformacijo med dvema koordinatnima sistemoma v ravnini lahko opišemo s štirimi
parametri. Ob tem predpostavimo, da sta geometriji geodetske mreže v obeh sistemih podobne1,
zato tako transformacijo imenujemo podobnostna transformacija.

1.17.1 Enačba podobnostne transformacije v ravnini

Transformacijo iz sistema uv v sistem xy izvedemo s tremi koraki:

1. Izvedemo zasuk sistema za kot α. S tem naredimo, da so koordinatne osi obeh sistemov
vzporedne.

2. Spremenimo merilo s parametrom merila m. S tem naredimo, da imamo enako enoto merila v
obeh sistemih.

3. Premaknemo izhodišče koordinatnega sistema uv v središče koordinatnega sistema xy s para-
metroma premika tx in ty.

Vse tri korake zapišemo v enačbi:
[

x

y

]

=

[

tx

ty

]

+ m

[

cos(α) sin(α)
− sin(α) cos(α)

] [

u

v

]

(1–176)

Enačba (1–176) je podana v vektorski obliki, a dejansko predstavlja dve enačbi, za vsako koordinatno
komponento x in y po eno enačbo, ki ju lahko zapišemo kot:

x = tx + m cos(α)u + m sin(α)v

y = ty − m sin(α)u + m cos(α)v
(1–177)

Vidimo, da lahko enačbo 4-parametrične transformacije iz enačbe (1–176) ali iz enačb (1–177) zapi-
šemo za vsako točko posebej. V enačbah tako nastopajo vsi štirje transformacijski parametri (tx, ty,
α in m), koordinati u in v (1. sistem) ter koordinati x in y (2. sistem).

1mrežo lahko premaknemo, zasukamo in povečamo/zmanjšamo, a oblika mora ostati enaka
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1.17.2 Določitev osnovnih parametrov izravnave

Ker imamo podanih k točk v ravnini, pomeni, da imamo n = k · 2 · 2 opazovanj. Vsaka točka ima
dve koordinati, koordinate pa imamo podane v dveh koordinatnih sistemih. Vektor opazovanj l
zato zapišemo kot

l =
[

u1 v1 x1 y1 u2 v2 x2 y2 · · · uk vk xk yk

]T

(1–178)

Vektorju opazovanj l pripada še kovariančna matrika opazovanj Σ, matrika kofaktorjev Q in matrika
uteži P, vse velikosti n × n.

Kako pa spet določiti minimalno število opazovanj za rešitev problema n0? Tu bomo razmišljali
enako kot pri premici (poglavje 1.8), paraboli (poglavje 1.10) in krožnici (poglavje 1.16). Če bi
enačbi (1–177) uporabili za sestavo enačb popravkov posredne izravnave, bi ugotovili, da:

• bomo uvedli 4 neznanke, to so transformacijski parametri, in da

• opazovani koordinati x in y lahko uporabimo, medtem ko opazovanih koordinat u in v ne (vsaka
enačba popravkov ima lahko ne eno opazovanje).

Zato moramo za vsako točko uvesti nov par neznank, in sicer p, ki se navezuje na koordinato u, in
q, ki pa se navezuje na koordinato v. Pri k-tih točkah to pomeni:

n0 = u = 4
︸︷︷︸

tx,ty ,α,m

+ 2k
︸︷︷︸

p1,q1,...pk,qk

= 4 + 2k (1–179)

Iz enačbe (1–179) vidimo, da je minimalno število opazovanj n0 odvisno od števila točk, ki so podane
v obeh sistemih. Za različno število podanih točk so vsa tri števila n, n0 in r podana v preglednici 1–3.
V preglednici nastopajo tri situacije, kjer je prva predstavljena v rdeči barvi v prvi vrstici. Če imamo
eno samo točko podano v dveh sistemih, nimamo dovolj informacij za izračun transformacijskih
parametrov (n < n0, r < 0). V drugem primeru, ko imamo podani dve točki (modra barva), imamo
določen problem, kar pomeni, da lahko transformacijske parametre izračunamo enolično (n = n0,
r = 0). Šele, ko imamo tri točke ali več, imamo predoločen sistem (n > n0, r > 0), kar pomeni, da
je optimalna rešitev dana preko metode najmanjših kvadratov.
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k n n0 r

1 4 4+2= 6 -2
2 8 4+4= 8 0
3 12 4+6=10 2
4 16 4+8=12 4
...

...
...

...
k 4k 4 + 2k 2k − 4

Preglednica 1–3: Določitev osnovnih parametrov izravnave v odvisnosti od števila podanih točk v
obeh sistemih

1.17.3 Uvedba neznank pri splošnem modelu izravnave

V prejšnjem poglavju smo videli, da bi morali pri posredni izravnavi uvesti kar u = n0 neznank, kar
prikazuje enačba (1–179). Ker pa bomo uporabili splošni model izravnave, lahko število neznank
uvedemo drugače. Tu bomo izbrali le u = 4, za neznanke bomo določili le parametre transformacije.
Vektor neznank x je zato enak:

x =









tx

ty

α

m









(1–180)

1.17.4 Sestava enačb splošnega modela izravnave

Ker imamo število neznank enako u = 4 in število nadštevilnih opazovanj enako r = 2k − 4, moramo
sestaviti c = r + u = 4 + 2k − 4 = 2k enačb. Sestaviti moramo dvakrat toliko enačb, kot imamo
točk, ali povedano drugače, za vsako točko moramo sestaviti dve enačbi. Uporabimo seveda enačbi
(1–177), ki ju za i-to točko preoblikujemo v:

Fi,x ≡ x̂i − tx − m cos(α)ûi − m sin(α)v̂i

Fi,y ≡ ŷi − ty + m sin(α)ûi − m cos(α)v̂i

(1–181)

Na osnovi sestavljenih c = 2k enačb v obliki, kot je prikazana v enačbi (1–181), sestavimo osnovni
matrični model splošnega modela izravnave Av + B∆ = f . Velikosti matrik A in B ter vektorja f
so sledeče:

1. matrika A je velikosti c × n = 2k × 4k,

2. matrika B je velikosti c × 4 = 2k × 4 in

3. vektor f je velikosti c × 1 = 2k × 1

Pri sestavi matrike A odvajamo vse enačbe po vseh opazovanjih. Iz oblike sestavljenih enačb iz
enačbe (1–181) pa vidimo, da enačbi za i-to točko vsebujeta le opazovanja i-te točke, torej ui, vi, xi
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in yi. Parcialni odvodi enačb (1–181) po vseh štirih koordinatah so sledeči:

∂Fi,x

∂ui

= −m cos(α)
∂Fi,x

∂vi

= −m sin(α)
∂Fi,x

∂xi

= 1
∂Fi,x

∂yi

= 0

∂Fi,y

∂ui

= m sin(α)
∂Fi,y

∂vi

= −m cos(α)
∂Fi,y

∂xi

= 0
∂Fi,y

∂yi

= 1
(1–182)

Matrika A je velika matrika, ki pa ima veliko praznih elementov in bo na koncu enaka:

A =













A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ak













→ Ai =

[

−m cos(α) −m sin(α) 1 0
m sin(α) −m cos(α) 0 1

]

(1–183)

Matrike A1 do Ak so vse velikosti 2 × 4 in vsebujejo parcialne odvode iz enačbe (1–182).

Ko sestavljamo matriko B, pa moramo za vsako točko odvajati enačbi (1–181) po vseh štirih neznan-
kah iz enačbe (1–180), kjer dobimo:

∂Fi,x

∂tx

= −1
∂Fi,y

∂tx

= 0

∂Fi,x

∂ty

= 0
∂Fi,y

∂ty

= −1

∂Fi,x

∂α
= m sin(α)ui − m cos(α)vi

∂Fi,y

∂α
= m cos(α)ui + m sin(α)vi

∂Fi,x

∂m
= − cos(α)ui − sin(α)vi

∂Fi,y

∂m
= sin(α)ui − cos(α)vi

(1–184)

Matrika B ima na koncu obliko:

B =













B1

B2

B3

...
Bk













→ Bi =

[

−1 0 m sin(α)ui − m cos(α)vi − cos(α)ui − sin(α)vi

0 −1 m cos(α)ui + m sin(α)vi sin(α)ui − cos(α)vi

]

(1–185)

Na koncu sestavimo še vektor odstopanj f , ki ima na koncu obliko:

f =













f1

f2

f3

...
fk













→ fi =

[

tx + m cos(α)ui + m sin(α)vi − xi

ty − m sin(α)ui + m cos(α)vi − yi

]

(1–186)

1.17.5 Rešitev splošnega modela izravnave pri ravninski podobnostni transformaciji

Elemente matrik A in B ter vektorja f izračunamo na osnovi približnih vrednosti neznank in merjenih
vrednosti opazovanj. Če ne pričakujemo velike vrednosti zasuka (več kot 90◦), potem lahko za
približne vrednosti neznank nastavimo kar tx,0 = ty,0 = α0 = 0 in m0 = 1 (pazi: približna vrednost
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merila ni enaka 0). V nasprotnem primeru je potrebno iz merjenih koordinat izračunati približne
vrednosti vseh štirih transformacijskih parametrov.

Ker imamo v splošnem slabe približne vrednosti transformacijskih parametrov, moramo rešitev splo-
šnega modela izvesti v več iteracijah.
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