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1 SPLOSNI MODEL IZRAVNAVE

Pri posredni in pogojni izravnavi smo videli, da v primeru nadstevilnih opazovanj le izravnava poda
optimalno oceno izravnanih opazovanj in izravnanih neznank. Glede na obliko podatkov in funk-
cijskih zvez med opazovanji oz. neznankami smo izbrali ali pogojno metodo izravnave ali posredni
model izravnave. Oba modela sta samo posebna primera modela izravnave, ki ga poimenujemo splo-
$ni model izravnave.

1.1 Osnovne nastavitve sploSnega modela izravnave

Tako kot pri vseh metodah izravnave, tudi pri splosSnem modelu dolo¢imo tri koli¢ine, in sicer:
e n - Stevilo pridobljenih opazovanj,
e ng - minimalno Stevilo opazovanj, potrebnih za resitev modela in
e 7 =n —ng - Stevilo Stevilo nadstevilnih opazovanj.

Pri posredni metodi izravnave smo nastavili tocno v = ng neznank. V primeru sploSnega modela
izravnave pa imamo bolj proste roke, nastavimo u neznank, kjer pa velja:

0<u<nyg (1-1)

Enacba (1-1) nam pove, da lahko nastavimo toliko neznank, kolikor jih Zelimo. Edini pogoj je, da
stevilo teh neznank ne sme presegati stevila ny.

Pojavi pa se vprasanje, koliko enacb moramo sestaviti. Ker vsako nadstevilno opazovanje poda
moznost sestave ene pogojne enacbe in ker moramo vsako uvedeno neznanko povezati z opazovanji
velja, da je stevilo sestavljenih enacb enako:

c=r+u (1-2)

Enacba (1-2) pove, da pri r nadstevilnih opazovanjih, kjer uvedemo u neznank, potrebujemo za
izravnavo c sestavljenih enacb.

1.2 Sestava enacb splosnega modela izravnave

Pri splosnem modelu izravnave moramo prvo nastaviti dve koli¢ini, in sicer:

T
o 1- vektor opazovanj, velikosti nx1 (1 = [ L by -+ 1, } ) s pripadajoco varian¢no—kovarian¢no
matriko X,
. . T
e x - vektor neznank, velikosti u x 1 (x = [ T1 Xy - Ty } ).
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Sestavimo ¢ enacb, ki povezujejo vsa (izravnana) opazovanja in vse uvedene neznanke. Splosna oblika
enach je:

= fi(
= fi(

ll,lg,...,ln,$1,$2,...,xu) 0
l17l27"'7ln7x17x27"'7xu) 0

(1-3)

~

F(.,Efc(il,zg,...,ln,:pl,xg,...,xu):0

Enacba (1-3) prikazuje sestavljenih ¢ enacb, ki vsebujejo n 4+ u neznanih parametrov, in sicer vsa
izravnana opazovanja in vse neznanke. Matri¢no lahko enacbe (1-3) zapisemo v obliki:

F(ix)=0 (1-4)

V enacbi (1-4) imamo na levi strani enacbe (1-3), na desni strani enacaja pa nicelni vektor velikosti
cx 1

Numeri¢nih vrednosti argumenta funkcije F (izravnana opazovanja 1 in neznanke x) ne poznamo,
lahko pa jih nadomestimo z:

e I=1+ v, kjer je v vektor popravkov opazovanj,

e X =X+ A, kjer je x¢ vektor pribliznih vrednosti neznank in A popravki pribliznih vrednosti
neznank.

Sistem nelinearnih enacb (1-4) tako lahko zapisemo kot:
Fl4+v,xg+A)=0 (1-5)

Pricakovane vrednosti popravkov opazovanj so majhnega velikostnega reda v primerjavi z opazovanji,
prav tako pricakujemo, da bodo popravki neznank majhni. Zato lahko enac¢bo (1-5) (oz. sistem ¢
enacb) razvijemo v Taylorjevo vrsto, kjer zanemarimo vse ¢lene drugega in visjih redov. Razvoj
naredimo tako za opazovanja (priblizne vrednosti so opazovane vrednosti 1, prirastki so popravki
opazovanj v) kot tudi za neznanke (priblizne vrednosti so priblizne vrednosti neznank xg, prirastki
so popravki neznank A). Linearizirana oblika je tako dana z:

OF OF
Enacbo (1-6) preuredimo, da dobimo:
OF OF
—v+—A=-F(l 1-
a’ Tt ox, (1,%0) )

V enacbi (1-7) elemente oznacimo kot:
o F/or=A — matrika koeficientov/parcialnih odvodov po opazovanjih, velikosti ¢ x n,
o 9F/oxy =B — matrika koeficientov/parcialnih odvodov po neznankah, velikosti ¢ X u,

« —F(LLxg) = f — odstopanja enacb oz. prosti ¢leni enacb splosnega modela izravnave,
velikosti ¢ x 1.

Tako lahko zapisemo konc¢no obliko sistema lineariziranih enach za sploSni model izravnave:

Av+BA =f (1-8)
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1.3 Resitev matematicnega modela izravnave

Do kon¢nih rezultatov izravnave po splosnem modelu pridem z nizom matri¢nih izracunov. Prvo
resimo funkcionalni model izravnave:

» Matrika kofaktorjev in matrika utezi ekvivalentnih opazovanj / enacb:

. =AQAT
Q- =AQ (1-9)
P. :Qe_
e Sistem normalnih enach:
N =B'P.B (1-10)
t =B'P.f
o Resitev funkcionalnega modela:
A=N""t
v =QA'P.(f - BA)
1=1+v
V drugem koraku pridobimo resitev stohasti¢nega modela:
» Referencna varianca a-posteriori:
p B
&SZV v _v Py (1-11)
n — no r
o Matrike kofaktorjev vektorjev funkcionalnega modela:
Qaa =N"'
Q. =QA"P, (I- BQaaB"P.) AQ (1-12)
i :Q - QUU

+ Varian¢no-kovarianéne matrike (Xaa, 2y, in 3j;) za vse tri izracunane vektorje, ki predstavljajo
resitev funkcionalnega modela (A, v in 1), izra¢unamo tako, da matrike kofaktorjev iz enacbe
(1-12) pomnoZimo z ustrezno referencno varianco o, torej:

Yi=02Qu  i={A I} (1-13)

1.4 Posebna primera splosnega modela: posredna in pogojna izravnava

Prikazimo, v katerih primerih se splosni model izravnave pretvori v pogojno oziroma posredno iz-
ravnavo.
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1.4.1 Pogojna izravnava

V primeru, da izberemo stevilo neznank u = 0, torej ko nimamo nobene neznanke, potem nimamo
vektorja A in matrike B. V tem primeru imamo osnovni matri¢ni sistem v obliki:

Av =f (1-14)
Resitev funkcionalnega modela je dana z:
Q. =AQA"
P, :Qeil
k =P.f (1-15)
v =QATk
1=l+v

Resitev stohasticnega modela je dana z:

_ T
. aa " (119
i = vv

1.4.2 Posredna izravnava

V primeru, ko pa izberemo toc¢no toliko neznank, kot je stevilo nujno potrebnih opazovanj za resitev
modela u = ng in hkrati za vsako opazovanje sestavimo svojo enacbo (popravkov), kjer opazovanje
nastopa linearno v enachi, potem dobimo posredni model izravnave. Pri posrednem modelu izravnave
velja, da je A enotska matrika in u = ny. Osnovni matri¢ni sistem ima obliko:

v+BA=f (1-17)
Resitev funkcionalnega modela je dana z:
Q. =Q
P.=Q'=P
N =B"PB
t =B"Pf (1-18)
A =Nt
v=f - BA
I=l+v
Resitev stohasticnega modela je dana z:
Qan =N""
vi :Q - BQAABT (].*]_9)

Q;; =Q — Q,, = BQaaB”
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1.5 Postopek izracuna pri sploSnem modelu izravnave po MNK

Pri sploSnem modelu izravnave postopamo po naslednjih korakih:

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.

4. Lineariziramo sestavljene enacbe in jih zapisemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA =f.

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.

6. ResSimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Q. in Qg ter referencno
varianco a-posteriori 63.

7. Izberemo si ustrezno referenc¢no varianco in izra¢unamo iskane variancno-kovarianéne matrike
EAA, Evv m Eﬁ.

8. Iz vseh varian¢no-kovarianénih matrik stohasticnega modela izracunamo natanc¢nosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splosni model izravnave

1.6 Primer 1 — pravokotni trikotnik

Opazovali smo stranice v pravokotnem trikotniku in dobili: @ = 216,7m, b = 163,3m in ¢ = 271,3 m,
kot prikazuje slika 1-1. Dolzine smo izmerili z razdaljemerom, ki ima podano natancnost kot o4 =
2,0cm. S splosnim modelom izravnaj opazovanja in dolo¢i povrsino parcele S ter njeno natancénost

0s. Za izracun natancnosti uporabi referencno varianco a-priori o7.

a
Slika 1-1: Skica opazovanj v pravokotnem trikotniku

Uporabo splosnega modela izravnave na tem pravokotnem trikotniku bomo prikazali s Stirimi resi-
tvami, in sicer:

o uvedli bomo dve neznanki, x ~ a in y ~ b, a prikazali dva razlicna niza enacb,
o uvedli bomo eno samo neznanko, x ~ a, in

o za neznanko bomo nastavili kar S.

1.6.1 ResSitev 1 — dve neznanki in 1. niz enacb

Za resitev bomo uporabili korake iz poglavja 1.5.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.
Iz naloge vidimo, da imamo n = 3 opazovanj (a, b in ¢), kjer bi potrebovali samo ny = 2
opazovanj za enolicno resitev. To pomeni, da imamo r = n — ny = 1 nadstevilnih opazovanj.
Ker imamo opazovanja izmerjena z enako natancnostjo, velja, da je:

1= | b oo=07=40x10"m?> Q=P=1I (1-20)
C

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
V tem primeru si bomo izbrali v = 2 neznanki, in sicer x naj predstavlja stranico a, y pa
stranico b, kjer jim bomo priblizne vrednosti nastavili iz opazovanj. Velja:

i) el e
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3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 1 in v = 2, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
1+ 2 = 3. Enacbe za splosni model izravnave imajo samo eno pravilo, v vseh enacbah morajo
biti vsa opazovanja in vse neznanke. Primer treh takih enach je:

Fi=a—x=0
=3 -2 =0 =0

V enacbah (1-22) nastopajo vsa tri opazovanja, kot tudi obe neznanki, zato je ta niz enacb
pravilen.

4. Lineariziramo sestavljene enacbe in jih zapiSemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA =f.
Enacbe (1-22) lineariziramo tako, da izracunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f. Matrika A predstavlja parcialne odvode vseh enacb iz (1-22) po vseh opa-
zovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj 1iz enac¢be (1-20). Dobimo:

R 9y 9l

da 9b  Oc 1 0 0 1,0 0,0 0,0
_ | o, oFR, 0F, | _ _
A= |52 52 22 |=10 -1 0 |=]00 =10 0,0 (1-23)
OF3  0F3; OF 0 —2b 2c 0,0 —326,6 542,6

da ob dc

Matrika B predstavlja parcialne odvode vseh enacb iz (1-22) po obeh neznankah, kjer je vrstni
red odvodov podan z vektorjem neznank x iz enacbe (1-21). Dobimo:

oF  OF
ox dy —1 0 —1,0 0,0

B=| %2 &2 -1 0 1|=| 00 10 (1-24)
oF;  OF —2z 0 —433.4 0,0
ox oy

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar se
nahaja na levi strani enacaja v enacbah (1-22) prenesemo na desno stran. Pri tem se spremeni
predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto neznank
uporabimo njihove priblizne vrednosti. Dobimo:

To— a 0,000
f= b—yo = | 0,000 (1-25)
v’ + 2k — 2 22,090

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela je predstavljena v prvem delu poglavja 1.3, kjer moramo upo-
rabiti 7 enacb za izracun resitve. Konéni vektorji so enaki:

_0.0163m —0,0163m 916,6837 m
A= l 0.0123 ] v=| —0,0123m 1= 163,2877m (1-26)
e 0,0204m 971,3204 m
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Na osnovi pribliznih vrednosti neznank xq iz enacbe (1-21) in popravkov pribliznih vrednosti
neznank A iz enacbe (1-26) izra¢unamo koncne vrednosti neznank x:
216,6837m
_ A — ' 1-27
X=X l 163,2877m ] (1-21)

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Qv in Qj; ter referencno

2
0-

Resitev stohasti¢nega modela je predstavljena v drugem delu poglavja 1.3, kjer dobimo matrike
kofaktorjev Qana, Quv in Qj:

varianco a-posteriori &

[ 1 20 —
0,681 —0,240 0,319 0,240 —0,399
Qasa=| 0910 0819 Qu=1] 0240 0,181 —0,301
- ’ —-0,399 —0,301 0,500
(1-28)
0,681 —0,240 0,399
Q;=| —0,240 0,819 0,301
0,399 0,301 0,500

[zra¢unamo tudi referenéno varianco a-posteriori 63 in referen¢ni standardni odklon a-posteriori
09 in dobimo:
vIPv

= = 8,286 x 10™*m?

’

0o = \/&8 = 0,029 m

7. Izberemo si ustrezno referenc¢no varianco in izrac¢unamo iskane variancno-kovarianéne matrike
Yan, Xy in X

Za izracun vseh kovarian¢nih matrik uporabimo referenéno varianco a-priori o3, kjer dobimo:

(1-29)

o | 272X 107 —9,614 x 107° 2
A4 9614 x107° 3,276 x 1074
[ 1276 x107* 9,614 x 1075 —1,597 x 104
So=| 9614x10° 7245x107° —1,204 x 10~* | m? (1-30)
| —1,597 x 107* —1,204 x 10™* 2,000 x 1074
[ 2724 x107* —9,614 x 107 1,597 x 10~*
;=] —9614x107° 3276 x 107* 1,204 x 10~* | m?
| 1597 x 107* 1,204 x 10~* 2,000 x 10~

8. Iz vseh varianc¢no-kovarianénih matrik stohasti¢nega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Prvo izra¢unajmo natanc¢nosti in korelacije neznank. Dobimo:

o, =0017"m o0,=0,018m p, = —0,322 (1-31)
[zracunajmo tudi natancnosti in korelacije popravkov opazovanj:
0y, =0,011m oy, = 0,000m o, =0,014m
(1-32)
Puav, =1,000 Prave = —1,000  py,,. = —1,000

8
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Na koncu Se natancnosti in korelacije izravnanih opazovanj:

o, =0,017m 05, =0,018m o0, =0,014m

(1-33)
P =—0322  pas=0684 p;, = 0,470

Naloga na koncu zahteva Se izracun povrsine S s pripadajoCo natancnostjo og. Uporabili bomo
izravnani neznanki iz enacbe (1-27), kjer dobimo:

S = ”“"2—1’ — 17690,90 m? (1-34)

Natancnost povrsine og izracunamo s pomocjo zakona o prenosu varianc in kovarianc. Izhajamo iz
enacbe (1-34) in kovarian¢ne matrike neznank iz enacbe (1-30). Za natancnost povrsine dobimo:

og = 1,99 m? (1-35)

1.6.2 Resitev 2 — dve neznanki in 2. niz enacb

Pri tej resitvi bomo uporabili drugacne enacbe in pokazali, da to ne bo vplivalo na rezultate. V
nadaljevanju tako prikazujemo le tiste podatke in rezultate, ki so drugacni kot v primeru resitve 1
iz poglavja 1.6.1.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izracunamo utezi opazo-
vanj). Nastavimo n, ng in r.
Povsem enako kot poglavje 1.6.1 (enacba (1-20)).

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
Tu si izberemo enaki neznanki in jima izracunamo enaki priblizni vrednosti (enacba (1-21)).

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Sestavili bomo ¢ = r+u = 1+ 2 = 3 enach, ki pa bodo drugacne kot so predstavljene v enacbi
(1-22) v poglavju 1.6.1. Tu bodo enacbe oblike:

Fl=a+-&=0
=240 - =0 (1-36)
Fy=a*4+y* - =0

V enacbah (1-36) nastopajo vsa tri opazovanja, kot tudi obe neznanki, zato je ta niz enacb
pravilen.

4. Lineariziramo sestavljene enacbe in jih zapiSsemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
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Matri¢ni model sestavimo na osnovi enacb iz (1-36). Matriki A in B ter vektor f so:

[ 20 20 —2¢c 433,40 326,60 —542,60
A=|0 20 —2¢|=1| 000 32660 —542,60
| 2a 0 —2c 433,40 0,00 —542.60
00 0,00 0,00
B=|2r 0 |=143340 0,00 (1-37)
0 2y, 0,00 326,60
[ 2 — a2 — 12 —22.09
f=|c2—x2-0 | =] —22,09
_02—a2—y8 —22,09

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in 1.
Vektorji A, v in 1, ki predstavljajo resitev funkcionalnega modela imajo vrednosti:

_0.0163m —0,0163m 916,6837 m
A= l 0.0123 ] v=| —0,0123m 1= 163,2877m (1-38)
e 0,0204 m 971,3204 m

Ce primerjamo vrednosti iz enacbe (1-26) prejinjega poglavija 1.6.1, vidimo, da smo v enacbi
(1-38) dobili povsem enake rezultate. Izracunajmo Se neznanke x:

(1-39)

X=xg L A= l 216,6837m ]

163,2877 m
Spet, vrednosti v enacbi (1-39) so popolnoma enake kot tiste iz enacbe (1-27).

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Quv in Qj; ter referencno
varianco a-posteriori 3.
Za resitve glej v poglavje 1.6.1, enacbi (1-28) in (1-29).

7. Izberemo si ustrezno referencéno varianco in izracunamo iskane variancno-kovariancéne matrike
EAA; Ew in Eﬁ
Za resitve glej v poglavje 1.6.1, enacba (1-30).

8. Iz vseh varian¢no-kovarianénih matrik stohasti¢nega modela izracunamo natan¢nosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Za resitve glej v poglavje 1.6.1, enacbe (1-31), (1-32) in (1-33).

Za izracun povrsine tudi tu uporabimo izrac¢unani neznanki iz enac¢be (1-39) in pripadajoco kovari-
ancno matriko iz enacbe (1-30). Rezultati so identi¢ni kot v prej$njem poglavju (glej enacbi (1-34)
in (1-35)).

1.6.3 Resitev 3 — samo ena neznanka, stranica

Pri tej resitvi bomo pokazali, da lahko v funkcionalni model uvedemo tudi drugacno stevilo neznank,
kar tudi ne bo vplivalo na koné¢ne rezultate. V nadaljevanju tako prikazujemo le tiste podatke in
rezultate, ki so drugacni kot v primeru resitve 1 in 2 iz poglavij 1.6.1 in 1.6.2.
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1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.
Povsem enako kot poglavije 1.6.1 (enacba (1-20)).

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
V tem primeru bomo nastavili « = 1 neznanko, in sicer:

x=[2] xo=|m|=]a]=]2167m] (1-40)

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Sestavili bomo ¢ = r +u = 1+ 1 = 2 enacb, torej manj enacb kot v obeh prejsnjih primerih
(enacbi (1-22) in (1-36)). Tu imamo:

FL=a24+0 - =0

[Hh=x—a=0

(1-41)

Tudi v enacbah (1-41) nastopajo vsa tri opazovanja, kot tudi ena uvedena neznanka, zato je
ta niz enacb pravilen.

4. Lineariziramo sestavljene enacbe in jih zapiSsemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Matri¢ni model sestavimo na osnovi enacb iz (1-41). Matriki A in B ter vektor f so manjse
dimenzije kot v poglavjih 1.6.1 in 1.6.2 in imajo obliko:

A [ 2a 20 —201 _ [433,4 326.6 —542,6]

-1 0 0 -1,0 00 0,0

B—| =% (1-42)
1 1,0

[P —a? = 1 _ l 22,1 1

f =
a — Tg 0,0

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Vektorji A, v in 1, ki predstavljajo resitev funkcionalnega modela imajo vrednosti:

~0,0163m 216,6837 m
A=[-00163m | v=|-00123m i=|163,2877m (1-43)
0,0204 m 271,3204m

Ce primerjamo vrednosti iz enach (1-26) in (1-38) poglavij 1.6.1 in 1.6.2, vidimo, da dobimo
povsem enake rezultate. Izracunajmo Se neznanko x:

x =x0+ A = [ 216,6837m | (1-44)

Spet, vrednost v (1-44) je neznanka x, izra¢unana popolnoma enako kot v poglavju 1.6.1 ali
1.6.2.

11
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6. ResSimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Q. in Qj; ter referencno
varianco a-posteriori 63.

Ker imamo samo eno neznanko, je matrika Qaa enaka:
Qas = | 0,681 | (1-45)
Za matriki Qu, tn Qi glej poglavje 1.6.1, enacbi (1-28) in (1-29).

7. Izberemo si ustrezno referenc¢no varianco in izrac¢unamo iskane variancno-kovarianéne matrike
EAA7 Evv in Eﬁ
Kovarian¢na matrika neznank 3aa ima samo en element, to je varianco 0923 in ima vrednost:

Yaa=|2724x107" |m? (1-46)
Za matriki X, in 3j; glej poglavie 1.6.1, enacba (1-30).

8. Iz vseh varian¢éno-kovariancénih matrik stohasticnega modela izrac¢unamo natancénosti neznank,
=) 9
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.
Natanc¢nost neznanke je o, = 0.017m. Za ostale resitve glej v poglavije 1.6.1, enacbi (1-32) in
X b) )

(1-33).

Ker imamo tu izra¢unano le eno neznanko (x), bomo za izrac¢un povrsine uporabili izravnana opazo-
vanja iz vektorja 1 iz enacbe (1-43), kjer dobimo:

>

S = % — 17690,90 m? (1-47)

Za izracun natancnosti povrsine og bomo seveda uporabili zakon o prenosu varianc, le da tu izhajamo
iz kovariancne matrike izravnanih opazovanj ;. Na koncu dobimo:

os = 1,99 m? (1-48)

Rezultat iz (1-48) tudi v tem primeru povsem enak kot pri ostalih dveh resitvah (enacba (1-35)).

1.6.4 Resitev 4 — samo ena neznanka, povrsina trikotnika

Na koncu uporabimo za neznanko Se iskano koli¢ino, in sicer povrsino trikotnika S in pokazimo, da
vrsta neznanke ne vpliva na rezultate.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.
Povsem enako kot poglavije 1.6.1 (enacba (1-20)).

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
V tem primeru bomo nastavili « = 1 neznanko, in sicer:

x=[S] x=[S]|=][2]=]176936m® | (1-49)

2
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3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Sestavili bomo ¢ = r+u = 14+ 1 = 2 enacb, v katerih bomo povezali vsa tri opazovanja in
neznanko, povrsino S
F 5&24—82—@2:0
Fy=ab—28=0

Tudi v enacbah (1-50) nastopajo vsa tri opazovanja, kot tudi ena uvedena neznanka, zato je

(1-50)

ta niz enacb pravilen.

4. Lineariziramo sestavljene enacbe in jih zapisemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Matri¢ni model tudi tu sestavimo na osnovi enacb iz (1-50) in za matriki A in B ter vektor f
dobimo:

A_'Qa 2b —2(:] B [433,4 326,6 —542,6]

b a0 163,3 216,7 0,0

) 0,0
B=1_, ] a l ~2,0 ] (1=51)

|- [ -221
| 28 —ab | | 00

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Vektorji A, v in 1, ki predstavljajo resitev funkcionalnega modela imajo vrednosti:

~0,0163m 216,6837 m
A=|-2654Tm | v=|-00123m 1= 163,2877m (1-52)
0,0204m 271,3204 m

Vektor A se nanasa na povrsino trikotnika, zato njegove vrednosti ne moremo primerjati z
vektorji A iz prejsnjih treh primerov. Lahko pa primerjamo oba ostala vektorja, v in 1, ki tudi
tu dobita enake vrednosti kot v poglavju 1.6.1. Izracunajmo Se neznanko x, torej povrsino S:

X =Xo+A =] 176909m? | (1-53)

Povrsino S iz enacbe (1-53) pa lahko primerjamo z izra¢unano povrsino iz poglavja 1.6.1
(enacba (1-34)), kjer ugotovimo, da dobimo povsem enako vrednost.

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Q.. in Qj; ter referencno
varianco a-posteriori 3.
Ker imamo samo eno neznanko, je matrika Qaa enaka:

Qaa = [ 9901,031 | (1-54)
Za matriki Qu, in Qi glej poglavje 1.6.1, enacbi (1-28) in (1-29).

7. Izberemo si ustrezno referenc¢no varianco in izrac¢unamo iskane variancno-kovarianéne matrike
Yan, Xy in X
Kovarian¢na matrika neznank 3aa ima samo en element, to je varianco ag in ima vrednost:

Saa = [ 3,960 | m? (1-55)

Za matriki X, in 3j; glej poglavie 1.6.1, enacba (1-30).
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8. Iz vseh varian¢no-kovarianénih matrik stohasticnega modela izracunamo natanc¢nosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

[zracunali bomo natancénost neznanke, to je og = 1,99 m, kjer dobimo enako vrednost kot v
primeru enacbe (1-35). Za ostale resitve glej v poglavje 1.6.1, enacbi (1-32) in (1-33).

14
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1.7 Primer 2 — visina reperja

Dano imamo visino izhodis¢nega reperja A, in sicer H, = 320,00 m. Da bi dolocili visino reperja B
smo s trigonometri¢nim visinomerstvom opazovali posevno dolzino s = 51,00 m in zenitno razdaljo
z = 78°40', z geometricnim nivelmanom visinsko razliko Ah = 10,00 m, izmerili pa smo tudi hori-
zontalno dolzino d = 50,00m, kot to prikazuje slika 1-2. Ce so opazovanja enake natancnosti in
medseboj nekorelirana, s splosSnim modelom izravnave izravnaj opazovanja in dolo¢i visino reperja B
s pripadajoco natancnostjo o, .

B

Slika 1-2: Prikaz izmerjenih opazovanj za doloc¢itev viSine novega reperja

Resitev bomo dobili po korakih, ki so predstavljeni v poglavju 1.5.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.
Iz naloge vidimo, da imamo n = 4 opazovanj (s, d, Ah in z) v pravokotnem trikotniku, kjer bi
potrebovali samo ng = 2 opazovanj za enoli¢no resitev. To pomeni, da imamo r =n —ny = 2
nadstevilnih opazovanj. Ker imamo opazovanja izmerjena z enako natancnostjo, velja, da je:

1= Q=P=1 (1-56)

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
V tem primeru si bomo izbrali v = 1 neznanko, in sicer tocno tisto, po ¢emer nas sprasuje
naloga, neznanka naj bo visina Hg. Njeno priblizno vrednost bomo izracunali iz opazovanj,
zato je:

x=|Hp| xo=[Hpo|=|Ha+Ah|=]33000m | (1-57)

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 1, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
2+ 1 = 3. Enacbe za splosni model izravnave imajo samo eno pravilo, v vseh enacbah morajo
biti vsa opazovanja in vse neznanke. V nasem primeru bomo sestavili:

F=AR+dP-8=0
[ =Hp—Ah—Hy=0 (1-58)
F;;ECZ—§SH12:O

V enacbah (1-58) nastopajo vsa tri opazovanja, kot tudi neznanka, zato je ta niz enacb pravilen.
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4. Lineariziramo sestavljene enacbe in jih zapiSemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA =f.
Enacbe (1-58) lineariziramo tako, da izra¢unamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f. Matrika A predstavlja parcialne odvode vseh enacb iz (1-58) po vseh opa-
zovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj 1 iz enacbe (1-56). Dobimo:

[ oFn 9k Ok 9Fy

ds 8d OAh 92 —2s5 2d 2Ah 0
— | OF, OF, OF, 0OF | _ _
A= ds 8d OAh 9z | 0 0 1 0
9Fy OF3; 0OFy 0OF3 sinz 1 0 —SCOS 2
L 9s  od oAk 0= (1-59)

—102,000 100,000 20,000 0,000
= 0,000 0,000 —1,000 0,000
—0,981 1,000 0,000 —10,022

Matrika B predstavlja parcialne odvode vseh enacb iz (1-58) po neznanki, visini Hp:

OF
0Hp 0
B = 5152 =11 (1-60)
0F3 0
OHp

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar se
nahaja na levi strani enacaja v enacbah (1-58) prenesemo na desno stran. Pri tem se spremeni
predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto neznank
uporabimo njihove priblizne vrednosti. Dobimo:

5?2 —d? — Ah? 1,0000
f=| Hi+Ah—Hgy | = | 0,0000 (1-61)
ssinz —d 0,0055

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela pomeni izra¢un vektorjev A, v in 1, kjer dobimo:

—0,0049 m 50,9951 m
0.0048 m ~ | 50,0048 m
A= 1 _ Y i—| 2% 1-62
| 0,0010m v 0,0010 m 10,0010 m (1-62)
0,0004 1,3734

V enacbi (1-62) je popravek v, izra¢unan v radianih, njegova vrednost v lo¢nih minutah pa je
v, = 1,40’. Tudi izravnana zenitna razdalja 2 je v enacbi (1-62) podana v radianih, v loénih
enotah pa je enaka Z = 78°41,40’.

Na osnovi pribliznih vrednosti neznank xq iz enacbe (1-57) in popravkov pribliznih vrednosti
neznank A iz enacbe (1-62) izra¢unamo koncne vrednosti neznank x:

x =xo+ A = [ 330,0010m | (1-63)

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Quv in Qj; ter referencno
varianco a-posteriori &3.
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Resitev stohasticnega modela pomeni izracunati matrike kofaktorjev Qana, Q. in Qj;:

Qan = [ 9.804 x 10~

5,001 x 107% —4,903 x 107" —9,806 x 1072 —1,340 x 10~°

| 4,903 x 1071 4,807 x 1071 9,606 x 1072 —3,849 x 1073

Qu = —9,806 x 1072 9,606 x 1072 1,960 x 1072 1,918 x 1072

| —1,340 x 107° —3,849 x 10™* 1,918 x 1072 9,996 x 107! (1-64)

4,999 x 1071 4,903 x 107! 9,806 x 1072 1,340 x 10~
14903 x 107" 5,193 x 107" —9,606 x 107 3,849 x 1073
Q=1 9806 % 1072 9,606 x 102 9,804 x 10~ —1,018 x 102
| 1,340 x 107> 3,849 x 1073 —1,918 x 1072 —1,918 x 1072

I[zrac¢unamo tudi referencno varianco a-posteriori 64 in referen¢ni standardni odklon a-posteriori
0p in dobimo:
., VIPv
0-0 —

= 2412 x 107° m?

60 = /83 = 0,005 m

7. Izberemo si ustrezno referencno varianco in izracunamo iskane varianéno-kovariancéne matrike
EAA, EUU n Eﬁ.
Pri izracunu kovarian¢nih matrik uporabimo referenc¢no varianco a-posteriori 63, prikaZimo pa
le kovariancéno matriko neznank aa:
_ 512
Yaa=|2364x10°m (1-66)
8. Iz vseh variancno-kovarianc¢nih matrik stohasticnega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.
Izra¢unajmo natanc¢nosti neznanke, op,:

o, = 0,0049m (1-67)
Izra¢unajmo tudi natancnosti popravkov opazovanj (korelacije izracunajte sami):
oy, = 0,0035m o0,, =0,0034m o,,, = 0,0007m o, = 16,88 (1-68)
Na koncu $e natancnosti izravnanih opazovanj (korelacije izrac¢unajte sami):
0 =0,0035m o0;=0,0035m o,; =0,0049m oz =033 (1-69)
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Splosni model izravnave

1.8 Primer 3 — premica v ravnini, opazovani obe koordinati tock

V ravnini imamo Stiri tocke, za katere imamo opazovane tako koordinate x, kot tudi koordinate v,

vrednosti opazovanj pa so predstavljene v preglednici 1-1.

Preglednica 1-1: Opazovane vse koordinate stirih tock na premici

Tocka | = Y
T, 1,3 10,7
T, 2211
Ty 2,8 11,9
T, |41]26

Tocke v ravnini prikazuje slika 1-3. Ce so opazovanja enake natanc¢nosti in medseboj neodvisna, s

splosnim modelom izravnave po MNK izravnaj opazovanja in dolo¢i premico, ki se optimalno prilega

tockam.

Slika 1-3: Tocke premice v ravnini

Primer, ki ga obravnavamo je prakti¢ni identicen primeru 7 pri poglavju Zakon o prenosu varianc in

kovarianc pri MNK. Tudi tu bomo podrobno raziskali predvsem koli¢ino ng, zato se bo katera izmed

enach ponovila. Poudarek tu pa bo v tem, da bo resitev s splosnim modelom veliko bolj enostavna,

kot s posrednim modelom izravnave.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-

vanj). Nastavimo n, ng in 7.

Iz podatkov je razvidno, da je stevilo opazovanj enako n = 8, opazovane imamo tako 4 koordi-

nate z in 4 koordinate y. Vektor opazovanj nastavimo kot:

1
n
T2
Y2
xs3
Ys
Tyq
Ya |

18

1,3
0,7
2,2
1,1
2.8
1,9
4,1
2,6

(1-70)
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Ker so opazovanja enake natancnosti in medseboj nekorelirana, velja Q = P = Igys.

Kako dolo¢imo ny? Tu bomo privzeli enako logiko, kot pri prej omenjenem primeru 7 poglavja
Zakon o prenosu varianc in kovarianc pri MNK, ko smo nalogo resili s posredno izravnavo po
MNK. Tam smo ugotovili, da bi morali uvesti dve neznanki, s katerima bomo parametrizirali
premico, torej a (naklonski koeficient) in b (prosti ¢len). Dodatno pa bi morali za vsako merjeno
koordinato x; uvesti neznanko p;, kar skupaj znese dodatnih 4 neznanke p1, ps, ps in ps. Stevilo
neznank bi pri tem bilo:

u=_2 + 4 =6 (1-71)

a,b P1,P2,P3,P4

Ker pa vemo, da pri posredni izravnavi velja, u = ng, smo s tem definirali tudi minimalno
stevilo opazovanj, ki jih nujno potrebujemo za resitev problema.

Na koncu tako lahko zapisemo:

 sStevilo opazovanj: n = 8§,
« minimalno stevilo opazovanj je: ng = 6,

« Stevilo nadstevilnih opazovanj je: r = 2.

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
Ker Zelimo dolociti parametre premice, ki se optimalno prilega izmerjenim tockam, bomo uve-
dli v = 2 neznank, torej parametra a in b. Priblizne vrednosti neznank bomo izracunali iz
opazovanj, in sicer:

a a . 0,4444
X = xg=| 0 |= T2—T1 =7 (1-72)
b bo Y1 — oy 0,1222
3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z

neznankami.

Ker imamo r = 2 in u = 2, je stevilo enach, ki jih moramo sestaviti, enako ¢ = r +u =
2 + 2 = 4. Vidimo, da moramo sestaviti toliko enacb, kot imamo izmerjenih tock. Za vsako
tocko uporabimo enacbo premice in dobimo:

Fi=g1—at1—b=0

S =90 —ato—b=0
2 ?{2 A2 (1773)
Fy=93—ai3 —b=0
F4Eg4—(lfi'4—b:0

Vidimo, da v enac¢bah (1-73) nastopajo vsa opazovanja in tudi obe uvedeni neznanki, kar
pomeni, da enacbe (1-73) predstavljajo pravilen niz enacb za na$ primer.

4. Lineariziramo sestavljene enacbe in jih zapisemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Enacbe (1-73) lineariziramo tako, da izra¢unamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f. Matrika A je velikosti ¢ x n =4 x 8, matrika B je velikosti ¢ x u =4 x 2
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in vektor f je velikosti ¢ x 1 =4 x 1. Matriko A dobimo z odvajanjem vseh enacb iz (1-73) po

vseh opazovanjih iz (1-70):

[ oF oF 9F QR 9FL OFy JF OF
Ox1 Oy1r Ox2 Oy2 Oxz3 Oys Oxs Oya
OF, OF, OF, 0Fy, 0F, 0F, 0F, 0F

A — dry Oy1 Oxe Oy2 Oxz Oyz Oxsa Oya

| 9F3 0F3 QFy OF; 0OF; 09F3; 0F3; 0F3

Oz 8y1 Oxa ayz 8:133 ayg Oy 8y4

oFy OFy, OFy OFy OFy 0OFy 0OFy 0OF

Ox1 Oyr Ox2 Oy2 Oxz3 Oys Oxs Oya

—a 1 0 0 0 0 0 0
| 0 0 —a 1 0 0 0 O (1-74)
10 0 0 0 —a 1 0 0

0 0 0 0 0 0 —a 1

—0,444 1,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 -0,444 1,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 —0,444 1,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 -0,444 1,000

Matrika B predstavlja parcialne odvode vseh enacb iz (1-73) po obeh neznankah, torej:

oF,  oF
da b —x; —1 -13 =10
o G SR | | -1 | =22 —10 (1-75)
= OF;  OF - —3 —1 o —2,8 _1a0
Oa ab
oF, oF, —T4 —1 —4,]. _1a0
oa ob

Vektor odstopanj f dobimo iz enacb (1-73) tako, da jih prenesemo na desno stran in uporabimo
priblizne vrednosti neznank ter merjena opazovanja. Dobimo:

apr1 + by — 11 0,000

£f— aoTo + bo — Y2 _ 07000 (1*76)
apTs + bo — Ys —0,533
apTy + bo — Ya —0,656

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela pomeni izracun vektorjev A, v in 1. Prikazimo tu le izracunan
vektor popravkov pribliznih vrednosti neznank A:

= (1-77)

0,2633
—0,3873

Na osnovi pribliznih vrednosti neznank xq iz enacbe (1-72) in popravkov pribliznih vrednosti
neznank A iz enacbe (1-77) izra¢unamo koncne vrednosti neznank x:

(1-78)

X:X0+A:[ 0,7077 ]

—0,2651

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Quv in Qj; ter referencno
varianco a-posteriori 3.
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Resitev stohasticnega modela pomeni izracunati matrike kofaktorjev Qaa, Q.. in Q;;. Matrika
kofaktorjev neznank je:

2,893 x 1071 —7,521 x 10~

1,
—7,521 x 10~ 2,255 (1-79)

QAA:[

I[zra¢unamo tudi referenéno varianco a-posteriori 62 in referen¢ni standardni odklon a-posteriori

0¢ in dobimo:
T
P
52=Y"Y _ 3084 x 1072
r (1-80)

6o = \/62 = 0,176

7. Izberemo si ustrezno referenc¢no varianco in izrac¢unamo iskane variancno-kovarianéne matrike
EAA, ZUU n Eﬁ.
Za izracun vseh kovarian¢nih matrik uporabimo referen¢no varianco a-posteriori 2, prikazimo

pa le kovariancéno matriko neznank:

-3 _ -2
B l 8,919 x 10 2,319 x 10 ) (1-81)

S an =
Al —2319x 1072 6,953 x 102

8. Iz vseh varianc¢no-kovarianénih matrik stohasti¢nega modela izracunamo natan¢nosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Prikazimo natancnosti in korelacijo med obema neznankama:

00 = 0,094 0, =0,264 pg = —0,931 (1-82)
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1.9 Primer 4 — opazovanja v valju

V valju smo izmerili tri kolic¢ine (glej sliko 1-4): premer osnovne ploskve a = 10,0 m, visino b = 20,0 m
in prostorsko diagonalo d = 22,0m. Ce so opazovanja enake natancénosti in medseboj nekorelirana, s
splo$nim modelom izravnavo po MNK izravnaj opazovanja in izra¢unaj, koliko litrov soka (beri piva)
bi lahko pretocili v valj. Izracunajte tudi natancnost dolocitve koli¢ine soka.

Slika 1-4: Skica valja in opazovanj

Resitev bomo tudi tu dobili po korakih, ki so predstavljeni v poglavju 1.5.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in 7.
Iz naloge vidimo, da imamo n = 3 opazovanj (a, b in d) v valju, kjer geometrijo lahko prikazemo
v pravokotnem trikotniku. Nujno bi potrebovali samo ny = 2 opazovanj, to pomeni, da imamo
r = n—ng = 1 nadstevilnih opazovanj. Ker imamo opazovanja izmerjena z enako natancnostjo,
velja, da je:

1= b Q=P=1 (1-83)
d

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
V tem primeru si bomo izbrali u = 1 neznanko, in sicer to¢no tisto, po ¢emer nas sprasuje
naloga, neznanka naj bo torej prostornina valja V. Njeno priblizno vrednost bomo izracunali
iz opazovanj, zato je:
x=[V] x=[V]=[2]=]15708m"] (1-84)
3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 1 in uw = 1, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
1+ 1 = 2. Enacbe za splosni model izravnave imajo samo eno pravilo, v vseh enacbah morajo
biti vsa opazovanja in vse neznanke. V nasem primeru bomo sestavili:

o= 7a2h — 4V =0

A 1-85
Fy=a*+ 0 —d (1-85)

V enacbah (1-85) nastopajo vsa tri opazovanja, kot tudi neznanka, zato je ta niz enacb pravilen.
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4. Lineariziramo sestavljene enacbe in jih zapiSemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA =f.
Enacbe (1-85) lineariziramo tako, da izra¢unamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f. Matrika A predstavlja parcialne odvode vseh enacb iz (1-85) po vseh opa-
zovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj 1 iz enacbe (1-83). Dobimo:

A_[%%%]_[Qﬂab wa? 0]

OFy  OFy 9F 2 2b —2d
da 9b od

_ | 1256,637 314,159 0,000
| 20,000 40,000 —44,000

(1-86)

Matrika B predstavlja parcialne odvode vseh enacb iz (1-85) po neznanki, prostornini V:

OF1 4
ov _ -
OFy ] _ [ 0 ‘| (1*87)
ov

B =

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar se
nahaja na levi strani enacaja v enacbah (1-85) prenesemo na desno stran. Pri tem se spremeni
predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto neznank
uporabimo njihove priblizne vrednosti. Dobimo:

4V — ma®b 3
f 2V 27m = 0,0000 m ) (1-88)
d>—a”—b —16,0000 m
5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela pomeni izra¢un vektorjev A, v in T, kjer dobimo:
—0,08 m 9,92m
A=[-3831m*| v=|-016m 1= 1984m (1-89)
0,18 m 22,18 m

Na osnovi pribliznih vrednosti neznank xq iz enacbe (1-84) in popravkov pribliznih vrednosti
neznank A iz enacbe (1-89) izra¢unamo koncne vrednosti neznank x:

x =x0+A=[153248m° | (1-90)
Ce izravnano prostornino V iz enacbe (1-90) zapiSemo v litrih, pa dobimo V = 1532484 L

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Quv in Qj; ter referencno
varianco a-posteriori 63.

Resitev stohasticnega modela pomeni izracunati matrike kofaktorjev Qaa, Q. in Qj;:

Qaa = 8,230 x 10* |

[ 1,016 x 1071 2,033 x 1071 —2,236 x 107!
Qu =] 2033x107" 4,065 x 107! —4,472 x 107"
—2,236 x 1071 —4,472x 1071 4,919 x 107! (1-91)
[ 8,984 x 107! —2,033 x 107' 2,236 x 10~
Q;i = | —2,033x 107! 5935 x 107" 4,472 x 107*
2,236 x 1071 4,472 x 107" 5,081 x 107!
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I[zrac¢unamo tudi referencno varianco a-posteriori 64 in referen¢ni standardni odklon a-posteriori
09 in dobimo:

T
P
52 ==Y — 6504 x 10"2m?
T

60 = /63 = 0,255m

7. Izberemo si ustrezno referencno varianco in izracunamo iskane variancno-kovarianéne matrike
Yan, Xy in X
Pri izracunu kovarian¢nih matrik uporabimo referen¢no varianco a-posteriori 63, prikaZimo pa

(1-92)

le kovarian¢éno matriko neznank X ana:

an = | 5,353 x 103 m® (1-93)

8. Iz vseh variancno-kovarianc¢nih matrik stohasticnega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

[zracunajmo natanc¢nost prostornine valja oy :

oy = 73,16 m® = 73161,74 L (1-94)
Izra¢unajmo tudi natancnosti popravkov opazovanj (korelacije izracunajte sami):
oy, =0,081lm o, =0,163m o, =0,179m (1-95)
Na koncu $e natanc¢nosti izravnanih opazovanj (korelacije izracunajte sami):
0, =0,242m 0;=0,196m o0;=0,182m (1-96)

Primerjajte rezultate te naloge z rezultati posredne izravnave (glej primer pri posredni izravnavi
lansko leto). Dobimo malo drugacne rezultate, a so razlike veliko manjse kot je ocenjena natancénost
rezultatov. Pojavijo pa se zaradi linearizacije nelinearnih enac¢hb v osnovni matri¢ni model tako
splosnega kot tudi posrednega modela izravnave po MNK.
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1.10 Primer 5 — tocke na paraboli

V ravnini smo izmerili koordinate x in y Stirim tockam in dobili: 77(1,0;1,4), T5(2,0;2,1), T5(3,0; 1,5)
in T4(4,0; —0,1). Ce so koordinate y izmerjene dvakrat bolj natancnost kot koordinate x, s splognim
modelom izravnavo po MNK doloc¢ite parametre parabole tako, da gre parabola skozi izhodisce
koordinatnega sistema in se optimalno prilega tockam.

Y

Slika 1-5: Tocke v ravnini, ki lezijo na paraboli

Obravnavana naloga je zelo podobna nalogi, ko smo tockam v ravnini ocenjevali parametre optimalne
premice (glej poglavje 1.8), v svojem smislu je prakti¢no enaka, le da imamo tu malo druga¢no obliko
interpolacijske krivulje. Pri premici smo prvo morali ugotoviti, koliko je minimalno stevilo opazovanj,
ki jih potrebujemo za izracun primera, zato bomo morali tudi tu narediti enako. Na voljo imamo
n = 8 opazovanj, opazovane imamo tako 4 koordinate x kot tudi 4 koordinate y. Enacba parabole,
ki gre skozi sredis¢e ima obliko y = ax? + bz, kar bomo seveda uporabili pri sestavi enacb splognega
modela izravnave. Vidimo, da moramo uvesti dve neznanki, ki se nanasata na parabolo (a in b). Ce
gledamo analogijo z nalogo s premico, bi enac¢bo parabole pri posredni izravnavi lahko uporabili le
za opazovane koordinate y, kjer pa na desni strani ne sme biti opazovanj koordinat x. Zato bi pri
posredni izravnavi morali tudi tu za vsako merjeno koordinato x uvesti eno novo neznanko (pi, pe,
Ps, pa). Zato je pri tej nalogi Stevilo nadstevilnih opazovanj enako:

u= 2 + 4 =6 (1-97)

a,b P1,P2,P3,P4

Sedaj lahko postopamo po korakih splosnega modela izravnave. Rezultate pa bomo predstavili na
sledec¢ nacin. V prvem delu bodo nastavljeni vsi podatki za izracun rezultatov. Nato pa bomo izvedli
nekaj iteracij izravnave in prikazali rezultate po opravljenih iteracijah.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in 7.
Iz podatkov je razvidno, da je stevilo opazovanj enako n = 8, in vektor opazovanj nastavimo

kot: - ) )
1 1,0
Y1 1.4
T 2,0
Y2 2,1

1= - 3.0 (1-98)

Y3 1,5
Ty 4,0

Lva ] [ 0.1
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Ker so koordinate y opazovane dvakrat bolj natan¢no, potem za vsako tocko lahko nastavimo
kofaktorja opazovanj:

Gz, =4 qy, =1 i={1,2,3,4} (1-99)
Matriko uteZi P dobimo kot P = QL.

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank xg.
Za neznanki nastavimo parametra parabole a in b, kjer jima priblizno vrednost nastavimo kot:

[i] we[2]-[2

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 2 in v = 2, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
2 4+ 2 = 4. Vidimo, da tudi v tem primeru za vsako izmerjeno tocko sestavimo eno enacbo:
)
Fy =14, —aii —bi; =0
FZE§2—ai2—bi =0
2 2
e (1-101)
Fy =93 — a5 — b3 =0
Fy =144 —ai; —biy =0

4. Lineariziramo sestavljene enacbe in jih zapiSemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Enacbe (1-101) lineariziramo tako, da izracunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f. Matrika A je velikosti ¢ x n = 4 x 8, matrika B je velikosti ¢ x u =4 x 2
in vektor f je velikosti ¢ x 1 =4 x 1. Matriko A dobimo z odvajanjem vseh enacb iz (1-101)
po vseh opazovanjih iz (1-98):

[ oF O0Fy OFy OF OF1 O0F1 OF1 OF ]
Or1 Oy1 Oxz2 Oy2 Oxz3 Oys Oxs Oya
OFy 0F, 0F, 0F, 0F, 0F, 0F, 0OF

A — Ory Oy1 Oxp Oyz Oxz Oyz Oxa  Oya

OF3; QOF3 OF3y OF3 0F3; 0QF3 0OF3 0OF3

Or1 Oy1 Oxe2 Oy2 Oxz3 Oys Oxs Oya

OFy OFy 0OFy 0OFy OFy 0OFy 0OFy O0OFy

Or1 Oy1 Oxz2 Oy2 Ox3 Oys Oxs Oya

—2apr1 — by 1 0 0 0 0 0 0

B 0 0 —2apxs —by 1 0 0 0 0 (1-102)
N 0 0 0 0 —2apws —by 1 0 0
0 0 0 0 0 0 —2apry — by 1

0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00
0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00

Matrika B predstavlja parcialne odvode vseh enach iz (1-101) po obeh neznankah, torej:
oF Ok

da ob _x% —T _170 _1’0
OF: OF:
B_| o @ | _|-w —w | _| —40 —20 (1109
oL ok —a3 —x3 ~9,0 —3,0
oF  OF —x] —y —16,0 —4,0
da ob
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Vektor odstopanj f dobimo iz enacb (1-101), da le-te prenesemo na desno stran in uporabimo
priblizne vrednosti neznank in merjena opazovanja. Dobimo:

OJ()SL’% + bo.ﬁ(]l — U1 —1,400

£ — CLQZL‘% + bQZL‘Q — Y2 _ —2,100 (17104)
oIy + bo[L‘g — Y3 —1,500
aopx? + boTy — Ya 0,100

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
V prvem koraku izracunamo vektor popravkov pribliznih vrednosti neznank A, ki ga pristejemo
vektorju pribliznih vrednosti neznank x, in dobimo vektor konénih vrednosti neznank x. Sedaj
pa za priblizne vrednosti (X¢) privzamemo izravnane vrednosti (x) in postopek ponovimo.
Dobljeni rezultati predstavljajo rezultate 2. iteracije. Postopek ponavljamo vse dokler npr.
[|A]] > 1,000 x 107%. Resitve vektorja A so:

[teracija 1: da = —0,514516 0b = 2,038387 [|Al] = 2,10

Iteracija 2: da = —0,011549 0b = 0,049690 [|A]] = 5,10 x 1072

[teracija 3: da = —0,000331 0b =0,001138 Al =1,19 x 1073

Iteracija 4: da = —0,000002 0b = 0,000012 |A]| = 1,24 x 1075

Iteracija 5: da = 0,000000 0b = 0,000000 [|A]| = 5,17 x 1077
Vidimo, da smo morali izvesti 5 iteracij, da sta popravka obeh neznank (Js in 0b) zanemarljivo
majhna, da lahko konéamo iterativni postopek. Vzrok za nujno obdelavo v vec iteracijah je
v tem, da so enacbe iz (1-101) nelinearne, saj vsebujejo produkte in kvadrate opazovanj in
neznank. Koncéni rezultat, to sta ocenjena parametra premice a in b, lahko zapiSemo kot:

(1-105)

=gt A — l —0,52640 ]

2,08923

6. Izberemo si ustrezno referen¢no varianco in izrac¢unamo iskane varianc¢no-kovarian¢ne matrike
EAA, EUU n Eﬁ.
Za izracun vseh kovarian¢nih matrik uporabimo referenc¢no varianco a-posteriori 2, prikazimo
pa le kovariancéno matriko neznank:

(1-106)

l 8,032 x 107* —1,982 x 1073 ]
YAA =

—1,982 x 1073 5,342 x 1073

7. Iz vseh varian¢no-kovariancnih matrik stohasticnega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Prikazimo natanc¢nosti in korelacijo med obema neznankama:

0, = 0,028 0, = 0,073  pg, = —0,957 (1-107)

Na koncu izrisimo Se graf (glej sliko 1-6), ki ponazarja opazovanja (tocke v ravnini), izravnano
parabolo (rdeca ¢rtkana ¢rta) in obmodje zaupanja interpoliranih vrednosti (sivo obmocje). Podobno
smo tak izris naredili za premico (opazovane samo y koordinate, primer 2) pri poglavju Zakon o
prenosu varianc in kovarianc pri MNK.
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Slika 1-6: Opazovanja, optimalna parabola in natan¢nost interpolacije in ekstrapolacije

S slike 1-6 lahko vidimo, da imamo eno dano tocko, to je izhodisce koordinatnega sistema. Ker
parabola mora iti skozi izhodis¢e (prosti ¢len je enak ni¢), je tam izracunan standardni odklon
interpolirane vrednosti enak ni¢. Z oddaljevanjem pa natan¢nost pada. V obmocju podatkov (in-
terpolacija) je natancnost Se dokaj enaka, z oddaljevanjem od obmodcja podatkov, pa se natanénost
slabsa. Ker pa se krivulji (paraboli) z oddaljevanjem od temena naklon povecuje, je obmodje zaupa-
nja (sivo obmocje) na pogled pristransko. Zato je na sliki 1-7 prikazano obmocje zaupanja za vsako
interpolirano tocko brez parabole.

Slika 1-7: Prikaz natanc¢nosti interpoliranih tock

S slike 1-7 lahko vidimo, kako drasticno pade kakovost interpoliranih tock, ¢e gremo izven obmo-
¢ja podatkov (opazovanih tock, ki so prikazane z modrimi krogci), torej ¢e delamo ekstrapolacijo.
V stevilnih znanstvenih panogah tako problem kakovosti ekstrapolacije se vedno predstavlja velik
problem.
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1.11 Primer 6 — Ravninska geodetska mreza (1)

Podane imamo koordinate dveh danih tock, in sicer A(ya,z4) = (10,0m,10,0m) in B(yp,zp) =
(100,0 m, 20,0 m). Da bi dolo¢ili koordinate tocke T'(yz, x7), smo na tocki A izmerili smerni kot v} =
30°57" in dolzino d4r = 58,3 m, na tocki T pa bazni vektor rrp = (AyZ, AzB) = (60,0m, —40,0 m)
proti tocki B, kot to prikazuje slika 1-8. Ce je natanc¢nost smernega kota enaka o, = 15,0” in ce je
natancnost vseh ostalih dolzinskih koli¢in enaka op = 4,0 mm, s splosnim modelom izravnave izrav-
najte opazovanja in dolocite koordinate tocke T'(yr, z7). Resite tudi stohastiéni model izravnave in
dolocite natancnost ocenjenih koordinat tocke T in parametre standardne absolutne elipse pogreskov
tocke T. Pri izracunu natancnosti uporabite referencno varianco a-priori o3.

Slika 1-8: Dolocitev koordinat nove tocke na osnovi danih tock, smernega kota, dolzine in baznega

vektorja

Nalogo smo obravnavali tudi pri poglavju Zakon o prenosu varianc in kovarianc pri MNK, razlika
je le, da imamo sedaj razlicne natancnosti opazovanj. Pokazali bomo, kako lahko poenostavimo
sestavljene enacbe in posledi¢no izrac¢un naloge z uporabo splosnega modela izravnave.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.
Vidimo, da imamo n = 4 opazovanj, kjer zelimo doloc¢iti koordinati yr in xp tocke T', torej
ng = 2 in r = n —ng = 2. Natancnosti opazovanj so za dolzinska opazovanja enaka, podana
pa je tudi natancnost izmerjenega smernega kota, zato bosta vektor opazovanj 1 in pripadajoca
kovarianc¢na matrika X enaki:

dar o 0 0 0
A 0 o% 0 0
1=| 7 > = i (1-108)
Ayf 0 0 op
Azp 0 0 0 o}
Ce nastavimo za referencno varianco a-priori 02 = 0%, bodo kofaktorji in utezi opazovanj
enaki:
qp = 1,0000 ¢,z = 3,3053 X 10~ pp = 1,0000 p,r = 3,0254 x 10° (1-109)

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
Za neznanki si izberemo koordinati tocke T', torej yr in xr in na ta nacin definiramo vektor
neznank x in s tem v = 2. Iz opazovanj izracunamo priblizne vrednosti neznank in dobimo:

yr Yr,0 ys — AyP 40,00 m
- = = - 1-11
: [ It 1 o [ TT,0 ] l xp — Axk ] l 60,00 m ( 0)
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3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 2, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
2 4 2 = 4. Enacbe za splosni model izravnave imajo samo eno pravilo, v vseh enacbah morajo
biti vsa opazovanja in vse neznanke. V nasem primeru bomo sestavili:

Fl EyT—yA—CZATSiHﬂZIO
F E:pT—xA—cZATcosﬁ£:0
Fy=yr+Ajp —yp =0

Fy=xp+ A28 —25 =0

(1-111)

4. Lineariziramo sestavljene enacbe in jih zapiSemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Enacbe (1-111) lineariziramo tako, da izra¢unamo obe matriki parcialnih odvodov, A in B,
in vektor odstopanj f. Matrika A predstavlja parcialne odvode vseh enacb iz (1-111) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj 1 iz enacbe (1-108).

Dobimo:
OF OF; oOFy OF,
B B .

odar  Oviy  OAyp  OAxp —sinvh  —darcosvi 0 0

OF,  O0F, _OF OF, T .7

A _ | %dar v DAyY DAF | | —COSVy darsinvy 0 0

0F3 OF3 OF3 OF3 0 0 1 0

ddar WL 0AyE  OALE

OFy OFy OFy OFy O 0 0 1

| ddar oL 0AyE  9AzB (1-112)

—0,5143 —49,9990 0,0000 0,0000
—0,8576 29,9831 0,0000 0,0000
0,0000 0,0000  1,0000 0,0000
0,0000 0,0000  0,0000 1,0000

Matrika B predstavlja parcialne odvode vseh enacb iz (1-111) po obeh neznankah, koordinatah

yr in xp:
[ oF  oF
dyr Ozt 1,0 0,0
B_| o e | _ |00 L0 (1-113)
Sl em om0 0,0
Oyr Oz ’ ’
OFy  OF 0,0 1,0
L Oyr Ozt |

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enacaja v enacbah (1-111) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove priblizne vrednosti. Dobimo:

d a7 sin 1/£ —yr+Ya —0,0169 m
T _ _
o dar cosvy BxTerA _ 0,0010 m (1-114)
ys — Ayr +ys 0,0000 m
rp — Ax? + xR 0,0000 m
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5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela pomeni izra¢un vektorjev A, v in 1, kjer dobimo:

0,0048 m 58,3048 m
_ —0,0081 m v 0,0001270 i_ 0,5403065 (1-115)
—0,0007 m 0,0081 m 60,0081 m
0,0007 m —39,9993 m

V enacbi (1-115) sta popravek v,r in izravnana vrednost 7} podana v radianih. Zapisemo ju
lahko tudi v,r = 26" in & = 30°57'26".

Na osnovi pribliznih vrednosti neznank xq iz enac¢be (1-110) in popravkov pribliznih vrednosti
neznank A iz enacbe (1-115) izracunamo konéne vrednosti neznank x:

(1-116)

=0 A — [39,9919111]

59,9993 m

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Quv in Qj; ter referencno
varianco a-posteriori 3.
Prikazimo samo izracun referencne variance a-posteriori 3: Izracunamo tudi referencno vari-
anco a-posteriori 6 in referen¢ni standardni odklon a-posteriori 64 in dobimo:

T
P
52 =YY — 6,880 x 1075 m?
T

6o = /62 = 0,008 m

Resitev stohasti¢nega modela bomo prikazali v alijeni natanc¢nosti vseh izracunanih rezultatov.

(1-117)

7. Izberemo si ustrezno referencno varianco in izracunamo iskane varian¢no-kovariancne matrike
EAA, ZUU n Eﬁ.
Pri izracunu kovarian¢nih matrik uporabimo referencno varianco a-priori o3. Numeri¢ne vre-
dnosti natan¢nosti pa podamo v naslednji alineji.

8. Iz vseh varianc¢no-kovarianc¢nih matrik stohasticnega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Da dobimo natancnosti o, in o,, izracunanih koordinat tocke 7', korenimo diagonalna ele-
menta kovariancne matrike ¥aa, korelacijo py,., pa dobimo iz izvendiagonalnega elementa
matrike:

Oyp =289mm 0, =285mm  py., = —0,02 (1-118)

[zracunajmo Se parametre standardne absolutne elipse pogreskov na tocki T

a = 2,91 mm b= 2,83 mm 6 = —30,95° (1-119)

Prikazimo Se popravke opazovanj in izravnana opazovanja s pripadajo¢imi natanc¢nostmi v
pregledni obliki:
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Opaz. ‘ v ‘ o ‘ [ o;
dar | 48mm | 2.8mm | 58,3048m | 2,8 mm
vl 26,2" 10,9” | 30°57'26,2” | 10,3"
AyB | 81mm | 2,8mm | 58,3048m | 2,9mm
AzZ | 0,7mm | 2,8mm | 58,3048m | 2,9mm

1.12 Primer 7 — Ravninska geodetska mreza (2)

V ravnini imamo podana polozaja dveh danih tock, A(ya,z4) = (5,0m,10,0m) in B(yp,xp) =
(20,0m,0,0m). Da bi dolo¢ili polozaj toc¢ke T, smo s tocke A opazovali dolzino a = 16,2m (o, =
0,1m) in kot @ = 45° (0, = 30'), s tocke B pa dolzino b = 13,2m (0, = 0,1 m) in kot 5 = 60°
(05 = 30'), kot to prikazuje slika 1-9. S splosnim modelom izravnave po MNK izravnaj opazovanja
in izracunaj koordinate tocke T'(yr, ), natancnosti koordinat o, in o,, ter korelacijo py ... Izra-
¢unajte tudi parametre 95% absolutne elipse pogreskov na tocki 7. Uporabite referenéno varianco

a-priori 2.

Y
Slika 1-9: Opazovanja v ravninski mrezi za dolocitev polozaja nove tocke

Tudi to nalogo smo ze resili v okviru poglavja Zakon o prenosu varianc in kovarianc pri MNK, kjer
smo prikazali pogojno izravnavo po MNK, predvsem zaradi enostavne resitve izravnave v primer-
javi s posredno izravnavo. Tu podajamo resitev s splosnim modelom izravnave, kjer bomo ohranili
enostavnost izracuna in hkrati dobili Ze v postopku izravnave izravnane koordinate tocke T

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in 7.
Da bi dolocili koordinate tocke T' smo izmerili n = 4 opazovanj, kjer bi nujno potrebovali le
ng = 2 opazovanj, zato imamo r = 2 nadstevilnih opazovanj. Vektor opazovanj 1in pripadajoca

kovarian¢na matrika X sta:

a o> 0 0 0
o 0 o2 0 0

1= Y = N 1-120
b 0 0 of O ( )
6] 0O 0 O crf;

Ce nastavimo za referencno varianco a-priori o3 = o2, bodo kofaktorji in utezi opazovanj enaki:

Ga = @ =1,3131 x 10? do = q3 = 1,0000

1-121
Pa = pp =7,6154 x 1072 Pa = ps = 1,0000 ( )
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2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank xg.
Za neznanki si izberemo koordinati tocke T', torej yr in xr in na ta nacin definiramo vektor
neznank x in s tem uw = 2. Iz opazovanj izracunamo priblizne vrednosti neznank in dobimo:

. l yr ] o — l Yyr.0 1 _ [ ya+asin(vf — ) 1 _ l 20,885m] (1-122)

xr Tr T4+ acos(vf — a) 13,177m
V enacbi (1-122) je smerni kot v§ = 123°41'24".

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 2 in u = 2, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
2 + 2 = 4. Sestavljene enache so:

Fr=asin&d—bsinf =0

Fy = a2+ b% + 2abcos(a + B) — D?

o, 2( P) , (1-123)
Fy=a"—(yr —ya)" — (xr —x4)" =0
Fy=0—(yr —ys)* — (ar —25)* =0

4. Lineariziramo sestavljene enacbe in jih zapisemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA =f.
Enacbe (1-123) lineariziramo tako, da izracunamo obe matriki parcialnih odvodov, A in B,
in vektor odstopanj f. Matrika A predstavlja parcialne odvode vseh enacb iz (1-123) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj 1 iz enacbe (1-120).
Dobimo:

oF 9F OF1 0F
da Oa 9b OB
oF, OF, OF, 0F
A_| 9o 9o b 95
| 9Fs 0F3 OF3  OFs
da Oda b 0P
OF, OF 0F 0F
da Oda O 9B |

sin « acos « —sin 3 —bcos 8
| 2a+2bcos(a+ B) —2absin(a + 3) 20+ 2acos(a+ B) —2absin(a+3) | (1-124)
B 2a 0 0 0
0 0 2b 0

0,7071 11,4551  —0,8660 —6,6000
25,5672 —413,1072 18,0143 —413,1072
32,4000  0,0000 0,0000 0,0000

. 0,0000 0,0000 26,4000 0,0000

Matrika B predstavlja parcialne odvode vseh enacbh iz (1-123) po obeh neznankah, koordinatah

Yyr in xp:

[ 0F  0F ]
dyr  Orr 0 0 0,000 0,000
Bl 5 0 0 0,000 0,000

B | % 0| - (1-125)

o ok —2(yr —ya) —2(xp —xa) —-31,771 —6,354
gﬂ gﬂ —Q(yT — yB) —Q(I‘T — I‘B) —1,77]_ —26,354

L yr T
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Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enacaja v enacbah (1-123) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove priblizne vrednosti. Dobimo:

—0,0236 m
—0,9883 m?
F=1 0.0000m? (1-126)

0,1794 m?

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela pomeni izra¢un vektorjev A, v in 1. Prikazimo tu le vektor A
in vektor kon¢nih koordinat tocke T

A —0,0155m X =%+ A = 20,8699 m

—0,0022 m 13,1749 m (1-127)

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Quv in Qj; ter referencno
varianco a-posteriori 63.

Prikazimo samo izracun referenc¢ne variance a-posteriori 67

T
P
52 =Y =Y — 91450 x 10° m? (1-128)
! -

b0 =1/63 =0,0015m
Resitev stohasti¢nega modela bomo prikazali v alijeni natanc¢nosti vseh izracunanih rezultatov.

7. Izberemo si ustrezno referencno varianco in izracunamo iskane variancno-kovariancne matrike
EAA, ZUU n Eﬁ.
Pri izracunu kovariancnih matrik uporabimo referen¢no varianco a-priori o2. Numeri¢ne vre-
dnosti natan¢nosti pa podamo v naslednji alineji.

8. Iz vseh variancno-kovarianc¢nih matrik stohasticnega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Da dobimo natancnosti o, in o,, izracunanih koordinat tocke 7', korenimo diagonalna ele-
menta kovariancne matrike ¥aa, korelacijo py,., pa dobimo iz izvendiagonalnega elementa
matrike:

Oy =76lcm 0, =813cm  py, = —0,07 (1-129)
Izracunajmo Se parametre 95% absolutne elipse pogreskov na tocki T":

a=20,19cm  b=1832cm 0= —66,39° (1-130)

Prikazimo Se popravke opazovanj in izravnana opazovanja s pripadajo¢imi natanc¢nostmi v
pregledni obliki:
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Opaz. ‘ v ‘ o ‘ [ o
a —1,6cm | 6,6cm | 16,1844 m | 7,5cm
b 0,4cm | 59cm | 13,2036 m | 8,1cm
e 0,2/ 244" | 45,0°0,2" | 17,4
B 5,3 22,4 | 60,0°5,3" | 19,9

1.13 Primer 8 — Ravninska geodetska mreza (3) — opazovani koti

V ravnini imamo podane polozaje treh danih tock, ki lezijo na osi y, in sicer: A(ya,z4) = (10,0m, 0,0 m),
B(yp,zp) = (50,0m,0,0m) in C(yc,zc) = (120,0m,0,0m). Da bi doloéili polozaj tocke T', smo na
tocki A opazovali kot a = 37°39’, na tocki B kot 8 = 64°57" in na tocki C' kot v = 45°28', kot
to prikazuje slika 1-10. Ce so opazovanja enake natan¢nosti in medseboj nekorelirana, s splosnim
modelom izravnave po MNK izravnajte opazovanja, izracunajte koordinate tocke 7', natanc¢nosti oy,
in 0,, in korelacijo py,., ter parametre 95% absolutne elipse pogreskov na tocki 7.

T

T

Y
Slika 1-10: Opazovani koti za doloc¢itev polozaja nove tocke

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.
Da bi dolo¢ili koordinate tocke T' smo izmerili n = 3 opazovanj, kjer bi nujno potrebovali le
ng = 2 opazovanj, zato imamo r = 1 nadstevilnih opazovanj. Sestavimo vektor opazovanj 1 in
matriki Q ter P, pri tem, da so opazovanja enake natanc¢nosti in medseboj nekorelirana:

1=| 3 Q=P=1I (1-131)
gl

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank xg.
Za neznanki si izberemo koordinati tocke T', torej yr in z7 in na ta nacin definiramo vektor

neznank x in s tem u = 2:

x = l T 1 (1-132)

XT
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[zra¢unajmo priblizne vrednosti neznank. S slike 1-10 vidimo, da imamo naceloma tri moznosti
izracuna koordinat s postopkom zunanjega ureza. Za nas izracuna uporabimo tocki A in B ter
opazovanji « in 3, kot to prikazuje slika 1-11.

T

Slika 1-11: Dolocitev pribliznih koordinat nove tocke na osnovi zunanjega ureza

V prvem koraku izracunamo kot na tocki 7', ki je enak § — «, nato pa s sinusnim izrekom
izracunamo stranico a, pri tem, da izhajamo iz znane dolzine d 4. Dobimo:

sin(180° — )

= 79,009 1-133
sin(8 — «) et ( )

a:dAB

Za izracun pribliznih vrednosti neznank uporabimo koordinate tocke A, merjen kot o in dolzino
a iz enacbe (1-133):

= | Yro | _ ya + acos() _ 72,556 m (1-134)
0 Trp x4+ asin(a) 48,262 m

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 1 in v = 2, potem je stevilo enacb, ki jih moramo sestaviti, enako c =r +u =
14 2 = 3. Za sestavo enach izhajamo iz enach pravokotnega trikotnika, ki ga sestavlja tocka i
(1 ={A, B,C}) in tocka T'. Enacbe, ki jih dobimo so (izpeljite sami):

Fy = (yr —ya)tanéd —xp =0

Fy = (yr —yB) tan 3 — zp =0 (1-135)
Fy = (yo — yr) tan§ — o = 0

4. Lineariziramo sestavljene enacbe in jih zapisemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Enacbe (1-135) lineariziramo tako, da izracunamo obe matriki parcialnih odvodov, A in B,
in vektor odstopanj f. Matrika A predstavlja parcialne odvode vseh enacb iz (1-135) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj 1 iz enacbe (1-131).
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Dobimo:

[ OF OF1 0OF
Ja aB Oy
_ | o2 OFy OF

A= da B vy
OF3 0OF3 0OF3

L e 98 oy

w0 0
_ 0 yCTOS;yﬂB 0 (1-136)
0 0 yc;yT
L cos? ~y

(99,7898 0,0000  0,0000
= | 0,0000 125,8183 0,0000
| 0,0000  0,0000 96,4590

Matrika B predstavlja parcialne odvode vseh enacbh iz (1-135) po obeh neznankah, koordinatah

Yyr in xp:
OF, OF,

dyr Oz tana  —1 0,771  —1,000

B=| gk g0 — | tanp -1 |=| 2140 —1,000 (1-137)
OF3  9F3 —tany —1 —1,016 —1,000
dyr Oz

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enacaja v enacbah (1-135) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove priblizne vrednosti. Dobimo:

0,0000 m
f = | 0,0000m (1-138)
0,0386 m

. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela pomeni izra¢un vektorjev A, v in 1. Prikazimo tu le vektor A
in vektor konc¢nih koordinat tocke T"

—0,0138m

—0,0206 m (1-139)

.

] X:X0+A:[72’5423m]

48,2411 m

. Resimo stohasticni model izravnave, kjer izracunamo matrike Qana, Q. in Qj; ter referencno
varianco a-posteriori &3.

Prikazimo samo izra¢un referen¢ne variance a-posteriori 62, kjer bomo referen¢ni standardni
odklon & zapisali v lo¢nih sekundah, saj so opazovanja sami koti:

P
52 ==Y _ 16671 x 10~
T

60 = /63 = 26,6"

Resitev stohasti¢nega modela bomo prikazali v alijeni natanc¢nosti vseh izracunanih rezultatov.

(1-140)

. Izberemo si ustrezno referencno varianco in izracunamo iskane variancéno-kovariancne matrike
EAA, EUU n Eﬁ.

Pri izra¢unu kovarian¢nih matrik uporabimo referencno varianco a-posteriori 63, saj referen¢ne
variance a-priori o2 ne poznamo. Numeri¢ne vrednosti natancnosti pa podamo v naslednji
alineji.
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8. Iz vseh variancno-kovarian¢nih matrik stohasticnega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Da dobimo natancnosti o, in ., izracunanih koordinat tocke 7', korenimo diagonalna ele-
menta kovariancne matrike ¥aa, korelacijo py,., pa dobimo iz izvendiagonalnega elementa

matrike:
Oyp =6,30mm 0, =820mm  py., = 0,29 (1-141)

Izracunajmo Se parametre 95% absolutne elipse pogreskov na tocki T":

a=21,0dmm  b=1405mm 6 = 66,21° (1-142)

Prikazimo Se popravke opazovanj in izravnana opazovanja s pripadajo¢imi natanc¢nostmi v
pregledni obliki:

~

Opaz. ‘ v ‘ Oy ‘ [ o
Q —20,5" | 20,5” | 37°38'39,5" | 17,0"
3 14,77 [ 14,77 | 64°57'14,7" | 22,2"
vy 8,6” 8,6” | 45°28'8,6” | 25,2"
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1.14 Primer 9 — visina tocke — opazovani koti

V ravnini imamo tri tocke, ki lezijo na premici, in sicer A, B in C. Tocka B je od tocke A oddaljena
za b= 40,0m, tocka C' pa za ¢ = 110,0m. Dolociti zelimo visino tocke T' (oddaljenost od premice),
zato smo izmerili tri viSinske kote, na tocki A kot o = 37°39’, na tocki B kot 5 = 64°57' in na tocki
C kot v = 45°28', kot to prikazuje slika 1-12. Ce so opazovanja enake natancnosti in medseboj
nekorelirana, s splosnim modelom izravnave po MNK izravnajte opazovanja, izracunajte visino h
tocke T" in njeno natancnost oy.

Slika 1-12: Opazovani visinski koti za dolocitev visine nove tocke

Da resimo nalogo, si bomo pomagali z nalogo poglavja 1.13, saj imamo zelo podobno nalogo. Tam
smo iskali koordinati y in 7, tu pa iS¢emo samo visino h, ki pa je po geometriji identi¢na koordinati
XT.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-
vanj). Nastavimo n, ng in r.
Da bi dolo¢ili visino h smo izmerili n = 3 opazovanj, kjer bi nujno potrebovali le nyg = 2 opa-
zovanj, zato imamo r = 1 nadstevilnih opazovanj. Sestavimo vektor opazovanj 1 in matriki Q
ter P, pri tem, da so opazovanja enake natan¢nosti in medseboj nekorelirana:

«
1= | 3 Q=P=1 (1-143)
y

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank xj.
Izbrali si bomo eno samo neznanko in to naj bo iskana visina h. Na ta nacin je v = 1 in je
vektor x enak:

x=|h] (1-144)
Pri izra¢unu priblizne vrednosti neznanke si tudi tu pomagamo z zunanjim urezom, uporabili
pa bomo koli¢ine s slike 1-13.

V prvem koraku izracunamo kot na tocki 7', ki je enak § — «, nato pa s sinusnim izrekom
izracunamo stranico a, pri tem, da izhajamo iz znane dolzine d 4. Dobimo:

B bsin(180° —5)
7 sin(B—a)

39

= 79,009 m (1-145)
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Slika 1-13: Dolocitev priblizne visine na osnovi enacb zunanjega ureza

Za izrac¢un priblizne vrednosti neznank merjen kot « in dolzino a iz enacbe (1-145):

xo=| ho | = | asin(a) | = | 48,262m | (1-146)

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 1 in uw = 1, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
141 = 2. Tudi tu bomo izhajali iz pravokotnih trikotnikov, ki jih tvori tocka T' s tockami @
(1 = {A, B,C}), pri tem, da si bomo pomagali s stranico z, kot je prikazana na sliki 1-13. Iz
slike vidimo, da velja:

T
Ezcota — = hcot «
Tz —>b
; =cotf — x= hcotf+b (1-147)
c—x
. :(jot'y — xr = C—hCOt’Y

Ker imamo samo eno neznanko, to je visina h, moramo iz enacb (1-147) izlociti koli¢ino x.
To storimo tako, da desno stran prve enacbe vstavimo namesto z v drugi in tretji enachi. Ko
dobljeni dve enachi preuredimo, dobimo

Fy = h(cot & —cot B) —b =0

(1-148)
Fy = h(cot &+ coty) —c =0

Enacbi (1-148) sta dve, kot je tudi Stevilo enacb, ki jih moramo sestaviti. Po drugi strani, v
obeh enac¢bah nastopajo vsa tri opazovanja in neznanka. Enacbi sta torej pravilno sestavljeni
in jih lahko uporabimo pri splosnem modelu izravnave.

4. Lineariziramo sestavljene enacbe in jih zapisemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Enacbi (1-148) lineariziramo tako, da izracunamo obe matriki parcialnih odvodov, A in B, in
vektor odstopanj f. Matrika A predstavlja parcialne odvode vseh enacb iz (1-148) po vseh
opazovanjih, kjer je vrstni red odvodov podan z vektorjem opazovanj 1 iz enacbe (1-143).
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Dobimo:

[ __h h 0
. sin2a  sin? B (1*149)
| _ _h h

L sin? o sin2 v

—129,3460 0,0000 —94,9763

__—129,3460 58,8038  0,0000 ]

Matrika B predstavlja parcialne odvode vseh enacb iz (1-148) po visini h:

B = (1-150)

o cota+coty | | 2,280

% B [cota—cotﬁ] B [0,829]
oh

Vektor odstopanj f dobimo enako kot pri pogojni ali posredni izravnavi po MNK. Vse kar
se nahaja na levi strani enacaja v enacbah (1-148) prenesemo na desno stran. Pri tem se
spremeni predznak, namesto izravnanih opazovanj uporabimo merjene vrednosti in namesto
neznank uporabimo njihove priblizne vrednosti. Dobimo:

~ | —0,0380m (1-151)

¢ [ 0,0000 m 1

. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in L.
Resitev funkcionalnega modela pomeni izra¢un vektorjev A, v in 1. Prikazimo tu le vektor A
in izravnano visino h:

A =] —0,0206m X =x0+A=][482411m | (1-152)

. Resimo stohasticni model izravnave, kjer izracunamo matrike Qana, Q. in Qj; ter referencno
varianco a-posteriori 3.
Prikazimo samo izra¢un referenc¢ne variance a-posteriori 62, kjer bomo referen¢ni standardni
odklon & zapisali v lo¢nih sekundah, saj so opazovanja sami koti:

5 VIPv

= = 1,6668 x 107®
0Ty (1-153)

60 = /63 = 26,6"

Resitev stohasticnega modela bomo prikazali v alijeni natan¢nosti vseh izracunanih rezultatov.

. Izberemo si ustrezno referencno varianco in izracunamo iskane varianéno-kovariancne matrike
EAA; Ew in Eﬁ

Pri izraunu kovarian¢nih matrik uporabimo referencno varianco a-priori o3. Numericne vre-
dnosti natanc¢nosti pa podamo v naslednji alineji.

. Iz vseh varian¢no-kovariancénih matrik stohasticnega modela izracunamo natanc¢nosti neznank,

popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
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Splosni model izravnave

Opaz. ‘ v ‘ ot ‘ l o;
o —20,5" | 20,5" | 37°38'39,5" | 17,0”
3 146" | 14,6" | 64°57'14,6" | 22,2"
ol 8,6” 8,6" | 45°28'8,6" | 25,2"

parametre elips pogreskov.

Za izracun natancénosti oj, viSine h korenimo kovarianéno matriko 3 aa in dobimo:

op = 8,21 mm

(1-154)

Prikazimo Se popravke opazovanj in izravnana opazovanja s pripadajo¢imi natancénostmi v

pregledni obliki:

Primerjajmo rezultate te naloge z rezultati iz poglavja 1.13. Ugotovimo lahko, da dobimo povsem
enake rezultat, ¢e tu oznac¢imo visino h s koordinato yr. Vzrok je v tem, da imamo popolnoma enak
matemati¢ni model, le da smo tu namesto dveh neznank (h in z) v matemati¢ni model uvedli le eno

(h).
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1.15 Primer 10 — visina tocke — opazovane dolzine

V ravnini imamo tri tocke, ki lezijo na premici, in sicer A, B in C. Tocka B je od tocke A oddaljena
za d = 40,0m, tocka C pa za e = 110,0 m. Dolo¢iti Zelimo visino tocke T' (oddaljenost od premice),
zato smo izmerili tri dolzine, na tocki A dolzino a = 79,0 m, na tocki B dolzino b = 53,2 m in na tocki
C dolzino ¢ = 67,7m, kot to prikazuje slika 1-14. Ce so opazovanja enake natanénosti in medseboj
nekorelirana, s splosnim modelom izravnave po MNK izravnajte opazovanja, izracunajte visino h
tocke T' in njeno natancnost oy.

Slika 1-14: Opazovane dolzine za doloc¢itev visine nove tocke

Pri tej nalogi imamo enak problem kot pri nalogi iz poglavija 1.14, le da tu opazujemo dolzine. Ce
smo pri opazovanih kotih izhajali iz zunanjega ureza, bomo tu seveda izhajali iz lo¢nega preseka. Pri
nalogi bomo podali samo nastavitev in konc¢ne rezultate, vse vmesne rezultate si izracunajte sami.

Iz naloge je razvidno, da imamo n = 3 opazovanj, pri tem, da bi jih nujno potrebovali ng = 2.
Sestavimo vektor opazovanj 1 in matriki Q ter P, pri tem, da so opazovanja enake natanc¢nosti in
medseboj nekorelirana:

1= b Q=P=1 (1-155)
C

Tudi tu si izberemo eno neznanko, visino h, torej u = 1 in vektor x je enak:
x=|h] (1-156)

Kako izracunati priblizno vrednost hy? Uporabimo lo¢ni presek iz koli¢in s slike 1-15.

V trikotniku AABT, kjer imamo dve merjeni (@ in b) in eno dano (d) stranico, na osnovi kosinusnega
izreka izracunamo kot . Dobimo:

a2 + d2 _ b2
Q= arccos ( 50d ) ( )
Za izracun priblizne viSine hg uporabimo stranico a in kot « in dobimo:
X = { ho } = { asin(a) } (1-158)
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Slika 1-15: Doloc¢itev priblizne visine na osnovi enach lo¢nega preseka

Sestaviti moramo ¢ = r +u = 1+ 1 = 2 enacb, kjer si spet pomagamo s stranico x s slike 1-15. S
slike lahko vidimo, da velja:

a=r*+h — x= Va2-h?
b =(x —d)? + h? (1-159)
& =(e —x)* 4+ h?

Tudi tu moramo iz treh enacb v 1-159 eliminirati stranico x, saj ni neznanka v modelu. Desno stran
prve enacbe vstavimo v drugo in tretjo enacho. Ce ti dve enacbi preuredimo, dobimo:

Fl=a2+d®> =0 —2dVa2 —h2 =0
Fo=a2+e®2 - —2va2—h2=0

(1-160)

Enacbi 1-160 sta dve, kot je tudi stevilo enacb, ki jih moramo sestaviti. Po drugi strani, v obeh
enachah nastopajo vsa tri opazovanja in neznanka. Enacbi sta torej pravilno sestavljeni in jih lahko
uporabimo pri splosSnem modelu izravnave.

Izvedemo celoten izracun s splosnim modelom izravnave in dobimo:
h =482m op = 11,4mm (1-161)
Natanc¢nost oy, iz enacbe 1-161 je izracunana na osnovi referencne variance a-posteriori 63, ki je:

60=21x10"* &y =144mm (1-162)
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Popravki opazovanj, izravnana opazovanja in njihove natancnosti pa so prikazani spodaj.

Opaz. v ‘ O [ o;
a —94mm | 94mm | 79,0m | 10,9 mm
b 9.9mm | 99mm | 53,3m | 10,4 mm
c —4,6mm | 4,6mm | 67,7m | 13,4 mm
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1.16 Primer 11 — tocke na kroznici

V ravnini imamo Stiri tocke, za katere imamo opazovane tako koordinate x, kot tudi koordinate v,
vrednosti opazovanj pa so predstavljene v preglednici 1-2.

Preglednica 1-2: Opazovane vse koordinate stirih tock na kroznici

Tocka | z [m] | vy [m]
7. | 10,16| 2,50
T, | —023| 7.34
T; —5,567 | —9,57
T, 6,50 | —11,16

Tocke v ravnini prikazuje slika 1-16. Ce so opazovanja enake natanénosti in medseboj neodvisna, s
splosnim modelom izravnave po MNK izravnaj opazovanja in dolo¢i kroznico, ki se optimalno prilega
tockam. Izracunaj sredisce kroznice xg in yg, njen polmer R, natancnosti vseh neznank in parametre
absolutne standardne elipse pogreskov sredisca kroznice.

T, Y
o - T =
/” \\\
e S
£ \
/ s I
°\

/ \
! | | | LU
T T T T 1 ‘SC
I
1 * (:L‘SayS) l
‘/* l'
\

¢ R /

\ 4

\ 4 ,/
}\\ . //
T3 S -7
-~ —’
~t T4

Slika 1-16: Opazovane tocke na kroznici v ravnini

Pri izracunu obravnavane naloge bomo imeli dva poudarka, in sicer pri nastavitvi minimalnega stevila
opazovanj za resitev problema in pri izracunu pribliznih vrednosti neznank. Ker skusamo dolociti
kroznico, ki se optimalno prilega tockam, vidimo, da imamo enak problem kot pri primeru premice

(glej poglavje 1.8) in parabole (glej poglavje 1.10), tudi tu poskusamo na osnovi niza tock v ravnini
izracunati krivuljo, ki se optimalno prilega tockam.

1. Iz podatkov naloge sestavimo vektor opazovanj 1 in matriko utezi P (izra¢unamo utezi opazo-

vanj). Nastavimo n, ng in 7.

Iz podatkov je razvidno, da je imamo opazovane tako koordinate x kot tudi koordinate y Stirih
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tock, zato je Stevilo opazovanj enako n = 8 in vektor opazovanj nastavimo kot:

1 10,16

Y1 2,50
To —0,23

9 7,34

1= ig = 55 (1-163)
Y3 —9,57
x4 6,50
| Ys | | —11,16 |

Opazovanja so enake natanc¢nosti in medseboj nekorelirana, zato velja Q = P = I. Dolo¢imo
sedaj Se minimalno Stevilo opazovanj za resitev problema ng in Stevilo nadstevilnih opazovanj
r. Ker morajo tocke lezati na kroznici, potem mora za vse tocke veljati:

(€ — x5)* + (y: — ys)* = R (1-164)

Iz enacbe (1-164) vidimo, da potrebujemo tri parametre, s katerimi lahko enoli¢no dolo¢imo
kroznico, in sicer koordinate sredis¢a kroznice xg in yg in polmer R. To nam pove, da bomo
uvedli 3 neznanke. Nato bomo pa razmisljali enako kot pri premici ali paraboli. Ce Zelimo
pri posredni izravnavi uporabiti enacbo (1-164) za sestavo enacbe popravkov, moramo ali
opazovano koordinato y ali  nadomestiti z novo neznanko. Ker imamo 4 tocke, to pomeni
dodatne 4 neznanke (glej poglavji 1.8 in 1.10). Iz tega lahko sklepamo, da je ng =3+4 = 7 in
posledic¢no, stevilo nadstevilnih opazovanj je r = 1.

2. Izberemo si neznanke () in jih uvedemo v funkcionalni model, sestavimo vektor neznank x in
izracunamo priblizne vrednosti neznank x.
Kot smo zZe zapisali, si izberemo tri neznanke zg, ys in R. Vektor x je enak:

Ts

x=| ys (1-165)
R

Pojavi pa se vprasanje, kako izracunati priblizne vrednosti neznank. Seveda bomo izhajali iz
enacbe kroznice (1-164), uporabili pa bomo prve tri merjene tocke. Zapisali bomo:

(!E1 - !ES)2 + (y1 - ?/S)2 =R?
(29 — x5)° + (Y2 — ys)* =R? (1-166)
(z3 —25)* + (y3 — ys)* =R®

Odstranimo polmer R iz enacb (1-166), tako da naredimo razliki: 2. - 1. enacba in 3. - 1.
enacba. Dobimo:

(w2 — 25)? — (21 — 25)> + (Y2 — ys)* — (11 — ys)* =0

2 2 ) 9 (1*167)
(x5 —xg)” — (21 —25)" + (y3 — ys)” — (y1 — ys)* =0

Kvadrirajmo vse elemente v enacbah (1-167) in Ce ustrezno preuredimo enacbi, bomo dobili:
2us(w2 — 1) + 2ys(y2 — y1) =23 — 2% + 45 — y;

2

TR (1-168)
205(x3 — 1) + 2ys(ys — 1) =25 — 27 + Y3 — ¥5
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Vidimo, da v enac¢bah (1-168) ne nastopata kvadrata koordinat sredis¢a (2% in y%) in da dobimo
dve linearni enacbi z dvema neznakama. ResSitev enostavno dobimo tako, da enachi zapisemo
v matri¢ni obliki in reSimo kvadratni sistem. Priblizni vrednosti koordinat srediSc¢a kroznice
sta:

zso = 1,506 m Yso = —2,506 m (1-169)

Polmer R izra¢unamo tako, da uporabimo koordinate tocke 77 in koordinate sredisc¢a kroznice
iz enacbe (1-169). Dobimo:

Ry = /(21 — 250)2 + (11 — ys0)? = 9,998 m (1-170)

3. Sestavimo ¢ = r + u enacb splosnega modela izravnave, v katerih povezemo opazovanja z
neznankami.
Ker imamo r = 1 in v = 3, potem je stevilo enacb, ki jih moramo sestaviti, enako ¢ =r +u =
1+ 3 = 4. Tudi tu za vsako tocko sestavimo eno enacbo, uporabimo pa enacbo kroznice iz
enacbe (1-164). Dobimo:

Py = (21— xs)* + (h — ys)* — R?
Fy = (&5 — x5)* + (§2 — ys)? — R? (1-171)
Py = (23 —25)* + (93 — ys)* — R?
Fy = (34— 25)? + (§a — ys)? — R?

4. Lineariziramo sestavljene enacbe in jih zapisemo v osnovni matri¢ni obliki splosnega modela
izravnave Av + BA = f.
Matrika A je velikosti cxn = 4x8 in predstavlja parcialne odvode enacb (1-171) po opazovanjih
(iz enacbe (1-163)). Matrika B je velikosti ¢ x u = 4 x 3 in predstavlja parcialne odvode enach
(1-171) po neznankah (iz enacbe (1-165)). Vektor f je velikosti ¢ x 1 =4 x 1.

5. Resimo funkcionalni model izravnave, kjer izracunamo vektorje A, v in 1.
Prikazimo v tem delu le vektor A, popravke opazovanj in izravnana opazovanja pa na koncu,
skupaj z natanc¢nostmi. Za resitev neznank dobimo:

—0,0023 m 1,5034 m
A= 00025m X=xXo+A=]| —25037m (1-172)
—0,0013m 9,9968 m

6. Resimo stohasticni model izravnave, kjer izracunamo matrike Qaa, Quv in Qj; ter referencno
varianco a-posteriori 3.
PrikaZimo samo izra¢un referencne variance a-posteriori 63 in referen¢nega standardnega od-

klona &y:

T
P
52 =YY _ 12147 x 107 (1-173)
! _

60 = /6% = 3,49 mm

7. Izberemo si ustrezno referenc¢no varianco in izrac¢unamo iskane variancno-kovarianéne matrike
EAA, ZUU n Eﬁ.
Pri izracunu kovarian¢nih matrik uporabimo referenc¢no varianco a-posteriori 63, saj nimamo

podanih natanc¢nosti opazovanj. Numeri¢ne vrednosti natanc¢nosti pa podamo v naslednji ali-
neji.

48



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Splosni model izravnave

8. Iz vseh variancno-kovarian¢nih matrik stohasticnega modela izracunamo natancnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije. Po potrebi racunamo tudi
parametre elips pogreskov.

Da dobimo natancnosti koordinat sredisca kroznice o,4 in 0,4 in polmera op, korenimo di-
agonalna elementa kovariancne matrike 3Xaa, korelacijo p,gy, pa dobimo iz prvega izven-
diagonalnega elementa matrike:

O =2,92mm o0, =220mm  py., = —0,18 or = 1,78 mm (1-174)

[zracunajmo Se parametre standardne absolutne elipse pogreskov na sredisc¢a kroznice:

a = 2,98 mm b=2,17mm 0 = —17,16 degree (1-175)

Popravki opazovanj, izravnana opazovanja in njihove natancnosti pa so prikazani spodaj.

Opaz. v Oy ! o;
1 —1,71mm | 1,71 mm 10,1583 m | 3,04 mm
Y1 —0,99mm | 0,99 mm 2,4990m | 3,34 mm
T —0,28mm | 0,28mm | —0,2303m | 3,47 mm
Yo 1,56 mm | 1,56 mm 7,3416m | 3,11 mm
x3 1,00mm | 1,05mm | —5,5689 m | 3,32 mm
Y3 1,0bmm | 1,0bmm | —9,5690m | 3,32 mm
Ty 0,94mm | 0,94 mm 6,5009m | 3,36 mm
Ya —1,62mm | 1,62mm | —11,1616 m | 3,08 mm
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1.17 Ravninska podobnostna transformacija

V ravnini imamo k tock, ki imajo opazovane koordinate v dveh koordinatnih sistemih. Prvi koordi-
natni sistem ima oznaki u in v, drugi pa x in y. Opazovanja so koordinate vseh tock v obeh sistemih,
torej koordinate u, v, x in y. Geometrijo problema prikazuje slika 1-17. S splosnim modelom iz-
ravnave izravnajte po MNK izravnajte opazovanja (koordinate tock v obeh sistemih) in izracunajte
transformacijske parametre iz sistema uv v sistem xy. Izracunajte tudi natancnosti transformacijskih
parametrov.

x
Slika 1-17: Prikaz opazovanih koordinat tock v obeh koordinatnih sistemih

Pri obravnavi podobnostne transformacije obravnavamo problem, ko imamo podane koordinate (fi-
zi¢no) istih tock v dveh koordinatnih sistemih, a same povezave med dvema koordinatnima sistemoma
ne poznamo. To pomeni da, ¢e imamo podane koordinate ene tocke samo v npr. sistemu uwv, ne vemo
ni¢, kaksne so koordinate te tocke v sistemu xy. Cilj je, da na osnovi koordinat tock v obeh sistemih
dolo¢imo povezavo med obema sistemoma. Kot prvo moramo ugotoviti, kateri in kaksni so para-
metri, ki povezujejo dva koordinatna sistema. Sliko geometrije povezave med dvema koordinatnima
sistemoma v ravnini prikazuje slika 1-18.

VT

-4 N a
&tmnt‘-h

x
Slika 1-18: Prikaz transformacijskih parametrov med dvema koordinatnima sistemoma
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Slika 1-18 prikazuje niz geodetskih tock, ki jim polozaje lahko opisemo tako v koordinatnem sistemu
uv kot tudi v sistemu xy. Koordinati ur in vy tocke T prikazujeta polozaja tocke T' v sistemu uv
(modra barva), medtem ko koordinati zr in yr pa opisujeta polozaj tocke T' v sistemu zy (¢rna
barva). Enako seveda velja za vse ostale tocke (1}, T}, T in 1;), ki so podane v obeh sistemih.
Postavi pa se vprasanje, kako lahko opiSemo relacijo koordinatnega sistema uv glede na sistem xy.
Te parametre, recemo jim transformacijski parametri, predstavlja slika 1-18 v rdec¢i barvi. Ugotovimo
lahko, da koordinatni sistem wwv lahko glede na koordinatni sistem xy:

« premaknemo, kar opisemo z dvema parametroma premika ¢, in ¢, in predstavljata vektor
premika izhodisc¢a obeh sistemov,

« zasukamo, kar opisemo z enim parametrom zasuka «, ki predstavlja kot zasuka okoli osi z
(ali w) in

o spremenimo velikost, kar opiSemo z enim parametrom merila m, ki predstavlja razmerje
med enotama v obeh sistemih.

Vidimo, da transformacijo med dvema koordinatnima sistemoma v ravnini lahko opisemo s stirimi
parametri. Ob tem predpostavimo, da sta geometriji geodetske mreZe v obeh sistemih podobne!,
zato tako transformacijo imenujemo podobnostna transformacija.

1.17.1 Enacba podobnostne transformacije v ravnini

Transformacijo iz sistema uv v sistem xy izvedemo s tremi koraki:

1. Izvedemo zasuk sistema za kot «. S tem naredimo, da so koordinatne osi obeh sistemov
vzporedne.

2. Spremenimo merilo s parametrom merila m. S tem naredimo, da imamo enako enoto merila v
obeh sistemih.

3. Premaknemo izhodisc¢e koordinatnega sistema uwv v sredis¢e koordinatnega sistema zy s para-
metroma premika ¢, in t,.

Vse tri korake zapisemo v enacbi:
| |t m C?S(a) sin(«) u (1-176)
Y ty —sin(a) cos(a) v

Enacba (1-176) je podana v vektorski obliki, a dejansko predstavlja dve enacbi, za vsako koordinatno
komponento x in y po eno enacbo, ki ju lahko zapisemo kot:

x =t + mcos(a)u + msin(a)v

1-177
y =t, —msin(a)u + mcos(a)v ( )

Vidimo, da lahko enacbo 4-parametri¢ne transformacije iz enacbe (1-176) ali iz enacb (1-177) zapi-
Semo za vsako tocko posebej. V enacbah tako nastopajo vsi Stirje transformacijski parametri (¢, t,,
a in m), koordinati u in v (1. sistem) ter koordinati x in y (2. sistem).

mreZo lahko premaknemo, zasukamo in poveéamo/zmanjSamo, a oblika mora ostati enaka
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1.17.2 Dolocitev osnovnih parametrov izravnave

Ker imamo podanih k£ tock v ravnini, pomeni, da imamo n = k - 2 - 2 opazovanj. Vsaka tocka ima
dve koordinati, koordinate pa imamo podane v dveh koordinatnih sistemih. Vektor opazovanj 1
zato zapisemo kot

T
l=|w v, T1 y1 Uy Vo Ty Yo -+ Up Vi Tp yk} (1-178)

Vektorju opazovanj 1 pripada Se kovarian¢na matrika opazovanj 32, matrika kofaktorjev Q in matrika
utezi P, vse velikosti n x n.

Kako pa spet dolociti minimalno stevilo opazovanj za reSitev problema ng? Tu bomo razmisljali
enako kot pri premici (poglavje 1.8), paraboli (poglavje 1.10) in kroZnici (poglavje 1.16). Ce bi
enacbi (1-177) uporabili za sestavo enacb popravkov posredne izravnave, bi ugotovili, da:

e bomo uvedli 4 neznanke, to so transformacijski parametri, in da

 opazovani koordinati x in y lahko uporabimo, medtem ko opazovanih koordinat u in v ne (vsaka
enacba popravkov ima lahko ne eno opazovanje).

Zato moramo za vsako tocko uvesti nov par neznank, in sicer p, ki se navezuje na koordinato u, in
q, ki pa se navezuje na koordinato v. Pri k-tih tockah to pomeni:
ngo=u= _4 + \2&/ =442k (1-179)

~—
te,ty,a,m P1,41;---Pk>9k

Iz enacbe (1-179) vidimo, da je minimalno stevilo opazovanj ny odvisno od stevila tock, ki so podane
v obeh sistemih. Za razlicno stevilo podanih tock so vsa tri Stevila n, ng in r podana v preglednici 1-3.
V preglednici nastopajo tri situacije, kjer je prva predstavljena v rde¢i barvi v prvi vrstici. Ce imamo
eno samo tocko podano v dveh sistemih, nimamo dovolj informacij za izracun transformacijskih
parametrov (n < ng, r < 0). V drugem primeru, ko imamo podani dve tocki (modra barva), imamo
dolo¢en problem, kar pomeni, da lahko transformacijske parametre izra¢unamo enoli¢no (n = ny,
r = 0). Sele, ko imamo tri tocke ali ve¢, imamo predolocen sistem (n > ng, r > 0), kar pomeni, da
je optimalna resitev dana preko metode najmanjsih kvadratov.
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k ‘ n ‘ ng ‘ r
1| 4 | 44+2=6 -2
2] 8 | 4+4=38 0
3|12 | 446=10 2
4116 | 4+8=12 4

k |4k | 4+2k | 2k—4

Preglednica 1-3: Dolocitev osnovnih parametrov izravnave v odvisnosti od Stevila podanih tock v
obeh sistemih

1.17.3 Uvedba neznank pri sploSnem modelu izravnave

V prejsnjem poglavju smo videli, da bi morali pri posredni izravnavi uvesti kar u = ng neznank, kar
prikazuje enacba (1-179). Ker pa bomo uporabili splosni model izravnave, lahko Stevilo neznank
uvedemo drugace. Tu bomo izbrali le u = 4, za neznanke bomo dolocili le parametre transformacije.
Vektor neznank x je zato enak:
2%
x= |l (1-180)
Q@
m

1.17.4 Sestava enacb splosnega modela izravnave

Ker imamo stevilo neznank enako u = 4 in Stevilo nadstevilnih opazovanj enako r = 2k — 4, moramo
sestaviti ¢ = r 4+ u = 4 + 2k — 4 = 2k enach. Sestaviti moramo dvakrat toliko enacb, kot imamo
tock, ali povedano drugace, za vsako tocko moramo sestaviti dve enachi. Uporabimo seveda enacbi
(1-177), ki ju za i-to tocko preoblikujemo v:

Z; — t, — mcos(a)t; — msin(a)v;

Fix
(1-181)
,

F

Ui — ty, + msin(a); — mcos(a)v;

Na osnovi sestavljenih ¢ = 2k enacb v obliki, kot je prikazana v enacbi (1-181), sestavimo osnovni
matri¢ni model splosnega modela izravnave Av + BA = f. Velikosti matrik A in B ter vektorja f
so sledece:

1. matrika A je velikosti ¢ X n = 2k x 4k,
2. matrika B je velikosti ¢ x 4 = 2k x 4 in

3. vektor f je velikosti ¢ x 1 =2k x 1

Pri sestavi matrike A odvajamo vse enacbe po vseh opazovanjih. Iz oblike sestavljenih enacb iz
enacbe (1-181) pa vidimo, da enacbi za i-to tocko vsebujeta le opazovanja i-te tocke, torej u;, v;, x;
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in y;. Parcialni odvodi enacb (1-181) po vseh stirih koordinatah so sledeci:

OF, OF, OF . OF s

o —m cos() 3o, —msin(a) o 1 o =0 s
Py msine) s (@ w_g
— = msin(« —2 = —mecos(a = il
Ou; v, Ox; Oy
Matrika A je velika matrika, ki pa ima veliko praznih elementov in bo na koncu enaka:
(A, 0 0 0 ]
0 Ay, 0 0 . 1
A—| 0 0 Ay --- 0 A= -m C(?s(a) —msin(a) (1-183)
L . msin(a) —mcos(a) 0
(0 0 0 - A

Matrike Ay do Ay so vse velikosti 2 x 4 in vsebujejo parcialne odvode iz enacbe (1-182).

Ko sestavljamo matriko B, pa moramo za vsako tocko odvajati enacbi (1-181) po vseh stirih neznan-
kah iz enacbe (1-180), kjer dobimo:

OF; OF.
nT -1 vy 0
Ot Ot,
OF; OF;
) — 0 Y — _1
ot, ot (1-184)
2L~ msin(a) @u S = mcos(a)u + msina)
= msin(a)u; — mcos(a)v; —= = mecos(a)u; + msin(a)y;
Oa Oa
OF; : OF; .
877; = — cos(a)u; — sin(a)y; am’y = sin(a)u; — cos(a)v;
Matrika B ima na koncu obliko:
B, ]
B, L0 msi :
B_ | Bs L oB—| msin(a)u; — mC(?s(a)vi — Cés(a)ui — sin(a)v; (1-185)
_ 0 —1 mecos(a)u; +msin(a)v;  sin(a)u; — cos(a)v;
L Bk -
Na koncu sestavimo Se vektor odstopanj f, ki ima na koncu obliko:
R
f,
|t Lo | + mcos(a)u; + msin(a)v; — x; (1-186)

t, — msin(a)u; + mcos(a)v; — y;

L fk -

1.17.5 Resitev splosnega modela izravnave pri ravninski podobnostni transformaciji

Elemente matrik A in B ter vektorja f izracunamo na osnovi pribliznih vrednosti neznank in merjenih
vrednosti opazovanj. Ce ne pricakujemo velike vrednosti zasuka (ve¢ kot 90°), potem lahko za
priblizne vrednosti neznank nastavimo kar ¢, = t,0 = a9 = 0 in my = 1 (pazi: priblizna vrednost
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merila ni enaka 0). V nasprotnem primeru je potrebno iz merjenih koordinat izracunati priblizne
vrednosti vseh stirih transformacijskih parametrov.

Ker imamo v splosnem slabe priblizne vrednosti transformacijskih parametrov, moramo resitev splo-
snega modela izvesti v vec iteracijah.
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