
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo

Študijski program 1. stopnje

Geodetsko inženirstvo in upravljanje nepremičnin, 2. letnik

ANALIZA OPAZOVANJ V GEODEZIJI 2 - VAJE
Zakon o prenosu varianc in kovarianc pri metodi najmanjših

kvadratov

Primeri računskih nalog z rešitvami

Oskar Sterle, 2025

Različica: 2. december 2025



Kazalo vsebine

Kazalo vsebine i

Kazalo slik ii

Kazalo preglednic iii

1 ZAKON O PRENOSU VARIANC IN KOVARIANC PRI METODI NAJMANJ-
ŠIH KVADRATOV 1
1.1 Postopek izvedbe zakona o prenosu varianc in kovarianc pri MNK . . . . . . . . . . . 1
1.2 Prenos varianc in kovarianc pri posredni izravnavi . . . . . . . . . . . . . . . . . . . . 2
1.3 Prenos varianc in kovarianc pri pogojni izravnavi . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Izračun neznank in natančnosti neznank pri pogojni izravnavi . . . . . . . . . 3
1.4 Lastnost zakona o prenosu varianc in kovarianc pri MNK . . . . . . . . . . . . . . . . 4
1.5 Primer 1 – dolžina merjena štirikrat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Rešitev s pogojno izravnavo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Rešitev s posredno izravnavo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Primer 2 – premica v ravnini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.1 Rešitev s posredno izravnavo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.2 Rešitev s pogojno izravnavo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Primer 3 – parcela oblike paralelograma . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7.1 Rešitev s pogojno izravnavo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7.2 Rešitev s posredno izravnavo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8 Primer 4 – višinska geodetska mreža . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.9 Primer 5 – ravninska geodetska mreža (1) . . . . . . . . . . . . . . . . . . . . . . . . 25
1.10 Primer 6 – ravninska geodetska mreža (2) . . . . . . . . . . . . . . . . . . . . . . . . 28
1.11 Primer 7 – premica v ravnini (opazovane vse koordinate točk) . . . . . . . . . . . . . 31
1.12 Primeri – dodatno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



Kazalo slik

1–1 Prikaz izmerjenih dolžin med dvema točkama . . . . . . . . . . . . . . . . . . . . . . 5
1–2 Točke v ravnini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1–3 Prikaz interpolacijske premice in natančnosti interpoliranih točk na premici . . . . . . 13
1–4 Skica parcele in izmerjenih opazovanj . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1–5 Opazovane višinske razlike v višinski geodetski mreži . . . . . . . . . . . . . . . . . . 21
1–6 Izmerjen bazni vektor, dolžina in smerni kot za določitev koordinat nove točke . . . . 25
1–7 Opazovanja v ravninski mreži za določitev položaja nove točke . . . . . . . . . . . . . 28
1–8 Točke na premici v ravnini, kjer so opazovane vse koordinate . . . . . . . . . . . . . . 31
1–9 Naloga 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1–10 Naloga 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1–11 Naloga 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1–12 Naloga 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1–13 Naloga 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1–14 Naloga 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1–15 Naloga 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1–16 Naloga 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1–17 Naloga 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1–18 Naloga 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



Kazalo preglednic

1–1 Izmerjene vrednosti višinskih razlik med reperji . . . . . . . . . . . . . . . . . . . . . 21
1–2 Opazovane koordinate (abscise in ordinate) štirih točk . . . . . . . . . . . . . . . . . . 31

iii



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Zakon o prenosu varianc in kovarianc pri MNK

1 ZAKON O PRENOSU VARIANC IN KOVARIANC PRI
METODI NAJMANJŠIH KVADRATOV

Zakon o prenosu varianc in kovarianc iz prejšnjega poglavja (glej prejšnje poglavje Zakon o prenosu

varianc in kovarianc) smo uporabili za primere, ko je veljalo n = n0 ali r = n − n0 = 0, torej, ko
nismo imeli nadštevilnih opazovanj. Kaj narediti v primeru ko to ne velja?

Postopek, ki nam je pri nadštevilnih opazovanjih dal optimalno izračunane neznanke je bila izravnava
po MNK (pogojna ali posredna izravnava). Pri iskanju natančnosti vseh izračunanih elementov
izravnave bomo tako uporabili postopka posredne ali pogojne izravnave.

Pri posredni, kot tudi pri pogojni izravnavi po MNK, smo do sedaj spoznali, kako se reši funkcionalni
model. Da pridemo do rešitve funkcionalnega modela, ga moramo prvo nastaviti. V primeru
posredne izravnave to pomeni nastavitev vseh enačb opazovanj, nato njihova linearizacija in sestava
enačb popravkov ter zapis v matrični obliki (v+B∆ = f). V primeru pogojne izravnave pa nastavitev
vseh pogojnih enačb, njihova linearizacija in zapis v matrični obliki (Av = f). Rešitev funkcionalnega
modela pomeni izračun treh vektorjev, in sicer:

• ∆ - vektor popravkov približnih vrednosti neznank (samo posredna izravnava po MNK)

• v - vektor popravkov opazovanj in

• l̂ - vektor izravnanih opazovanj.

Pri prenosu varianc in kovarianc v primeru izravnave po MNK bomo poiskali rešitev stohastičnega
modela. Stohastični model nastavimo z matriko uteži P (ali z matriko kofaktorjev Q), ki jo seveda
dobimo iz variančno-kovariančne matrike opazovanj Σ in izbrane referenčne variance a-priori σ2

0
(glej

poglavje prejšnjega leta Pojem uteži). Rešitev stohastičnega modela pomeni izračun treh variančno-
kovariančnih matrik, in sicer:

• Σ∆∆ - variančno-kovariančna matrika (popravkov približnih vrednosti) neznank (samo posre-
dna izravnava po MNK)

• Σvv - variančno-kovariančna matrika popravkov opazovanj in

• Σl̂l̂ - variančno-kovariančna matrika izravnanih opazovanj.

Eden izmed pomembnejših rezultatov stohastičnega modela izravnave pa je tudi izračun referenčne
variance a-posteriori σ̂2

0
, ki jo izračunamo iz popravkov opazovanj.

1.1 Postopek izvedbe zakona o prenosu varianc in kovarianc pri MNK

Pri prenosu varianc in kovarianc pri MNK (posredna ali pogojna izravnava) tako postopamo v na-
slednjem vrstnem redu:

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave. Pri
posredni izravnavi sestavimo enačbe popravkov, jih lineariziramo in zapišemo v matrični obliki
v + B∆ = f . Pri pogojni izravnavi sestavimo pogojne enačbe, jih lineariziramo in zapišemo v
matrični obliki Av = f .

1
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2. Nastavimo stohastični model izravnave – sestavimo matriko Σ, izberemo si σ2
0

in izračunamo
matriki Q in P.

3. Rešimo funkcionalni model izravnave. Izračunamo vektorje ∆, v in l̂.

4. Rešimo tudi stohastični model izravnave. Izračunamo matrike Q∆∆, Qvv in Ql̂l̂. Izračunamo
tudi referenčno varianco a-posteriori σ̂2

0.

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Uporabimo bodisi σ2

0 bodisi σ̂2
0 in izračunamo matrike Σ∆∆, Σvv in Σl̂l̂.

6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.

Pri zgornjih korakih, za prve tri alineje glejte poglavji prejšnjega leta Posredna izravnava po MNK

in Pogojna izravnava po MNK. Kako izbrati ustrezno varianco (alineja 5), bomo pa določiti točno
v enem izmed sledečih poglavij, ki se bo nanašal na globalni test in analizo referenčne variance
a-posteriori σ̂2

0 . Tu se bomo zato pri vsaki nalogi sproti odločili, katero izmed obeh bomo izbrali.

1.2 Prenos varianc in kovarianc pri posredni izravnavi

Podroben opis, kako rešimo funkcionalni model posredne izravnave, smo spoznali prejšnje leto v
sklopu poglavja Posredna izravnava po MNK, zato bomo tu izračun vektorjev ∆, v in l̂ opisali
na kratko. V funkcionalni model uvedemo u neznank, ki jih z n opazovanji povežemo v enačbah
opazovanj. Enačbe opazovanj lineariziramo (dobimo enačbe popravkov) in jih zapišemo v matrično
obliko:

v + B∆ = f = d − l (1–1)

Rešitev funkcionalnega modela posredne izravnave je dan z izračunom vektorjev:

∆ = N−1t =
(

BTPB
)−1

BTPf

v = f − B∆

l̂ = l + v

(1–2)

Stohastični model rešimo tako, da za vse tri vektorje iz enačbe (1–2) izračunamo pripadajoče matrike
kofaktorjev, in sicer:

Q∆∆ = N−1

Qvv = Q − BQ∆∆BT

Ql̂l̂ = Q − Qvv = BQ∆∆BT

(1–3)

Izračunamo tudi referenčno varianco a-posteriori σ̂2
0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
(1–4)

Variančno-kovariančne matrike (Σ∆∆, Σvv in Σl̂l̂) za vse tri izračunane vektorje, ki predstavljajo
rešitev funkcionalnega modela (∆, v in l̂), izračunamo tako, da matrike kofaktorjev iz enačbe (1–3)
pomnožimo z ustrezno referenčno varianco σ2, torej:

Σii = σ2Qii i = {∆, v, l̂} (1–5)

2
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Katero izmed referenčnih varianc, σ̂2
0

ali σ2
0
, bomo uporabili v enačbi (1–5) bomo detajlneje obrazložili

v poglavju o globalnem testu.

1.3 Prenos varianc in kovarianc pri pogojni izravnavi

Kako rešimo funkcionalni model pogojne izravnave smo tudi spoznali prejšnje leto, v sklopu poglavja
Pogojna izravnava po MNK. Sestavimo r pogojnih enačb, ki jih lineariziramo in zapišemo v matrični
obliki:

Av = f = d − l (1–6)

Pri pogojni izravnavi nimamo neznank, zato bo rešitev funkcionalnega modela podana z rešitvijo
dveh vektorjev, in sicer:

v = QAT
(

AQAT
)−1

f

l̂ = l + v
(1–7)

Stohastični model rešimo tako, da za oba vektorja iz enačbe (1–7) izračunamo pripadajoči matriki
kofaktorjev, in sicer:

Qvv = QATPeAQ

Ql̂l̂ = Q − Qvv

(1–8)

Izračunamo tudi referenčno varianco a-posteriori σ̂2
0
, in sicer na povsem isti način kot v primeru

posredne izravnave iz enačbe (1–4):

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
(1–9)

Variančno-kovariančni matriki Σvv in Σl̂l̂ spet dobimo z množenjem matrik kofaktorjev iz enačbe
(1–8) z ustrezno referenčno varianco.

1.3.1 Izračun neznank in natančnosti neznank pri pogojni izravnavi

Iz pogojne izravnave sledi, da so rezultat le popravki opazovanj, izravnana opazovanja in natančnosti
obeh količin. Torej, tu neznank ni, zato jih je potrebno izračunati po izravnavi (npr. koordinate točk,
višine točk, površine itd.). Za izračun iskanih količin seveda uporabimo izravnana opazovanja l̂, za
katera pa imamo izračunano kovariančno matriko Σl̂l̂. Iskane količine bomo predstavili z vektorjem
y, ki se ga izračuna kot:

y = F(̂l) (1–10)

Kako izračunamo natančnosti neznank oziroma variančno-kovariančno matriko Σyy? Uporabimo
zakon o prenosu varianc in kovarianc, ko nimamo nadštevilnih opazovanj (glej prejšnje poglavje
Zakon o prenosu varianc in kovarianc). Izračunali bomo Jakobijevo matriko J kot:

J =
∂F(̂l)

∂l̂
(1–11)

Na osnovi Jakobijeve matrike J iz enačbe (1–11), matrike kofaktorjev iz enačbe (1–8) in ustrezne
referenčne variance, bomo izračunali variančno-kovariančno matriko Σyy neznank kot:

Σyy = JΣl̂l̂J
T (1–12)

3
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1.4 Lastnost zakona o prenosu varianc in kovarianc pri MNK

Iz vsebine poglavij 1.2 in 1.3 lahko potegnemo par zaključkov, ki opisujejo lastnosti izračunanih
rezultatov stohastičnega modela izravnave, in sicer:

• Na rezultate ne vpliva vrsta izravnave. Tako s posredno kot tudi s pogojno izravnavo moramo
dobiti enake rezultate. To velja tako za rezultate funkcionalnega kot tudi stohastičnega mo-
dela. Pri pogojni izravnavi za izračun postopamo v dveh korakih, prvo izračunamo izravnana
opazovanja, iz njih pa neznanke (glej poglavje 1.3.1).

• Natančnost popravkov opazovanj (iz Σvv) in tudi izravnanih opazovanj (iz Σl̂l̂) je vedno večja
kot natančnost merjenih opazovanj (iz Σ). Kako to lahko vidimo? Če preuredimo tretjo enačbo
(1–3) (ali drugo enačbo (1–8)), bomo dobili

Q = Ql̂l̂ + Qvv (1–13)

Kofaktorji so vedno pozitivne količine (qii > 0), zato bo za vsako merjeno vrednost opazovanja
li, njegov popravek vi in izravnano vrednost l̂i veljalo:

σ2

li
= σ2

vi
+ σ2

l̂i
↔ σli > σvi

∧ σli > σl̂i
(1–14)

Posledica je ta, da so v primeru metode najmanjših kvadratov rezultati izravnave VEDNO
višje natančnosti kot sama opazovanja. To je eden izmed zelo pomembnih zaključkov in moti-
vov, zakaj v geodeziji poskušamo vedno pridobiti več opazovanj kot jih nujno potrebujemo.

• Z naraščanjem števila opazovanj in z naraščanjem nadštevilnih opazovanj, bomo ugotovili, da
velja:

Σ∆∆ → 0 Σl̂l̂ → 0 Σvv → Σ (1–15)

Torej, natančnosti neznank so vedno večje, standardni odkloni bodo konvergirali proti ničli.
Enako velja za standardne odklone izravnanih opazovanj. Po drugi strani, pa bodo standar-
dni odkloni popravkov opazovanj postajali vedno bolj enaki standardnim odklonom merjenih
opazovanj.

• Referenčna varianca a-posteriori σ̂2
0 opisuje varianco opazovanj, izračunano na osnovi vzorca

n-tih opazovanj in referenčni standardni odklon a-posteriori σ̂0 tako predstavlja natančnost
izvedenih opazovanj. Referenčno varianco σ̂2

0 (enačbi (1–4) in (1–9)) izračunamo iz popravkov
opazovanj, ki predstavljajo razliko med merjeno in srednjo vrednostjo, kar je povsem enako kot
izračun variance vzorca pri statistiki.

4
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1.5 Primer 1 – dolžina merjena štirikrat

Določiti želimo razdaljo D med točkama A in B, zato smo z merskim trakom dolžino izmerili štirikrat,
kot prikazuje slika 1–1. Opazovanja, ki smo jih dobili so: d1 = 32,51 m, d2 = 32,48 m, d3 = 32,52 m
in d4 = 32,53 m.

d1, d2, d3, d4

D=?
b

A
b

B

Slika 1–1: Prikaz izmerjenih dolžin med dvema točkama

Če so opazovanja enake natančnosti in medseboj nekorelirana, s pogojno in posredno izravnavo po
MNK izravnaj opazovanja. Določi vrednost neznane dolžine D in njeno natančnost. Izračunaj tudi
popravke opazovanj, izravnana opazovanja in njihove natančnosti.

1.5.1 Rešitev s pogojno izravnavo

Rešitev dobimo po korakih iz poglavja 1.1. Za samo pogojno izravnavo glejte poglavje Pogojna

izravnava po MNK in vse primere tega poglavja prejšnjega leta.

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Vidimo, da imamo n = 4 opazovanih dolžin (l =

[

d1 d2 d3 d4

]T

), kjer bi za enolično
določitev dolžine D potrebovali le n0 = 1 opazovanje. Glede na geometrijo sestavimo torej
r = 3 pogojne enačbe oblike:

F1 ≡ d̂2 − d̂1 = 0

F2 ≡ d̂3 − d̂1 = 0

F3 ≡ d̂4 − d̂1 = 0

(1–16)

Enačbe (1–16) zapišemo v matrični obliki:

Av = f →







−1 1 0 0
−1 0 1 0
−1 0 0 1















v1

v2

v3

v4









=







0,03 m
−0,01 m
−0,02 m







(1–17)

2. Nastavimo stohastični model izravnave
Ker so opazovanja enake natančnosti in medseboj nekorelirana, sta matrika kofaktorjev opazo-
vanj Q in matrika uteži P enotski matriki, velikosti 4 × 4.

3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela izravnave predstavljata vektorja:

v =









0,00 m
0,03 m

−0,01 m
−0,02 m









l̂ = l + v =









32,51 m
32,51 m
32,51 m
32,51 m









(1–18)

Ker nas zanima dolžina D, jo določimo iz izravnanih opazovanj. Izberemo npr.:

D = d̂1 = 32,51 m (1–19)

5
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4. Rešimo tudi stohastični model izravnave.
Za rešitev stohastičnega modela izravnave izračunamo matriki kofaktorjev Qvv in Ql̂l̂, in sicer:

Qvv = QATPeAQ =









0,75 −0,25 −0,25 −0,25
−0,25 0,75 −0,25 −0,25
−0,25 −0,25 0,75 −0,25
−0,25 −0,25 0,75 −0,25









Ql̂l̂ = Q − Qvv =









0,25 0,25 0,25 0,25
0,25 0,25 0,25 0,25
0,25 0,25 0,25 0,25
0,25 0,25 0,25 0,25









(1–20)

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni
standardni odklon a-posteriori σ̂0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 4,667 × 10−4 m2

σ̂0 =
√

σ̂2
0 = 0,022 m

(1–21)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Ker imamo na voljo le referenčno varianco a-posteriori σ̂2

0
iz enačbe (1–21), z njo izračunamo

obe iskani kovariančni matriki (Σvv in Σl̂l̂). Matriki kofaktorjev iz enačbe (1–20) pomnožimo
z varianco iz enačbe (1–21) in dobimo:

Σvv =









3,500 × 10−4 −1,167 × 10−4 −1,167 × 10−4 −1,167 × 10−4

−1,167 × 10−4 3,500 × 10−4 −1,167 × 10−4 −1,167 × 10−4

−1,167 × 10−4 −1,167 × 10−4 3,500 × 10−4 −1,167 × 10−4

−1,167 × 10−4 −1,167 × 10−4 3,500 × 10−4 −1,167 × 10−4









Σl̂l̂ =









1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4

1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4

1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4

1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4









(1–22)

Določiti pa želimo tudi natančnost σD iskane dolžine D. “Izračunali” smo jo iz vektorja iz-
ravnanih opazovanj (glej enačbo (1–19)), zato moramo nastaviti Jakobijevo matriko J, ki je
velikosti 1 × 4, saj imamo eno neznanko (D), vektor l̂ pa je velikosti 4 × 4. Odvajamo enačbo
(1–19) po vseh izravnanih opazovanjih in dobimo:

J =
[

∂D

∂d̂1

∂D

∂d̂2

∂D

∂d̂3

∂D

∂d̂4

]

=
[

1 0 0 0
]

(1–23)

Po zakonu o prenosu varianc in kovarianc dobimo variančno-kovariančno matriko neznanke ΣD

kot:
ΣD = σ2

D = JΣl̂l̂J
T = 1,167 × 10−4 m2 (1–24)

Natančnost σD dobimo tako, da varianco iz enačbe (1–24) korenimo in dobimo σD = 0,011 m.
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6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Natančnosti popravkov opazovanj in izravnanih opazovanj dobimo tako, da korenimo diago-
nalne elemente iz obeh kovariančnih matrik iz enačbe (1–22). Natančnosti vseh popravkov so
enake, prav tako natančnosti vseh izravnanih opazovanj:

σvi
= 0,019 m σd̂i

= 0,011 m i = {1, 2, 3, 4} (1–25)

Iz obeh kovariančnih matrik Σvv in Σl̂l̂ iz enačbe (1–22), kot tudi iz obeh matrik kofaktorjev
Qvv in Ql̂l̂ iz enačbe (1–20), lahko vidimo, da so popravki med seboj korelirani, prav tako so
tudi izravnana opazovanja. Korelacije so:

ρvivj
= −0,33 σd̂id̂j

= 1,00 i, j = {1, 2, 3, 4} ∧ i 6= j (1–26)

1.5.2 Rešitev s posredno izravnavo

Tudi tu bomo šli po korakih iz poglavja 1.1, za postopek posredne izravnave pa glejte poglavje
Posredna izravnava po MNK in vse primere tega poglavja prejšnjega leta.

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Pri izmerjenih n = 4 dolžinah, kjer bi za enolično določitev dolžine D potrebovali le n0 = 1
opazovanje, bomo nastavili u = 1 neznank, in sicer x = [D]. Sestavimo n = 4 enačb popravkov,
ki imajo obliko:

F1 ≡ d̂1 − D = 0

F2 ≡ d̂2 − D = 0

F3 ≡ d̂3 − D = 0

F4 ≡ d̂4 − D = 0

(1–27)

Enačbe (1–27) zapišemo v osnovni matrični obliki posredne izravnave, kjer za približno vrednost
neznanke izberemo D0 = 0,00 m:

v + B∆ = f →









v1

v2

v3

v4









+









−1
−1
−1
−1









[

δD
]

=









−32,51 m
−32,48 m
−32,52 m
−32,53 m









(1–28)

2. Nastavimo stohastični model izravnave.
Ker so opazovanja enake natančnosti in medseboj nekorelirana, sta matrika kofaktorjev opazo-
vanj Q in matrika uteži P enotski matriki, velikosti 4 × 4.

3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela posredne izravnave predstavljajo trije vektorji:

∆ =
[

32,51 m
]

v =









0,00 m
0,03 m

−0,01 m
−0,02 m









l̂ = l + v =









32,51 m
32,51 m
32,51 m
32,51 m









(1–29)

Dolžino D dobimo tako, da približni vrednosti D0 prištejemo popravek iz vektorja ∆ = [δD]
in dobimo:

D = D0 + δD = 32,51 m (1–30)
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4. Rešimo tudi stohastični model izravnave.
Rešitev stohastičnega modela izravnave pomeni izračun vseh treh matrik kofaktorjev Q∆∆, Qvv

in Ql̂l̂, in sicer:

Q∆∆ = N−1 =
[

0,25
]

Qvv = Q − BQ∆∆BT =









0,75 −0,25 −0,25 −0,25
−0,25 0,75 −0,25 −0,25
−0,25 −0,25 0,75 −0,25
−0,25 −0,25 0,75 −0,25









Ql̂l̂ = Q − Qvv =









0,25 0,25 0,25 0,25
0,25 0,25 0,25 0,25
0,25 0,25 0,25 0,25
0,25 0,25 0,25 0,25









(1–31)

Iz prve enačbe (izračun Q∆∆) vidimo, da je vrednost enaka 0,25 = 1/n = 1/4.

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni
standardni odklon a-posteriori σ̂0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 4,667 × 10−4 m2

σ̂0 =
√

σ̂2
0 = 0,022 m

(1–32)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Ker imamo na voljo le referenčno varianco a-posteriori σ̂2

0 iz enačbe (1–32), z njo izračunamo vse
iskane kovariančne matrike (Σ∆∆, Σvv in Σl̂l̂). Matrike kofaktorjev iz enačbe (1–31) pomnožimo
z varianco iz enačbe (1–32) in dobimo:

Σ∆∆ =
[

1,167 × 10−4

]

Σvv =









3,500 × 10−4 −1,167 × 10−4 −1,167 × 10−4 −1,167 × 10−4

−1,167 × 10−4 3,500 × 10−4 −1,167 × 10−4 −1,167 × 10−4

−1,167 × 10−4 −1,167 × 10−4 3,500 × 10−4 −1,167 × 10−4

−1,167 × 10−4 −1,167 × 10−4 3,500 × 10−4 −1,167 × 10−4









Σl̂l̂ =









1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4

1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4

1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4

1,167 × 10−4 1,167 × 10−4 1,167 × 10−4 1,167 × 10−4









(1–33)

Tu vidimo prednost posredne izravnave pred pogojno izravnavo. V primeru posredne izrav-
nave dobimo vrednost neznanke neposredno (∆), prav tako tudi kovariančno matriko neznank
(Σ∆∆). Dodatnega izračuna neznank in njihovih natančnosti ni potreben.

6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Spet korenimo vse diagonalne elemente vseh kovariančnih matrik iz enačbe (1–33). Za neznanko
dobimo:

σD =
√

σ̂2
0Q∆∆ =

σ̂0√
n

= 0,011 m (1–34)
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Enačba (1–34) opisuje, kako dobimo natančnost dolžine D pri posredni izravnavi po MNK.
Vemo, da σ̂0 predstavlja natančnost opazovanj in σD dobimo tako, da natančnost opazovanj
delimo s korenom števila opazovanj. Iz tega sledi, da je natančnost σD premo sorazmerna z
natančnostjo opazovanj in obratno sorazmerna s številom opazovanj. Večkrat kot izmerimo
dolžino (ko n narašča), bolj natančno dobimo izravnano dolžino D. Teoretično to pomeni,
da lahko s ponovljenimi izmerami iste količine pridemo do poljubne natančnosti izravnane
vrednosti. A paziti moramo, da v opazovanjih nimamo ne grobih ne sistematičnih pogreškov.

Kar se tiče popravkov opazovanj in izravnanih opazovanj, pa velja enako kot v primeru pogojne
izravnave. Dobimo:

σvi
= 0,019 m σd̂i

= 0,011 m i = {1, 2, 3, 4} (1–35)

Tudi korelacije bodo enake, lahko vidimo, da so popravki med seboj korelirani, prav tako so
tudi izravnana opazovanja. Korelacije so:

ρvivj
= −0,33 σd̂id̂j

= 1,00 i, j = {1, 2, 3, 4} ∧ i 6= j (1–36)

9
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1.6 Primer 2 – premica v ravnini

V ravnini imamo tri točke, za katere imamo dane koordinate x, koordinate y pa so opazovane,
T1(x1; y1) = (2,0; 3,2), T2(x2; y2) = (4,0; 4,0) in T3(x3; y3) = (6,0; 5,0), kot prikazuje slika 1–2. Če je
bila koordinata y3 izmerjena dvakrat bolj natančno kot ostali dve, s posredno izravnavo po MNK
izravnaj opazovanja in določi enačbo premice, ki se optimalno prilega podanim točkam. Izračunaj
tudi natančnost določenih parametrov premice. Izračunaj koordinato yT za točko T , ki ima xT = 7,0
ter njeno natančnost σyT

.

x

y

yT =?

b

T1

b

T2

b

T3

r

T

Slika 1–2: Točke v ravnini

1.6.1 Rešitev s posredno izravnavo

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Izmerjene imamo koordinate y točk, torej n = 3. Za enolično določitev premice potrebujemo
n0 = 2 opazovanj, zato imamo r = 1 opazovanj. Uvedemo u = 2 neznank, ki sta ravno

parametra premice, torej x =
[

a b
]T

. Enačbe popravkov sestavimo v obliki:

F1 ≡ ŷ1 − a x1 − b = 0

F2 ≡ ŷ2 − a x2 − b = 0

F3 ≡ ŷ3 − a x3 − b = 0

(1–37)

Enačbe (1–37) zapišemo v osnovni matrični obliki posredne izravnave, kjer za približno vrednost
neznanke izberemo a0 = b0 = 0,0. Dobimo:

v + B∆ = f →







v1

v2

v3







+







−2,0 −1,0
−4,0 −1,0
−6,0 −1,0







[

δa

δb

]

=







−3,2
−4,0
−5,0







(1–38)

2. Nastavimo stohastični model izravnave.
Opazovanja so različne natančnosti, ne vemo pa, kakšne te natančnosti so. Vemo le, da je
natančnost koordinate y3 dvakrat večja od natančnosti ostalih dveh koordinat y1 in y2. Če
si izberemo za referenčno varianco a-priori σ2

0
= σ2

y1
, bosta matriki kofaktorjev Q in uteži P

opazovanj enaki:

Q =







1,00 0,00 0,00
0,00 1,00 0,00
0,00 0,00 0,25







P =







1 0 0
0 1 0
0 0 4







(1–39)
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3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela posredne izravnave predstavljajo trije vektorji:

∆ =

[

0,4571
2,2476

]

v =







−0,038
0,076

−0,010







l̂ = l + v =







3,162
4,076
4,990







(1–40)

Končna parametra premice a in b dobimo tako, da popravka parametra iz vektorja ∆ iz enačbe
(1–40) prištejemo približnim vrednostim. Ker sta približni vrednosti enaki 0,0, dobimo seveda
kar vektor ∆:

x =

[

a

b

]

= x0 + ∆ =

[

0,4571
2,2476

]

(1–41)

4. Rešimo tudi stohastični model izravnave.
Rešitev stohastičnega modela izravnave pomeni izračun vseh treh matrik kofaktorjev Q∆∆, Qvv

in Ql̂l̂, in sicer:

Q∆∆ = N−1 =

[

7,143 × 10−2 −3,571 × 10−1

−3,571 × 10−1 1,952

]

Qvv = Q − BQ∆∆BT =







1,905 × 10−1 −3,810 × 10−1 4,762 × 10−2

−3,810 × 10−1 7,619 × 10−1 −9,524 × 10−2

4,762 × 10−2 −9,524 × 10−2 1,190 × 10−2







Ql̂l̂ = Q − Qvv =







8,095 × 10−1 3,810 × 10−1 −4,762 × 10−2

3,810 × 10−1 2,381 × 10−1 9,524 × 10−2

−4,762 × 10−2 9,524 × 10−2 2,381 × 10−1







(1–42)

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0 in referenčni

standardni odklon a-posteriori σ̂0:

σ̂2

0 =
vTPv
n − n0

=
vTPv

r
= 7,619 × 10−3

σ̂0 =
√

σ̂2
0 = 0,087

(1–43)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Ker imamo na voljo le referenčno varianco a-posteriori σ̂2

0 iz enačbe (1–43), z njo izračunamo vse
iskane kovariančne matrike (Σ∆∆, Σvv in Σl̂l̂). Matrike kofaktorjev iz enačbe (1–42) pomnožimo
z varianco iz enačbe (1–43) in dobimo:

Σ∆∆ =

[

5,442 × 10−4 −2,721 × 10−3

−2,721 × 10−3 1,488 × 10−2

]

Σvv =







1,451 × 10−3 −2,902 × 10−3 3,628 × 10−4

−2,902 × 10−3 5,805 × 10−3 −7,256 × 10−4

3,628 × 10−4 −7,256 × 10−4 9,070 × 10−5







Σl̂l̂ =







6,168 × 10−3 2,902 × 10−3 −3,628 × 10−4

2,902 × 10−3 1,814 × 10−3 7,256 × 10−4

−3,628 × 10−4 7,256 × 10−4 1,814 × 10−3







(1–44)
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6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Za izračun natančnosti vseh količin, korenimo diagonalne elemente vseh kovariančnih matrik
iz enačbe (1–44), korelacije pa dobimo iz izven-diagonalnih elementov matrik. Za neznanke
dobimo:

σa = 0,023 σb = 0,122 ρab = −0,96 (1–45)

Natančnosti in korelacije popravkov opazovanj so enake:

σv1
= 0,038 σv2

= 0,076 σv3
= 0,010

ρv1v2
= −1,00 ρv1v3

= 1,00 ρv2v3
= −1,00

(1–46)

Natančnosti in korelacije izravnanih opazovanj pa so enake:

σŷ1
= 0,079 σŷ2

= 0,043 σŷ3
= 0,043

ρŷ1ŷ2
= 0,87 ρŷ1ŷ3

= −0,11 ρŷ2ŷ3
= 0,40

(1–47)

Na koncu izračunajmo še yT in njeno natančnost σyT
. Izračun koordinate yT je enak:

yT = a xT + b = 5,448 (1–48)

Kako izračunati natančnost σyT
? Uporabimo zakon o prenosu varianc in kovarianc, izhajamo iz

enačbe (1–48), kjer ugotovimo, da smo za izračun yT uporabili vektor x, za katerega poznamo
variančno-kovariančno matriko Σ∆∆. Prvo nastavimo Jakobijevo matriko J, ki ima obliko:

J =
[

∂yT

∂a

∂yT

∂b

]

=
[

7,0 1,0
]

(1–49)

Nato pa po zakonu o prenosu varianc in kovarianc izračunamo varianco σ2
yT

in nato še natančnost
σyT

:
σ2

yT
= JΣ∆∆JT = 3,447 × 10−3 → σyT

= 0,059 (1–50)

Naloga, kot je prikazana v tem primeru, je zelo pogost primer uporabe MNK v geodeziji in se nanaša
na interpolacijo. Pri interpolaciji imamo na voljo le niz točk v ravnini (kot so tri točke v nalogi), kjer
so po navadi za dane koordinate x izmerjene koordinate y. Predpostavlja se, da točke ležijo na neki
krivulji (v našem primeru premici), ki ji ne poznamo enačbe. Zato z MNK poskušamo geometrijo
te krivulje oceniti z enostavnimi funkcijami (premica, polinomi in podobno), cilj pa je, da lahko za
poljubno koordinato x izračunamo koordinato y (v nalogi smo za xT nato računali yT ). Drug zelo
pomemben rezultat pa je tudi ocena kakovosti interpolirane vrednosti koordinate y.

V našem primeru predpostavljamo, da točke ležijo na premici, zato smo izračunali premico, ki se
optimalno prilega točkam (na sliki črtkana črna črta), kot to prikazuje slika 1–3. Na osnovi enačbe
te premice lahko za vsako koordinato x izračunamo (interpoliramo) vrednost koordinate y. Ko
računamo vrednost y za tak x, ki leži znotraj podanih točk, temu pravimo interpolacija, če pa x

leži izven točk (kot je to primer na sliki spodaj – siva črtkana črta), pa temu rečemo ekstrapolacija.
Kakovost interpoliranih točk je podana s sivim območjem, ki je omejeno z rdečima krivuljama.
Takoj lahko vidimo, da je sivo območje ožje tam, kjer so točke in se razširja z oddaljevanjem od
točk. Posledica je, da so interpolirane točke veliko boljše kakovosti, kot ekstrapolirane točke. Kako
pa določimo natančnost interpoliran/ekstrapolirane točke? Le-ta je prikazana z modrim intervalom
za interpolirano vrednost yi.

12
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x

y

yi

2σyi

xi

b

b

b

Slika 1–3: Prikaz interpolacijske premice in natančnosti interpoliranih točk na premici

1.6.2 Rešitev s pogojno izravnavo

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Ker imamo n = 3 opazovanjih koordinat y točk premice in bi potrebovali n0 = 2 koordinat
y za enolično določitev premice, imamo r = 1 nadštevilnih opazovanj, kar nam določi število
pogojnih enačb. Pogoj, ki mu morajo opazovanja (koordinate y) in konstante (koordinate x)
zadoščati zapišemo v pogojni enačbi kot:

F1 ≡ ŷ2 − ŷ1

x2 − x1

=
ŷ3 − ŷ2

x3 − x2

(1–51)

Če enačbo (1–51) preuredimo, dobimo končno obliko:

F1 ≡ ŷ1

1
x2 − x1

− ŷ2

( 1
x2 − x1

+
1

x3 − x2

)

+ ŷ3

1
x3 − x2

= 0 (1–52)

Če vektor opazovanj l privzamemo enako kot pri posredni izravnavi (poglavje 1.6.1, glej enačbi
(1–37) in (1–38)), potem pogojno enačbo (1–52) lahko zapišemo v osnovni matrični Av = f
obliki pogojne izravnave izravnave, kjer dobimo:

[
1

x2−x1

−
(

1

x2−x1

+ 1

x3−x2

)
1

x3−x2

]







v1

v2

v3







=
[

−(y1
1

x2−x1

− y2

(
1

x2−x1

+ 1

x3−x2

)

+ y3
1

x3−x2

)
]

(1–53)
Če v enačbo (1–53) vstavimo numerične vrednosti opazovanj in konstant, dobimo:

[

0,50 −1,00 0,50
]







v1

v2

v3







=
[

−0,10
]

(1–54)

2. Nastavimo stohastični model izravnave.
Privzamemo isti stohastični model kot pri posredni izravnavi, kot je to v enačbi (1–39).
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3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela pogojne izravnave predstavljata vektorja popravkov opazovanj
v in vektor izravnanih opazovanj l̂:

v =







−0,038 m
0,076 m

−0,010 m







l̂ = l + v =







3,162 m
4,076 m
4,990 m







(1–55)

Dobimo seveda iste rezultate kot pri posredni izravnavi (enačba (1–40)).

4. Rešimo tudi stohastični model izravnave.
Rešitev stohastičnega modela izravnave pomeni izračun obeh matrik kofaktorjev, Qvv in Ql̂l̂,
kjer dobimo:

Qvv = QATPeAQ =







1,905 × 10−1 −3,810 × 10−1 4,762 × 10−2

−3,810 × 10−1 7,619 × 10−1 −9,524 × 10−2

4,762 × 10−2 −9,524 × 10−2 1,190 × 10−2







Ql̂l̂ = Q − Qvv =







8,095 × 10−1 3,810 × 10−1 −4,762 × 10−2

3,810 × 10−1 2,381 × 10−1 9,524 × 10−2

−4,762 × 10−2 9,524 × 10−2 2,381 × 10−1







(1–56)

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni
standardni odklon a-posteriori σ̂0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 7,619 × 10−3

σ̂0 =
√

σ̂2
0 = 0,087

(1–57)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Za izračun uporabimo referenčno varianco a-priori σ2

0 in z njo izračunamo obe iskani kovariančni
matriki (Σvv in Σl̂l̂). Matrike kofaktorjev iz enačbe (1–56) pomnožimo z σ2

0
in dobimo:

Σvv =







1,451 × 10−3 −2,902 × 10−3 3,628 × 10−4

−2,902 × 10−3 5,805 × 10−3 −7,256 × 10−4

3,628 × 10−4 −7,256 × 10−4 9,070 × 10−5







Σl̂l̂ =







6,168 × 10−3 2,902 × 10−3 −3,628 × 10−4

2,902 × 10−3 1,814 × 10−3 7,256 × 10−4

−3,628 × 10−4 7,256 × 10−4 1,814 × 10−3







(1–58)

Tudi tu dobimo, seveda, iste rezultate kot pri posredni izravnavi.

6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Glede na to, da smo dobili enaki kovariančni matriki v enačbi (1–58) kot pri posredni izravnavi,
bodo seveda enake tudi natančnosti in korelacije, ki bi jih izračunali iz obeh matrik. Rezultati
so tako podani v enačbah (1–46) in (1–47).

Rešitev pogojne izravnave po MNK so popravki in izravnana opazovanja in pripadajoče kovariančne
matrike. Naloga pa od nas zahteva enačbo premice, ki se optimalno prilega točkam in interpolacija
s pomočjo premice pri vrednosti xT = 7,0. Naloga je dokaj enostavna in sestavljena iz dveh korakov:
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1. Izračun parametrov premice (a in b) s pripadajočo variančno-kovariančno matriko (Σab), upo-
rabimo zakon o prenosi varianc in kovarianc.

2. Ko imamo določeno optimalno premico, izračunamo vrednost yT in njeno natančnost, kjer še
enkrat uporabimo zakon o prenosu varianc in kovarianc. Podatki tu so rezultati prejšnje alineje.

Pokažimo pa tu, kako lahko obe zgoraj podani alineji izvedemo v enem koraku. Kot prvo je potrebno
pokazati, kako se vse tri količine izračunajo. Seveda izhajamo iz izravnanih opazovanj, torej vektorja
l̂ iz enačbe (1–55)

a =
ŷ2 − ŷ1

x2 − x1

b = ŷ1 − ax1 yT = axT + b (1–59)

Iz enačbe (1–59) lahko vidimo, da se a izračuna na osnovi izravnanih opazovanj (in konstant), za b

se uporabi tudi a, medtem ko se za yT uporabita tako a kot tudi b. Če vse tri enačbe zapišemo tako,
da bodo na levi strani samo računane količine (a, b in yT ), na desni pa samo še izravnana opazovanja
(̂l) in konstante (koordinate x), dobimo:

a =
ŷ2 − ŷ1

x2 − x1

= 0,4571

b = ŷ1 − ŷ2 − ŷ1

x2 − x1

x1 = 2,2476

yT =
ŷ2 − ŷ1

x2 − x1

xT + ŷ1 − ŷ2 − ŷ1

x2 − x1

x1 = 5,4476

(1–60)

Enačbe (1–60) so osnova za prenos varianc in kovarianc, da dobimo variančno-kovariančno matriko
vseh treh neznank (Σxx). Prvo odvajamo vse tri opazovanja po vseh izravnanih opazovanjih, da
dobimo matriko J, ki je enaka:

J =







−0,5000 0,5000 0,0000
2,0000 −1,0000 0,0000

−1,5000 2,5000 0,0000







(1–61)

Izračun variančno-kovariančne matrike Σxx sledi osnovni enačbi zakona o prenosu varianc in kovari-
anc, in sicer:

Σxx = JΣl̂l̂J
T =







5,442 × 10−4 −2,721 × 10−3 1,088 × 10−3

−2,721 × 10−3 1,488 × 10−2 −4,172 × 10−3

1,088 × 10−3 −4,172 × 10−3 3,447 × 10−3







(1–62)

Natančnosti in korelacije med vsemi neznankami iz variančno-kovariančne matrike Σxx iz enačbe
(1–62) so:

σa = 0,023 σb = 0,122 σyT
= 0,059

ρab = −0,956 ρayT
= 0,795 ρbyT

= −0,583
(1–63)
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1.7 Primer 3 – parcela oblike paralelograma

Parcela ima obliko paralelograma, v kateri smo izmerili tri stranice in en kot, kot prikazuje slika
1–4. Opazovanja so : a = 8,0 m, b = 6,0 m, c = 7,1 m (σa = σb = σc = 5,0 cm) in α = 60◦ (σα =
30′). Izravnaj opazovanja s pogojno izravnavo po MNK in izračunaj površino parcele. Izračunaj
tudi natančnosti vseh računanih količin in pripadajoče korelacije. Za izračun natančnosti uporabi
referenčno varianco a-priori σ2

0 .

α
a

bc

Slika 1–4: Skica parcele in izmerjenih opazovanj

1.7.1 Rešitev s pogojno izravnavo

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Pri parceli oblike paralelograma imamo n = 4 opazovanj, kjer bi nujno potrebovali n0 = 3.
Število nadštevilnih opazovanj je torej r = 1, kar določa število pogojnih enačb, ki ima obliko:

F1 ≡ â2 + b̂2 − 2âb̂ cos α̂ − ĉ2 = 0 (1–64)

Če nastavimo vektor opazovanj l =
[

a b c α
]T

, potem pogojno enačbo (1–64) lahko zapi-
šemo v osnovni matrični obliki pogojne izravnave izravnave, kjer dobimo:

Av = f →
[

10,00 4,00 −14,20 83,14
]









va

vb

vc

vα









=
[

−1,59
]

(1–65)

2. Nastavimo stohastični model izravnave.
Opazovanja so različne natančnosti, ki so tudi podane. Če nastavimo za referenčno varianco
a-priori σ2

0
= σ2

a, potem bodo kofaktorji qi in uteži pi opazovanj enake:

qa = 1 qb = 1 qc = 1 qα = 0,0305

pa = 1 pb = 1 pc = 1 pα = 32,8281
(1–66)

3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela pogojne izravnave predstavljata vektorja popravkov opazovanj
in vektor izravnanih opazovanj:

v =









−0,030 m
−0,012 m

0,043 m
−0,00762









l̂ = l + v =









7,970 m
5,988 m
7,143 m
1,03957









(1–67)
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Popravki opazovanj in izravnana opazovanja iz enačbe (1–67) so podani v metrih za stranice in
v radianih za kot α. Popravek kota in izravnan kot v seksagezimalnem sistemu sta vα =−26,21′

in α̂ =59◦33′47,51′′.

4. Rešimo tudi stohastični model izravnave.
Rešitev stohastičnega modela izravnave pomeni izračun obeh matrik kofaktorjev, Qvv in Ql̂l̂,
kjer dobimo:

Qvv = QATPeAQ =









1,893 × 10−1 7,573 × 10−2 −2,688 × 10−1 4,795 × 10−2

7,573 × 10−2 3,029 × 10−2 −1,075 × 10−1 1,918 × 10−2

−2,688 × 10−1 −1,075 × 10−1 3,818 × 10−1 −6,809 × 10−2

4,795 × 10−2 1,918 × 10−2 −6,809 × 10−2 1,214 × 10−2









Ql̂l̂ = Q − Qvv =









8,107 × 10−1 −7,573 × 10−2 2,688 × 10−1 −4,795 × 10−2

−7,573 × 10−2 9,697 × 10−1 1,075 × 10−1 −1,918 × 10−2

2,688 × 10−1 1,075 × 10−1 6,182 × 10−1 6,809 × 10−2

−4,795 × 10−2 −1,918 × 10−2 6,809 × 10−2 1,832 × 10−2









(1–68)

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni
standardni odklon a-posteriori σ̂0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 4,786 × 10−3

σ̂0 =
√

σ̂2
0 = 0,069

(1–69)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Za izračun uporabimo referenčno varianco a-priori σ2

0
in z njo izračunamo obe iskani kovariančni

matriki (Σvv in Σl̂l̂). Matrike kofaktorjev iz enačbe (1–68) pomnožimo z σ2
0

in dobimo:

Σvv =









4,733 × 10−4 1,893 × 10−4 −6,721 × 10−4 1,199 × 10−4

1,893 × 10−4 7,573 × 10−5 −2,688 × 10−4 4,795 × 10−5

−6,721 × 10−4 −2,688 × 10−4 9,544 × 10−4 −1,702 × 10−4

1,199 × 10−4 4,795 × 10−5 −1,702 × 10−4 3,036 × 10−5









Σl̂l̂ =









2,027 × 10−3 −1,893 × 10−4 6,721 × 10−4 −1,199 × 10−4

−1,893 × 10−4 2,424 × 10−3 2,688 × 10−4 −4,795 × 10−5

6,721 × 10−4 2,688 × 10−4 1,546 × 10−3 1,702 × 10−4

−1,199 × 10−4 −4,795 × 10−5 1,702 × 10−4 4,580 × 10−5









(1–70)

6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Za izračun natančnosti vseh količin, korenimo diagonalne elemente vseh kovariančnih matrik
iz enačbe (1–70), korelacije pa dobimo iz izven-diagonalnih elementov matrik. Natančnosti
popravkov opazovanj so enake:

σva
= 0,022 m σvb

= 0,009 m σvc
= 0,031 m σvα

= 18,9′ (1–71)

Korelacije pa zapišimo v pregledni obliki kot:
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va vb vc vα

va 1,00
vb 1,00 1,00
vc −1,00 −1,00 1,00
vα 1,00 1,00 −1,00 1,00

Iz zgornje preglednice je razvidno, da so vsi popravki med seboj popolnoma korelirani, korelacija
je bodisi 1 bodisi -1. Kljub temu, da ta rezultat zgleda presenetljivo, ni s teoretičnega stališča
nič posebnega. Lahko se pokaže, da je rang matrike Qvv enak rang(Qvv) = r = 1, kar pomeni,
da je samo en popravek neodvisen, ostali trije pa so odvisni popravki.

Izpišimo še natančnosti izravnanih opazovanj, ki so:

σâ = 0,045 m σb̂ = 0,049 m σĉ = 0,039 m σα̂ = 23,3′ (1–72)

Korelacije med izravnanimi opazovanji izpišimo na enak način, kot pri popravkih:

â b̂ ĉ α̂

â 1,00
b̂ −0,09 1,00
ĉ 0,38 0,14 1,00
α̂ −0,39 −0,14 0,64 1,00

Ker pa velja, da je rang(Ql̂l̂) = n0 = 3, pomeni, da je samo eno izravnano opazovanje odvisno,
tri so na neodvisna. Zato so korelacije med izravnanimi opazovanji različne od 1 ali -1, kot to
velja za popravke opazovanj.

Naloga od nas zahteva še izračun površine S parcele in njene natančnosti σS. Izhajamo iz izravnanih
opazovanj in površino S parcele, ki je oblike paralelograma, izračunamo kot:

S = âb̂ sin α̂ = 41,1 m2 (1–73)

Natančnost bomo tudi tu izračunali s pomočjo zakona o prenosu varianc in kovarianc. Izhajamo iz
vektorja izravnanih opazovanj l̂ iz enačbe (1–67), za katerega imamo izračunano kovariančno matriko
v enačbi (1–70), funkcijska povezava pa je določena v enačbi (1–73). Za izračunano natančnost
površine dobimo:

σS = 0,4 m2 (1–74)

1.7.2 Rešitev s posredno izravnavo

Rešitev po posredni izravnavi bomo prikazali v krajši obliki, saj je večina količin definirana in pred-
stavljena že v poglavju izračuna primera s pogojno izravnavo (glej 1.7.1).
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1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Število opazovanj je n = 4, kjer bi nujno potrebovali n0 = 3, zato je število neznank enako
u = 3. Za neznanke si izberemo take količine, da bodo izračuni čim lažji, primer so:

x : a y : b A : α (1–75)

Na osnovi uvedenih neznank iz enačbe (1–75) sestavimo enačbe opazovanj v obliki:

F1 ≡ â − x = 0

F2 ≡ b̂ − y = 0

F3 ≡ ĉ −
√

x2 + y2 − 2xy cos A = 0

F3 ≡ α̂ − A = 0

(1–76)

Matrični model posredne izravnave ima obliko:

v + B∆ = f →









va

vb

vc

vα









+









−1,000 0,000 0,000
0,000 −1,000 0,000

−0,693 −0,277 −5,765
0,000 0,000 −1,000















δx

δy

δA







=









0,000
0,000
0,111
0,000









(1–77)

pri tem pa smo vektor približnih vrednosti neznank x0 nastavili kot:

x0 =







x0

y0

A0







=







a

b

α







=







8,000
6,000

1,047198







(1–78)

Približne vrednosti neznank iz enačbe (1–78) so uporabljene za izračun parcialnih odvodov
enačb opazovanj iz enačbe (1–76), s čimer dobimo elemente matrike B v matrični enačbi (1–77).

2. Nastavimo stohastični model izravnave.
Stohastičen model je identične kot v primeru pogojne izravnave, glej poglavje 1.7.1 in enačbo
(1–66).

3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela pogojne izravnave predstavljajo trije vektorji, vektor popravkov
približnih neznank ∆, vektorja popravkov opazovanj v in in vektor izravnanih opazovanj l̂. Ker
imamo vektorja v in l̂ že izračunana v enačbi (1–67), tu prikazujemo samo vektor ∆ in vektor
končnih vrednosti neznank x:

∆ =







−0,030 m
−0,012 m

−0,007591







x = x0 + ∆ =







7,970 m
5,988 m

1,039606







(1–79)

Popravka približnih vrednosti in končni vrednosti prvih dveh neznank, x in y, iz enačbe 1–79 so
podane v metrih, medtem ko sta popravek in končna vrednost neznanke A podana v radianih.
Popravek kota in izravnan kot sta δA =−26,10′ in A =59◦33′54,16′′.

4. Rešimo tudi stohastični model izravnave.
Tudi v tem primeru bomo prikazali samo rešitev stohastičnega modela za neznanke, saj so
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rešitve za popravke opazovanj in izravnana opazovanja podana v poglavju 1.7.1 (glej enačbo
(1–68)). Rešitev stohastičnega modela izravnave pomeni izračun obeh matrik kofaktorjev, Qvv

in Ql̂l̂, kjer dobimo:

Q∆∆ = N−1 =







8,129 × 10−1 −7,483 × 10−2 −4,738 × 10−2

−7,483 × 10−2 9,701 × 10−1 −1,895 × 10−2

−4,738 × 10−2 −1,895 × 10−2 1,846 × 10−2







(1–80)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Izračun referenčne variance a-posteriori σ̂2

0 in referenčnega standardnega odklona a-posteriori
σ̂0 je podan v enačbi (1–69), variančno-kovariančna matrika neznank Σ∆∆ je enaka:

Σ∆∆ = σ̂2

0Q∆∆ =







2,032 × 10−3 −1,871 × 10−4 −1,184 × 10−4

−1,871 × 10−4 2,425 × 10−3 −4,738 × 10−5

−1,184 × 10−4 −4,738 × 10−5 4,616 × 10−5







(1–81)

6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Za izračun natančnosti neznank, korenimo diagonalne elemente kovariančne matrike iz enačbe
1–81, korelacije pa dobimo iz izvendiagonalnih elementov matrik.

σx = 0,045 m σy = 0,049 m σA = 23,4′ (1–82)

Korelacije pa zapišimo v pregledni obliki kot:

x y A

x 1,00
x −0,08 1,00
A −0,39 −0,14 1,00
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1.8 Primer 4 – višinska geodetska mreža

V nivelmanski mreži, kjer je višina točke A dana (HA = 320,0 m), smo opazovali višinske razlike in
dolžine nivelmanskih linij, kakor jih prikazuje slika 1–5. Numerične vrednosti opazovanj so podane
v preglednici 1–1.

Preglednica 1–1: Izmerjene vrednosti višinskih razlik med reperji

VIŠINSKA RAZLIKA DOLŽINA LINIJE
∆h1 = 0,25 m AB = 10 m
∆h2 = 0,30 m BC = 20 m
∆h3 = 0,60 m AC = 40 m

∆h4 = −0,15 m AD = 15 m
∆h5 = 0,40 m CD = 15 m

∆h6 = −0,15 m AE = 10 m

S posredno izravnavo po MNK izravnajte opazovanja in določite izravnane vrednosti višin reperjev
B, C, D in E. Izračunajte tudi natančnosti izravnanih višin σHB

, σHC
, σHD

in σHE
, ter vse njihove

korelacije ρHiHj
(i, j = B, C, D, E ∧ i 6= j).

A

B C

D

E

∆h1

∆h2

∆h3

∆h4

∆h5

∆h6

Slika 1–5: Opazovane višinske razlike v višinski geodetski mreži

Posredna izravnava tega primera je detajlno prikazana v poglavju Posredna izravnava po metodi naj-

manjših kvadratov lanskega leta, in sicer kot Primer 9 - Višinska geodetska mreža, ko smo obravnavali
posredno izravnavo.

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Vidimo, da imamo n = 6 opazovanj, kjer želimo določiti višine štirim reperjem ( n0 = 4). Uve-
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demo u = 4, najbolj smiselno, da so to kar višine točk x =
[

HB HC HD HE

]T

. Sestavimo
enačbe popravkov, ki povezujejo (izravnana) opazovanja in neznanke:

F1 ≡ ∆ĥ1 − HB + HA = 0

F2 ≡ ∆ĥ2 − HC + HB = 0

F3 ≡ ∆ĥ3 − HC + HA = 0

F4 ≡ ∆ĥ4 − HD + HC = 0

F5 ≡ ∆ĥ5 − HD + HA = 0

F6 ≡ ∆ĥ6 − HE + HA = 0

(1–83)

Enačbe (1–83) zapišemo v osnovni matrični obliki posredne izravnave, vendar moramo prvo
nastaviti približne vrednosti neznank:

x =









HB,0

HC,0

HD,0

HE,0









=









HA + ∆h1

HA + ∆h3

HA + ∆h5

HA + ∆h6









=









320,25 m
320,60 m
320,40 m
319,85 m









(1–84)

Linearizirane enačbe popravkov iz enačbe (1–83), ob upoštevanju približnih vrednosti neznank
iz enačbe (1–84), so oblike v + B∆ = f in imajo obliko:















v1

v2

v3

v4

v5

v6















+















−1 0 0 0
1 −1 0 0
0 −1 0 0
0 1 −1 0
0 0 −1 0
0 0 0 −1























δHB

δHC

δHD

δHE









=















0,00 m
0,05 m
0,00 m

−0,05 m
0,00 m
0,00 m















(1–85)

2. Nastavimo stohastični model izravnave.
Ker imamo podane dolžine nivelmanskih linij, so opazovanja različnih natančnosti. Pri geome-
tričnem nivelmanu nastavimo matriko uteži, ki ima po diagonali kar inverzne vrednosti dolžin
nivelmanskih linij. Uteži opazovanj so enake:

p1 = 0,100 p2 = 0,050 p3 = 0,025

p4 = 0,067 p5 = 0,067 p6 = 0,100
(1–86)

V tem primeru se nismo potrudili, da bi bile uteži cela števila. Razloga za to sta dva. Prvi je,
da ne računamo na roko, zato je vseeno, kakšne so numerične vrednosti. Drugi pa je v tem,
da nastavimo pravilne enote za uteži. Utež posameznega opazovanja je dobljena kot pi = 1/di

in ima enoto [m−1]. Ta enota bo pomembna pri izračunu referenčne variance a-posteriori σ̂2
0

v
nadaljevanju.

3. Rešimo funkcionalni model izravnave.
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Rešitev funkcionalnega modela posredne izravnave predstavljajo trije vektorji:

∆ =









0,0045 m
−0,0364 m

0,0068 m
0,0000 m









v =















4,5 mm
9,1 mm

−36,4 mm
−6,8 mm

6,8 mm
0,0 mm















l̂ = l + v =















0,2545 m
0,3091 m
0,5636 m

−0,1568 m
0,4068 m

−0,1500 m















(1–87)

Če približni vrednostim neznank iz enačbe (1–84) prištejemo njihove popravke iz vektorja ∆
iz enačbe (1–87), dobimo izravnane višine novih reperjev:

x = x0 + ∆ =









HB

HC

HD

HE









=









320,2545 m
320,5636 m
320,4068 m
319,8500 m









(1–88)

4. Rešimo tudi stohastični model izravnave.
Rešitev stohastičnega modela izravnave pomeni izračun vseh treh matrik kofaktorjev Q∆∆,
Qvv in Ql̂l̂. Ker nas v nalogi zanimajo le natančnosti višin novih reperjev, zapišimo rešitev
stohastičnega modela le za neznanke:

Q∆∆ = N−1 =









7,879 3,636 1,818 0,000
3,636 10,909 5,455 0,000
1,818 5,455 10,227 0,000
0,000 0,000 0,000 10,000









(1–89)

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni
standardni odklon a-posteriori σ̂0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 2,2727 × 10−5

σ̂0 =
√

σ̂2
0 = 0,0048

(1–90)

V enačbi (1–90) ima referenčna varianca a-posteriori σ̂2
0

enote [m2 m−1], zato ima referenčni
standardni odklon a-posteriori enote [m/

√
m], oziroma če ga zapišemo kot σ̂0 = 4,8 mm/

√
m,

potem nam ta vrednost pove, kakšna je natančnost izmerjenih višin v milimetrih na vsak meter.
V praksi zato matriko uteži velikokrat izračunamo tako, da dolžine nivelmanskih linij podajamo
v [km] in dobimo natančnost višinskih razlik na dolžino linije [1km].

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Ker imamo na voljo le referenčno varianco a-posteriori σ̂2

0 iz enačbe (1–90), z njo izračunamo
vse iskane kovariančne matrike (Σ∆∆, Σvv in Σl̂l̂). Tudi tu bomo prikazali le kovariančno
matriko Σ∆∆, ki ima obliko:

Σ∆∆ =









1,7906 × 10−4 8,2645 × 10−5 4,1322 × 10−5 0,0000
8,2645 × 10−5 2,4793 × 10−4 1,2397 × 10−4 0,0000
4,1322 × 10−5 1,2397 × 10−4 2,3244 × 10−4 0,0000

0,0000 0,0000 0,0000 2,2727 × 10−4









(1–91)
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6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Za izračun natančnosti vseh višin novih reperjev, korenimo diagonalne elemente kovariančne
matrike Σ∆∆ iz enačbe (1–91), korelacije pa dobimo iz izven-diagonalnih elementov matrike.
Za natančnosti dobimo:

σHB
= 13,38 mm σHC

= 15,75 mm σHD
= 15,25 mm σHE

= 15,08 mm (1–92)

Korelacije pa tudi v tem primeru zapišimo v pregledni obliki kot:

HB HC HD HE

HB 1,00
HC 0,39 1,00
HD 0,20 0,52 1,00
HE 0,00 0,00 0,00 1,00
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1.9 Primer 5 – ravninska geodetska mreža (1)

Podane imamo koordinate dveh danih točk, in sicer A(yA, xA) = (10,0 m, 10,0 m) in B(yB, xB) =
(100,0 m, 20,0 m). Da bi določili koordinate točke T (yT , xT ), smo na točki A izmerili smerni kot νT

A =
30◦57′ in dolžino dAT = 58,3 m, na točki T pa bazni vektor rT B = (∆yB

T , ∆xB
T ) = (60,0 m, −40,0 m)

proti točki B. Če so opazovanja enake natančnosti in medseboj nekorelirana, s posredno in pogojno
izravnavo izravnajte opazovanja in določite koordinate točke T (yT , xT ). Rešite tudi stohastični model
izravnave in določite natančnost ocenjenih koordinat točke T .

y

x

νT
A

dAT

r
TB =

(∆y B
T ,∆x B

T )

b A

b

B

b

T

Slika 1–6: Izmerjen bazni vektor, dolžina in smerni kot za določitev koordinat nove točke

Posredna izravnava tega primera je detajlno prikazana v poglavju Posredna izravnava po metodi naj-

manjših kvadratov lanskega leta, in sicer v Primer 8 - Ravninska geodetska mreža, ko smo obravnavali
posredno izravnavo.

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Vidimo, da imamo n = 4 opazovanj, kjer želimo določiti koordinati yT in xT točke T , torej

n0 = 2. Uvedemo u = 2 neznanki, seveda, kar iskani količini, to sta koordinati x =
[

yT xT

]T

.
Sestavimo enačbe popravkov, ki povezujejo (izravnana) opazovanja in neznanke:

F1 ≡ d̂AT −
√

(yT − yA)2 + (xT − xA)2 = 0

F2 ≡ ν̂T
A − arctan

(
yT − yA

xT − xA

)

= 0

F3 ≡ ∆ŷB
T − yB + yT = 0

F4 ≡ ∆x̂B
T − xB + xT = 0

(1–93)

Enačbe (1–93) zapišemo v osnovni matrični obliki posredne izravnave, vendar moramo prvo
nastaviti približne vrednosti neznank:

x0 =

[

yT,0

xT,0

]

=

[

yB − ∆yB
T

xB − ∆xB
T

]

=

[

40,0 m
60,0 m

]

(1–94)

Linearizirane enačbe popravkov iz enačbe (1–93), ob upoštevanju približnih vrednosti neznank
iz enačbe (1–94), so oblike v + B∆ = f in so enake:










vdAT

vνT
A

v∆yB
T

v∆xB
T










+









−0,51 −0,86
−0,01 0,01
1,00 0,00
0,00 1,00









[

δyT

δxT

]

=









0,010 m
0,00024
0,000 m
0,000 m









(1–95)
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2. Nastavimo stohastični model izravnave.
Opazovanja so enake natančnosti in medseboj nekorelirana, zato sta matrika uteži P in matrika
kofaktorjev Q enotski matriki P = Q = In×n.

3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela posredne izravnave predstavljajo trije vektorji:

∆ =

[

−0,0025 m
−0,0041 m

]

v =









0,0048 m
0,0002400
0,0025 m
0,0041 m









l̂ = l + v =









58,3048 m
0,5404194
60,0025 m

−39,9959 m









(1–96)

V enačbi (1–96) sta popravek vνT
A

in izravnana vrednost ν̂T
A podana v radianih. Zapišemo ju

lahko tudi vνT
A

= 50′′ in α̂ = 30◦57′50′′.

Če približni vrednostim neznank iz enačbe (1–94) prištejemo njihove popravke iz vektorja ∆
iz enačbe (1–96), dobimo izravnane koordinate točke T , in sicer:

x = x0 + ∆ =

[

yT,0 + δyT

xT,0 + δxT

]

=

[

39,9975 m
59,9959 m

]

(1–97)

4. Rešimo tudi stohastični model izravnave.
Rešitev stohastičnega modela izravnave pomeni izračun vseh treh matrik kofaktorjev Q∆∆,
Qvv in Ql̂l̂. Ker nas v nalogi zanimajo le natančnosti koordinat točke T , zapišimo rešitev
stohastičnega modela le za neznanki:

Q∆∆ = N−1 =

[

0,8674 −0,2205
−0,2205 0,6323

]

(1–98)

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0 in referenčni

standardni odklon a-posteriori σ̂0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 2,268 × 10−5

σ̂0 =
√

σ̂2
0 = 0,0048

(1–99)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Ker imamo na voljo le referenčno varianco a-posteriori σ̂2

0
iz enačbe (1–99), z njo izračunamo

vse iskane kovariančne matrike (Σ∆∆, Σvv in Σl̂l̂), in tudi tu bomo prikazali le kovariančno
matriko Σ∆∆. Le-ta ima obliko:

Σ∆∆ =

[

1,967 × 10−5 −5,000 × 10−6

−5,000 × 10−6 1,434 × 10−5

]

(1–100)

6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Da dobimo natančnosti σyT

in σxT
izračunanih koordinat točke T , korenimo diagonalna ele-

menta kovariančne matrike Σ∆∆ iz enačbe (1–100), korelacijo ρyT xT
pa dobimo iz izven-diagonalnega

elementa matrike:
σyT

= 4,44 mm σxT
= 3,79 mm ρyT xT

= −0,30 (1–101)
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Kako bi nalogo lahko rešili s pogojno izravnavo? Sestaviti moramo r = 2 pogojnih enačb. S slike
1–6 lahko preko geometrije naloge ugotovimo, da morata veljati:

yB − yA = d̂AT sin ν̂T
A + ∆ŷ

xB − xA = d̂AT cos ν̂T
A + ∆x̂

(1–102)

Enačbi (1–102) predstavljata osnovo za sestavo pogojnih enačb pogojne izravnave po MNK.
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1.10 Primer 6 – ravninska geodetska mreža (2)

V ravnini imamo podana položaja dveh danih točk, A(yA; xA) = (5,0 m; 10,0 m) in B(yB; xB) =
(20,0 m; 0,0 m). Da bi določili položaj točke T , smo s točke A opazovali dolžino a = 16,2 m (σa =
0,1 m) in kot α = 45◦ (σα = 30′), s točke B pa dolžino b = 13,2 m (σb = 0,1 m) in kot β =
60◦ (σβ = 30′), kot to prikazuje slika 1–7. S pogojno in posredno izravnavo po MNK izravnaj
opazovanja in izračunaj koordinate točke T (yT , xT ), natančnosti koordinat σyT

in σxT
ter korelacijo

ρyT xT
. Uporabite referenčno varianco a-priori σ2

0
.

y

x

α

β

a

b
b

A

b B

b

T

Slika 1–7: Opazovanja v ravninski mreži za določitev položaja nove točke

Pogojna izravnava tega primera je detajlno prikazana v poglavju Pogojna izravnava po metodi naj-

manjših kvadratov lanskega leta, in sicer v Primer 9 - Ravninska geodetska mreža (2), ko smo obrav-
navali pogojno izravnavo.

1. Nastavimo funkcionalni model izravnave – sestavimo osnovni matrični model izravnave.
Da bi določili koordinate točke T smo izmerili n = 4 opazovanj, kjer bi nujno potrebovali le
n0 = 2 opazovanj. Ker imamo r = 2 nadštevilnih opazovanj, sestavimo toliko pogojnih enačb.
Primer pogojnih enačb je:

F1 ≡ â sin α̂ − b̂ sin β̂ = 0

F2 ≡ â2 + b̂2 + 2âb̂ cos(α̂ + β̂) − D2 = 0
(1–103)

V drugi pogojni enačbi iz enačbe (1–103) količina D predstavlja dolžino med danima točkama

A in B. Če nastavimo vektor opazovanj kot l =
[

a α b β
]T

, potem pogojni enačbi (1–103)
lahko zapišemo v osnovni matrični obliki pogojne izravnave Av = f :

[

0,707 11,455 −0,866 −6,600
25,567 −413,107 18,014 −413,107

]









va

vα

vb

vβ









=

[

−0,024 m
−0,988 m2

]

(1–104)

2. Nastavimo stohastični model izravnave.
Opazovanja so različne natančnosti in medseboj nekorelirana. Sestavimo kovariančno matriko
Σ, za referenčno varianco si izberemo σ2

0
= σ2

α in dobimo kofaktorje opazovanj enake:

qa = 131,31 qα = 1,00 qb = 131,31 qβ = 1,00 (1–105)

3. Rešimo funkcionalni model izravnave.
Rešitev funkcionalnega modela pogojne izravnave predstavljata vektorja popravkov opazovanj
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in vektor izravnanih opazovanj:

v =









−0,0156 m
0,0000560
0,0036 m

0,0015273









l̂ = l + v =









16,1844 m
0,7854542
13,2036 m
1,0487249









(1–106)

V enačbi (1–106) sta tako popravka vα in vβ , kot tudi izravnana kota α̂ in β̂, podana v
radianih. Popravka lahko zapišemo tudi kot vα =0′11,5′′, vβ =5′15,0′′, izravnana kota pa kot
α̂ =45◦0′11,5′′ in β̂ =60◦5′15,0′′.

4. Rešimo tudi stohastični model izravnave.
Rešitev stohastičnega modela izravnave pomeni izračun obeh matrik kofaktorjev, Qvv in Ql̂l̂,
kjer dobimo:

Qvv = QATPeAQ =









57,023 0,190 −16,249 −5,497
0,190 0,662 −5,235 0,121

−16,249 −5,235 45,192 0,474
−5,497 0,121 0,474 0,559









Ql̂l̂ = Q − Qvv =









74,289 −0,190 16,249 5,497
−0,190 0,338 5,235 −0,121
16,249 5,235 86,120 −0,474
5,497 −0,121 −0,474 0,441









(1–107)

Na osnovi pogreškov opazovanj izračunamo tudi referenčno varianco a-posteriori σ̂2
0

in referenčni
standardni odklon a-posteriori σ̂0:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 2,1450 × 10−6

σ̂0 =
√

σ̂2
0 = 0,0015

(1–108)

5. Izberemo si ustrezno referenčno varianco in izračunamo iskane variančno-kovariančne matrike.
Za izračun kovariančnih matrik Σvv in Σl̂l̂ bomo uporabili referenčno varianco σ2

0
, kjer dobimo:

Σvv =









4,343 × 10−3 1,450 × 10−5 −1,237 × 10−3 −4,186 × 10−4

1,450 × 10−5 5,044 × 10−5 −3,987 × 10−4 9,229 × 10−6

−1,237 × 10−3 −3,987 × 10−4 3,442 × 10−3 3,608 × 10−5

−4,186 × 10−4 9,229 × 10−6 3,608 × 10−5 4,259 × 10−5









Σl̂l̂ =









5,657 × 10−3 −1,450 × 10−5 1,237 × 10−3 4,186 × 10−4

−1,450 × 10−5 2,572 × 10−5 3,987 × 10−4 −9,229 × 10−6

1,237 × 10−3 3,987 × 10−4 6,558 × 10−3 −3,608 × 10−5

4,186 × 10−4 −9,229 × 10−6 −3,608 × 10−5 3,356 × 10−5









(1–109)

6. Iz vseh variančno-kovariančnih matrik stohastičnega modela izračunamo natančnosti neznank,
popravkov opazovanj in izravnanih opazovanj ter njihove korelacije.
Za izračun natančnosti vseh količin, korenimo diagonalne elemente vseh kovariančnih matrik iz
enačbe (1–109), korelacije pa dobimo iz izven-diagonalnih elementov matrik. Ker nas primarno
zanimajo izravnana opazovanja, izračunajmo natančnosti le-teh:

σâ = 7,5 cm σα̂ = 17′26′′ σb̂ = 8,1 cm σβ̂ = 19′55′′ (1–110)
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â α̂ b̂ β̂

â 1,00
α̂ −0,04 1,00
b̂ 0,20 0,97 1,00
β̂ 0,96 −0,31 −0,08 1,00

Korelacije med izravnanimi opazovanji izpišimo v obliki preglednice:

Rezultat pogojne izravnave v zgornjem postopku sta vektor izravnanih opazovanj l̂ iz enačbe (1–106)
in njegova variančno-kovariančna matrika Σl̂l̂ iz enačbe (1–109). Izravnana opazovanja in koordinate
danih točk (A in B) uporabimo za izračun koordinat točke T , in sicer:

yT = yA + â sin(νB
A − α̂) = 20,870 m

xT = xA + â cos(νB
A − α̂) = 13,175 m

(1–111)

Natančnosti koordinat in pripadajočo korelacijo dobimo preko zakona o prenosu varianc in kovarianc.
Tudi v tem primeru izhajamo iz vektorja izravnanih opazovanj l̂ in kovariančne matrike Σl̂l̂, funkcijska
povezava pa je določena v enačbi (1–111). Na koncu dobimo:

σyT
= 7,61 cm σxT

= 8,13 cm ρyT xT
= −0,07 (1–112)
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1.11 Primer 7 – premica v ravnini (opazovane vse koordinate točk)

V ravnini imamo štiri točke, za katere imamo opazovane tako koordinate x, kot tudi koordinate y,
vrednosti opazovanj pa so predstavljene v preglednici 1–2.

Preglednica 1–2: Opazovane koordinate (abscise in ordinate) štirih točk

Točka x y

T1 1.3 0.7
T2 2.2 1.1
T3 2.8 1.9
T4 4.1 2.6

Točke v ravnini prikazuje slika 1–8. Če so opazovanja enake natančnosti in medseboj neodvisna, s
posredno izravnavo po MNK izravnaj opazovanja in določi premico, ki se optimalno prilega točkam.

x

y

b

T1
b

T2

b

T3

b

T4

Slika 1–8: Točke na premici v ravnini, kjer so opazovane vse koordinate

Iz podatkov je razvidno, da je število opazovanj enako n = 8, opazovane imamo tako 4 koordinate x in
4 koordinate y. Za določitev minimalnega števila opazovanj, da rešimo problem, pa prvo poskusimo
nastaviti enačbe popravkov. Enačbe popravkov bodo oblike:

F1 ≡ x̂1 − fx1
(x) = 0

F2 ≡ ŷ1 − fy1
(x) = 0

F3 ≡ x̂2 − fx2
(x) = 0

F4 ≡ ŷ2 − fy2
(x) = 0

F5 ≡ x̂3 − fx3
(x) = 0

F6 ≡ ŷ3 − fy3
(x) = 0

F7 ≡ x̂4 − fx4
(x) = 0

F8 ≡ ŷ4 − fy4
(x) = 0

(1–113)

V enačbah (1–113) vektor x predstavlja vektor neznank. Enačbe popravkov sestavimo tako, da prvo
zapišemo niz vseh izravnanih opazovanj na začetku enačbe. Potem pa vsa izravnana opazovanja
predstavimo z neznankami. Ker želimo določiti premico, ki se optimalno prilega točkam, bomo za
dve neznanki izbrali parametra premice a in b. Enačbo premice, y = a x + b, bomo uporabili za
opazovane koordinate y, a ker v vsaki enačbi popravkov lahko nastopa le eno opazovanje, tu ne
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smemo uporabiti koordinate x. Zato za vsako opazovano koordinato x nastavimo novo neznanko,
kar pomeni, da moramo dodatno uvesti še štiri neznanke, ki jih označimo s p1, p2, p3 in p4. Vidimo,
da je minimalno število opazovanj enako:

n0 = 2
︸︷︷︸

a,b

+ 4
︸︷︷︸

p1,p2,p3,p4

= 6 (1–114)

Ko imamo uvedene neznanke, jih damo v vektor neznank, in sicer:

x =
[

a b p1 p2 p3 p4

]T

(1–115)

Sedaj sestavimo končne enačbe popravkov kot:

F1 ≡ x̂1 − p1 = 0

F2 ≡ ŷ1 − a p1 − b = 0

F3 ≡ x̂2 − p2 = 0

F4 ≡ ŷ2 − a p2 − b = 0

F5 ≡ x̂3 − p3 = 0

F6 ≡ ŷ3 − a p3 − b = 0

F7 ≡ x̂4 − p4 = 0

F8 ≡ ŷ4 − a p4 − b = 0

(1–116)

Vidimo, da so enačbe opazovanj iz (1–116) sestavljene po pravilih, v vsaki enačbi nastopa le eno (iz-
ravnano) opazovanje, ki se nato zapiše v odvisnosti od (le) neznank. Enačbe opazovanj so nelinearne,
zato je potrebno izračunati približne vrednosti neznank. Uporabimo opazovanja, kjer dobimo:

x0 =















a0

b0

p1,0

p2,0

p3,0

p4,0















=















y2−y1

x2−x1

y1 − a0 x1

x1

x2

x3

x4















=















0,40
0,20
1,30
2,20
2,80
4,10















(1–117)

Sestavimo osnovni matrični model posredne izravnave, v + B∆ = f . Vektor popravkov opazo-
vanj v se nanaša na vektor opazovanj, oziroma vektor izravnanih opazovanj l̂ iz enačb popravkov
v (1–116), medtem ko se vektor popravkov približnih vrednosti neznank ∆ nanaša na neznanke iz
enačbe (1–115), oziroma na približne vrednosti neznank iz enačbe (1–117). Sestavimo prvo matriko
koeficientov B, ki je velikosti 8 × 6 in ima obliko:

B =



























∂F1

∂a
∂F1

∂b
∂F1

∂p1

∂F1

∂p2

∂F1

∂p3

∂F1

∂p4

∂F2

∂a
∂F2

∂b
∂F2

∂p1

∂F2

∂p2

∂F2

∂p3

∂F2

∂p4

∂F3

∂a
∂F3

∂b
∂F3

∂p1

∂F3

∂p2

∂F3

∂p3

∂F3

∂p4

∂F4

∂a
∂F4

∂b
∂F4

∂p1

∂F4

∂p2

∂F4

∂p3

∂F4

∂p4

∂F5

∂a
∂F5

∂b
∂F5

∂p1

∂F5

∂p2

∂F5

∂p3

∂F5

∂p4

∂F6

∂a
∂F6

∂b
∂F6

∂p1

∂F6

∂p2

∂F6

∂p3

∂F6

∂p4

∂F7

∂a
∂F7

∂b
∂F7

∂p1

∂F7

∂p2

∂F7

∂p3

∂F7

∂p4

∂F8

∂a
∂F8

∂b
∂F8

∂p1

∂F8

∂p2

∂F8

∂p3

∂F8

∂p4



























=




















0 0 −1 0 0 0
−p1,0 −1 −a0 0 0 0

0 0 0 −1 0 0
−p2,0 −1 0 −a0 0 0

0 0 0 0 −1 0
−p3,0 −1 0 0 −a0 0

0 0 0 0 0 −1
−p4,0 −1 0 0 0 −a0




















(1–118)
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Nato sestavimo še vektor odstopanj f enačb popravkov, ki ima obliko:

f =




















p1,0 − x1

a0 p1,0 + b0 − y1

p2,0 − x2

a0 p2,0 + b0 − y2

p3,0 − x3

a0 p3,0 + b0 − y3

p4,0 − x4

a0 p4,0 + b0 − y4




















(1–119)

Na osnovi matrike B iz enačbe (1–118) in vektorja f iz enačbe (1–119) sestavimo sistem normalnih
enačb, in sicer tako, da izračunamo matriko N in vektor t in izračunamo vektor ∆:

N = BTB t = BTf → ∆ = N−1t (1–120)

Numeričnih vrednosti v zgornje enačbe nismo dajali, saj je potrebno rešitev poiskati iterativno. Ko
dobimo vektor ∆, popravimo približne vrednosti neznank iz enačbe (1–117) in ponovimo izravnavo.
Postopek ponavljamo vse dokler velja:

||∆|| < 1,00 × 10−5 (1–121)

V enačbi (1–121) operator ||·|| predstavlja normo (dolžino) vektorja. Iterativni postopek je izveden
spodaj:

Iteracija # 1: ||∆|| =5,66 × 10−1

Iteracija # 2: ||∆|| =3,87 × 10−2

Iteracija # 3: ||∆|| =6,73 × 10−3

Iteracija # 4: ||∆|| =3,00 × 10−4

Iteracija # 5: ||∆|| =5,29 × 10−5

Iteracija # 6: ||∆|| =2,36 × 10−6

Po izvedenih 6-ih korakih iteracije so ocenjene neznanke enake:

x =















a

b

p1

p2

p3

p4















=















0,71621
−0,28714

1,32654
2,11076
2,88604
4,07666















(1–122)
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Vektor popravkov v in vektor izravnanih opazovanj l̂ sta:

v =




















vx1

vy1

vx2

vy2

vx3

vy3

vx4

vy4




















=




















0,02654
−0,03706
−0,08924

0,12460
0,08604

−0,12013
−0,02334

0,03259




















l̂ =




















x̂1

ŷ1

x̂2

ŷ2

x̂3

ŷ3

x̂4

ŷ4




















=




















1,32654
0,66294
2,11076
1,22460
2,88604
1,77987
4,07666
2,63259




















(1–123)

Rešimo še stohastični model izravnave, osredotočili pa se bomo na izračun referenčne variance a-
priori σ̂2

0
in izračunu natančnosti neznank, torej na izračun variančno-kovariančne matrike neznank

Σ∆∆. Referenčna varianca a-posteriori σ̂2
0

in referenčni standardni odklon a-posteriori σ̂0 sta:

σ̂2

0
=

vTPv
n − n0

=
vTPv

r
= 2,4505 × 10−2

σ̂0 =
√

σ̂2
0 = 0,16

(1–124)

Natančnosti neznank dobimo s korenjenjem diagonalnih elementov kovariančne matrike Σ∆∆, dobimo
jo pa tako, da uporabimo referenčno varianco a-posteriori (enačba (1–124)) in matriko kofaktorjev
Q∆∆ (dobimo jo preko enačbe (1–3)) . Natančnosti parametrov premice (σa in σb) in njuna korelacija
(ρab) sta:

σa = 0,095 σb = 0,265 ρab = −0,931 (1–125)

Natančnosti parametrov p1, p2, p3 in p4 pa so:

σp1
= 0,147 σp2

= 0,137 σp3
= 0,136 σp4

= 0,151 (1–126)
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1.12 Primeri – dodatno

1. V kocki smo izmerili tri količine, in sicer: ploskovno diagonalo (d = 14,000 m), prostorsko
diagonalo (D = 17,000 m) in obseg osnovne ploskve (o = 40,000 m). S posredno in pogojno
izravnavo po MNK izravnaj opazovanja, če sta obe diagonali (d in D) korelirani, saj velja
ρdD = −0.5. Izračunaj velikost osnovne ploskve a in njeno natančnost σa. Izračunaj tudi
prostornino kocke V in njeno natančnost σV .

d

D
o

Slika 1–9: Naloga 1

REŠITEV: a = 9,943 m, σa = 5,200 cm, σ̂0 = 0,265 m, vd = 6,200 cm, vD = 22,200 cm,
vo = −22,700 cm, V = 983,030 m3, σV = 15,500 m3.

2. V pravokotniku smo izmerili vse stranice in dobili: a = 15,000 m, b = 10,000 m, c = 14,900 m
in d = 10,100 m. S posredno in pogojno izravnavo izravnajte opazovanja in določite: osnovno
stranico A, površino S, njuni natančnosti σA in σS in korelacijo ρAS. Namig: za neznanki
nastavite A in S.

a

c

d b

Slika 1–10: Naloga 2

REŠITEV: A = 14,950 m, S = 150,250 m2, â = ĉ = A = 14,950 m, b̂ = d̂ = 10,050 m,
σ̂0 = 7,100 cm, σA = 5,000 cm, σS = 0,900 m2, ρAS = 0,550.

3. V ravnini smo trem točkam izmerili koordinate y (koordinate x so dane) in dobili: T1(x1, y1) =
(1.0, 1.0), T2(x2, y2) = (2.0, 3.0) in T3(x3, y3) = (3.0, 5.1). Če so opazovanja enake natančnosti,
s posredno in pogojno izravnavo po MNK izravnaj opazovanja in določi enačbo premice (para-
metra a in b), ki se optimalno prilega točkam. Izračunaj natančnosti parametrov premice σa in
σb ter korelacijo ρab, izračunaj tudi izravnana opazovanja, njihove natančnosti in medsebojne
korelacije. Izračunaj tudi, kakšna je vrednost koordinate yi pri vrednosti koordinate xi = 1.3
in njena natančnost σyi

.

REŠITEV: a = 2,050, b = −1,067, σa = 0,029, σb = 0,062, ρab = −0,930, ŷ1 = 0,983,
ŷ2 = 3,033, ŷ3 = 5,083, σŷ1

= 0,037, σŷ2
= 0,024, σŷ3

= 0,370, ρŷ1ŷ2
= 0,630, ρŷ1ŷ3

= −0,200,
ρŷ2ŷ3

= 0,630, yi = 1,598, σyi
= 0,031.
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x

y

yi =?b

T1

b

T2

b

T3

Slika 1–11: Naloga 3

4. Parcela je sestavljena iz dveh delov, kot prikazuje slika. Da bi določili površini obeh delov
(S1 in S2) smo izmerili 5 stranic, in sicer: a1 = 35,000 m (σa1

= 0,100 m), a2 = 35,100 m
(σa2

= 0,200 m), b1 = 20,000 m (σb1
= 0,200 m), b2 = 19,800 m (σb2

= 0,100 m) in c = 10,000 m
(σc = 0,100 m). S pogojno in posredno metodo po MNK izravnaj opazovanja, določi velikost
osnovnih stranic a, b in c, njihove natančnosti in korelacije. Določi tudi določi površini S1

in S2, njuni natančnosti in njuno korelacijo. Za izračun vseh natančnosti uporabi referenčno
varianco a-priori σ2

0.

S1 S2

a1 a2

b1

b2 c

Slika 1–12: Naloga 4

REŠITEV: a = 35,020 m, b = 19,840 m, c = 10,000 m, σa = 8,900 cm, σb = 8,900 cm,
σc = 10,000 cm, ρab = ρac = ρbc = 0,000, S1 = 694,797 m2, S2 = 350,200 m2, σS1

= 3,600 m2,
σS1

= 3,610 m2, ρS1S2
= 0,120

5. Imamo štiri dane točke, ki vse ležijo na enotski krožnici (glej skico): T1(x1, y1) = ( 1√
2
, 1√

2
),

T2(x2, y2) = ( 1√
2
, − 1√

2
), T3(x3, y3) = (− 1√

2
, − 1√

2
) in T4(x4, y4) = (− 1√

2
, 1√

2
). Z vsake točke

smo proti novi točki T (xT , yT ), s približnimi vrednostmi koordinat xT0
= yT0

= 0, opazovali 4
dolžine (d1, d2, d3, d4) z natančnostjo σd = 2,000 cm. S posredno izravnavo po MNK določite
kovariančno matriko ΣT točke T , natančnosti koordinat σxT

, σyT
in korelacijo ρxT yT

.

REŠITEV: ΣT =

[

0.0002 0
0 0.0002

]

, σxT
= σyT

= 0.014, ρxT yT
= 0.

6. Določiti želimo višine trem novim reperjem B, C in D s postopkom geometričnega nivelmana.
Izmerili smo (glej skico): ∆h1 = 1,332 m, ∆h3 = 1,785 m, ∆h2 = 0,450 m in ∆h4 = −0,532 m,
kjer so dolžine nivelmanskih linij enake d1 = 100,000 m, d3 = 100,000 m, d2 = 50,000 m in
d4 = 100,000 m, višina danega reperja A pa je HA = 10,000 m. S pogojno in posredno izravnavo
po MNK izravnaj opazovanja, določi višine vsem trem novim reperjem, njihove natančnosti in
korelacije.
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x

y

b

T1(d1)

b

T2(d2)
b

T3(d3)

b

T4(d4)

r T

Slika 1–13: Naloga 5

A

B

C

D

∆h1

∆h2

∆h3

∆h4

Slika 1–14: Naloga 6

REŠITEV: HB = 11,333 m, HC = 11,784 m, HD = 9,468 m, σHB
= 1,470 mm, σHC

=
1,470 mm, σHD

= 1,900 mm, ρHBHC
= 0,670, ρHBHD

= ρHCHD
= 0,000,

v =
[

1,200 0,600 −1,200 0,000
]T

mm.

7. V ravnini smo pri danih koordinatah x štirim točkam izmerili koordinate y in dobili: T1(1,000, 1,400),
T2(2,000, 2,100), T3(3,000, 1,500) in T4(4,000, −0,100). S posredno izravnavo po MNK določite
parametra parabole a in b tako, da gre parabola skozi izhodišče koordinatnega sistema in se
optimalno prilega točkam. Izračunajte parametre parabole, njihove natančnosti in korelacije.
Za koordinato x = 3.5 izračunajte vrednost y na paraboli in njeno natančnost σy.

x

y

b

T1

b

T2

b

T3

b

T4

b

y =?

Slika 1–15: Naloga 7

REŠITEV: a = −0,515, b = 2,038, σ2
0 = 0,011, σa = 0,023, σb = 0,080, y(x = 3,500) = 0,832,

σy = 0,069.

8. Podane imamo koordinate treh točk, in sicer T1=(80,000 m, 20,000 m), T2=(10,000 m, 10,000 m)
in T3=(20,000 m, 80,000 m), kot prikazuje slika. Da bi določili koordinate nove točke T (yT , xT )
smo opazovali dolžini d1 = 60,800 m, d2 = 92,200 m (σd1

= σd2
= 2,000 cm) in vektor r =

(∆y, ∆x) = (50,000 m, 0,000 m) (σ∆y = σ∆x = 1,000 cm, ρ∆y∆x = 0.5). S pogojno in posredno
izravnavo po MNK izravnajte opazovanja, določite koordinate točke T , kovariančno matriko
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ΣT položaja točke T , natančnosti σyT
in σxT

in korelacijo ρyT xT
. Za izračun natančnosti izberite

referenčno varianco a-priori σ2
0
.

y

x

d1

d2

r

b

T1

b

T2

b

T3

b

T

Slika 1–16: Naloga 8

REŠITEV: yT = 70,000 m, xT = 79,997 m, σyT
= 0,009 m, σxT

= 0,008 m, ρyT xT
= 0,370 m.

9. V krogli smo izmerili polmer R = 3,650 m (σR = 3,000 cm), premer D = 7,100 m (σD =
3,000 cm), površino A = 158,400 m2 (σA = 0,120 m2) in prostornino V = 187,500 m3 (σV =
0,150 m3). Izravnajte opazovanja, pridobite njihova izravnana opazovanja, njihove natančnosti
in korelacije. Natančnosti izračunajte enkrat z referenčno varianco a-priori σ2

0
, drugič pa z

referenčno varianco a-posteriori σ̂2
0
. Ali izbira variance vpliva na izračun natančnosti? Kaj pa

na korelacije?.

REŠITEV: R̂ = 3,553 m, D̂ = 7,106 m, Â = 158,503 m2, V̂ = 187,424 m3. Natančnosti
z σ2

0
: σR̂ = 0,700 mm, σD̂ = 1,500 mm, σÂ = 0,068 m2, σV̂ = 0,124 m3. Natančnosti z σ̂2

0
:

σR̂ = 1,400 mm, σD̂ = 2,900 mm, σÂ = 0,133 m2, σV̂ = 0,242 m3. Korelacije: ρRD = ρRA =
ρRV = ρDA = ρDV = ρAV = 1.0. Izbira variance vpliva na izračun natančnosti, a ne na izračun
korelacij (zakaj?).

10. Z danih točk A(yA, xA)=(0,000 m, 0,000 m) in B(yB, xB)=(100,000 m, 0,000 m) smo neodvisno
in z različno natančnostjo opazovali kota α = 30◦1′ (σα = 15,000′′) in β = 60◦1′ (σβ =
30,000′′) do točke C. Točka C leži na krožnici, katere diametralni točki sta točki A in B.
S posredno in pogojno izravnavo po MNK izravnaj opazovanja in določi koordinate točke C.
Določi kovariančno matriko ΣC , natančnosti koordinat σyC

in σxC
točke C ter korelacijo ρyCxC

.
Za izračun uporabi referenčno varianco a-priori σ2

0 .

y

x

b

b

bb

α β

b

A
b

B

b

C

Slika 1–17: Naloga 10

REŠITEV: α̂ = 30◦0′36,000′′, β̂ = 59◦59′24,000′′, σα̂ = σβ̂ = 13,400′′, ρα̂β̂ = −1,000, yC =
25,015 m, xC = 43,310 m, σyC

= 5,600 mm, σxC
= 3,300 mm, ρyCxC

= 1,000.

11. Dani sta dve točki: A(yA, xA) = (10,000 m, 0,000 m) in B(yB, xB) = (100,000 m, 0,000 m). S
točke A smo do nove točke T izmerili bazni vektor GNSS (∆y, ∆x) = (60,000 m, 45,000 m), na
točki B pa kot α = 56◦. Če so opazovanja enake natančnosti in medseboj neodvisna, izravnaj
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opazovanja in določi koordinate točke T , kovariančno matriko ΣT , natančnosti koordinat σyT

in σxT
ter korelacijo ρyT xT

.

y

x

(∆
y,

∆
x)

α

b

A
b

B

b

C

Slika 1–18: Naloga 11

REŠITEV: ∆ŷ = 60,000 m, ∆x̂ = 45,000 m, α̂ = 56◦18′44,400′′, σ̂2
0 = 2,973 × 10−5, σ∆ŷ =

σ∆x̂ = 5,500 mm, σα̂ = 0◦0′21,000′′, yC = 70,000 m, xC = 45,000 m, σyC
= σxC

= 5,500 mm,
ρyCxC

= −1,600 × 10−4.
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