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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Zakon o prenosu varianc in kovarianc

1 ZAKON O PRENOSU VARIANC IN KOVARIANC

Pri prenosu pravih pogreškov nas je zanimalo, kakšno napako povzročimo pri neznanki, če imamo
podan pravi pogrešek opazovanja. V splošnem pravih pogreškov ne poznamo, slučajnost opazovanj
pa opišemo z variančno-kovariančno matriko opazovanj Σ. Kadar poskušamo ugotoviti, kakšna
je kovariančna matrika neznank Σyy, ko poznamo kovariančno matriko opazovanj (ali neodvisnih
parametrov Σxx), potem govorimo o zakonu o prenosu varianc in kovarianc.

1.1 Izračun variančno-kovariančne matrike neznank

V geodeziji opazujemo količine - opazovanja, ki so z neznankami, ki jih želimo izračunati, povezane
posredno. Tako imamo m neznanih količin, ki jih označimo z y1, y2, y3, . . . , ym, ki so v funkcijski
povezavi z n opazovanji, xi, i = 1, . . . , n. Funkcijsko odvisnost zapišemo kot:

y1 = f1(x1, x2, x3, . . . , xn)

y2 = f2(x1, x2, x3, . . . , xn)
(1–1)

y3 = f3(x1, x2, x3, . . . , xn)
... =

...

ym = fm(x1, x2, x3, . . . , xn)

Matrično lahko enačbo (1–1) zapišemo tudi kot:

y = F(x) (1–2)

V enačbi (1–2) predstavlja x vektor opazovanj velikosti n × 1, y vektor računanih neznank velikosti
m × 1 in F (v splošnem) nelinearne funkcije iz enačb (1–1). Poudariti je potrebno, da pri zakonu

o prenosu varianc in kovarianc nimamo nadštevilnih meritev, oz. r = n − n0 = 0.

Ob podani kovariančni matriki opazovanj Σxx nas zanima, kakšna je kovariančna matrika neznank,
oziroma kako se preko funkcij F prenese natančnost opazovanj v neznanke. Rezultat je kovariančna
matrika neznank Σyy, ki ima obliko:

Σyy = JΣxxJT (1–3)

Matrika J v enačbi (1–3) predstavlja Jakobijevo matriko velikosti m × n, oziroma matriko vseh par-
cialnih odvodov, vseh neznank (y1, y2, y3, . . . , ym) po vseh opazovanjih (xi, i = 1, . . . , n). Jakobijeva
matrika ima obliko:

J =





















∂f1

∂x1

∂f1

∂x2

∂f1

∂x3
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2

∂f2

∂x3
· · · ∂f2

∂xn
∂f3

∂x1

∂f3

∂x2

∂f3

∂x3

· · · ∂f3

∂xn

...
...

... · · · ...
∂fm

∂x1

∂fm

∂x2

∂fm

∂x3

· · · ∂fm

∂xn





















(1–4)

1.2 Izračun korelacije med opazovanji in neznankami

Izračunana variančno-kovariančna matrika Σyy neznank iz enačbe (1–3) je kvadratna matrika, ki
ima po diagonali variance neznank, izven-diagonalni elementi pa nakazujejo na morebitno korelacijo
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Zakon o prenosu varianc in kovarianc

med neznankami. Enako velja tudi za variančno-kovariančno matriko opazovanj Σyy, tudi tu izven-
diagonalni elementi nakazujejo na korelacijo med opazovanji. Vprašanje, ki se pojavi pa je, kako pa
bi prišli do korelacije med opazovanji in neznankami?

Da lahko izračunamo korelacije med neznankami in opazovanji, moramo pridobiti tako variančno-
kovariančno matriko Σyy, ki bo vsebovala stohastične informacije tako neznank kot tudi opazovanj.
Da pa jo lahko pridobimo, moramo prvo vektor neznank razširiti tako, da bo vseboval vse neznanke
iz vektorja y in vsa opazovanja iz vektorja x. Vektor označimo z y in je oblike:

y =

[

y

x

]

(1–5)

Enačba (1–2) nam prikazuje, kako se iz opazovanj (x) izračuna neznanke (y), torej lahko funkcijsko
povezavo glede na obliko novega (razširjenega) vektorja neznank iz enačbe (1–5) zapišemo kot:

y =

[

y

x

]

=

[

F(x)
x

]

= F(x) (1–6)

Na osnovi enačbe 1–5 izračunajmo razširjeno Jakobijevo matriko J, ki ima obliko:

J =





∂y

∂x

∂x

∂x



 =

[

J

I

]

(1–7)

Jakobijeva matrika J iz enačbe (1–7) ima enako število stolpcev kot Jakobijeva matrika iz enačbe
(1–4) (število opazovanj se ni spremenilo), medtem ko ima pa več vrstic (dodali smo opazovanja med
neznanke). Vidi se, da je prvi del, to so parcialni odvodi po neznankah v vektorju y, ostaja enak, v
drugem delu pa imamo enotsko matriko (odvodi opazovanj po samih seboj). Variančno kovariančna
matrika Σyy ima, glede na enačbo zakona o prenosu varianc in kovarianc iz enačbe (1–3), obliko:

Σyy = JΣxxJ
T

=

[

J

I

]

Σxx

[

JT I
]

=

[

JΣxxJT JΣxx

ΣxxJT Σxx

]

=

[

Σyy Σyx

Σxy Σxx

]

(1–8)

Iz enačbe (1–8) vidimo, da po diagonali dobimo ravno variančno-kovariančni matriki neznank Σyy

(prvi del) in opazovanj Σxx (drugi del). Izven-diagonalni matriki Σyx in Σxy pa sta oblike:

Σyx = ΣT
xy = JΣxx =















σy1x1
σy1x2

σy1x3
· · · σy1xn

σy2x1
σy2x2

σy2x3
· · · σy2xn

...
...

...
...

...
σymx1

σymx2
σymx3

· · · σymxn















(1–9)

Matrika Σyx predstavlja izhodišče za izračun korelacij med neznankami in opazovanji. Za neznanko
j in opazovanje i tako dobimo:

ρyjxi
=

σyjxi

σyj
σxi

(1–10)

Kovarianco ρyjxi
dobimo iz matrike Σyx iz enačbe (1–9) (j-ta vrstica in i-ti stolpec), standardni odklon

σyj
dobimo iz variančno-kovariančne matrike Σyy (vzamemo j-ti diagonalni element) in standardni

odklon σxi
iz variančno-kovariančne matrike Σxx (vzamemo i-ti diagonalni element), ki pa predstavlja

podatek naloge.
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1.3 Postopek izvedbe zakona o prenosu varianc in kovarianc

Pri prenosu varianc in kovarianc tako postopamo v naslednjem vrstnem redu:

1. Pridobimo opazovanja xi (i = 1, . . . , n) in informacijo o natančnosti opazovanj; standardne
odklone opazovanj σi (i = 1, . . . , n) in morebitne korelacije med opazovanji ρij (i, j = 1, . . . , n∧
i 6= j). Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.

2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.

3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.

4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.

5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.

6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρij (i, j = 1, . . . , m ∧ i 6= j).

7. Če naloga zahteva, iz variančno-kovariančne matrike Σyx izračunamo tudi korelacije med ne-
znankami in opazovanji ρyjxi

(j = 1, . . . , m i = 1, . . . , n).

1.4 Geometrijski prikaz prenosa varianc in kovarianc pri primerih geo-

detske izmere

Predstavimo si geometrijsko ozadje zakona o prenosu varianc in kovarianc na primerih določitve
koordinat novih točk v ravnini. Prikazali bomo štiri metode izmere, to so polarna izmera, zunanji
urez, ločni presek in izmera GNSS. V vseh primerih imamo na voljo dve opazovanji, s katerima
izračunamo koordinate nove točke. Pri terestričnih metodah določitve koordinat (polarna izmera,
zunanji urez in ločni presek) izhajamo iz dveh danih točk, medtem ko pri izmeri GNSS izhajamo iz
ene same dane točke.

V spodnjih primerih bomo prikazali, kako lahko geometrijsko prikažemo natančnost izmerjenih opa-
zovanj in kako se le-ta odraža pri izračunu koordinat. Koordinate načeloma izračunamo preko raz-
ličnih matematičnih formul, geometrijsko pa jih dobimo s preseki premic in/ali krožnic.

1.4.1 Polarna izmera

Pri polarni izmeri merimo polarni kot (α) in dolžino (d). Obe opazovanji izmerimo na eni dani
točki (A), kjer nam izhodiščno smer (orientacijo) podaja smer proti drugi dani točki (B). Dolžina je
izmerjena z natančnostjo σd, medtem ko je kot izmerjen z natančnostjo σα. Situacijo polarne izmere
prikazuje slika 1–1. Detajlen prikaz geometrije je pri točki, kjer je oznaka T prisotna. Ostale lokacije
prikazujejo vpliva natančnosti opazovanj in geometrije na kakovost določenega položaja točke T pri
polarni izmeri.

Geometrijsko je položaj nove točke T določen s presečiščem krožnice in premice. Krožnico realizira
izmerjena dolžina d, premico pa krak kota α, od stojiščne točke A proti novi točki T . Geometrijski
prikaz natančnosti opazovanj lahko vidimo iz slike. Natančnost izmerjenega kota nam pove, da je

3
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Slika 1–1: Zakon o prenosu varianc in kovarianc pri polarni izmeri

pravi položaj točke T lahko malo levo ali malo desno glede na zveznico AT , širina območja je podana
s standardnim odklonom. Na sliki je to predstavljeno z modrimi pravokotniki. Natančnost izmerjene
dolžine pa nam pove, da je pravi položaj točke T lahko malo bližje ali malo bolj stran, glede na točko
A. Na sliki je to predstavljeno z rdečimi deli kolobarja. Kombinacija obeh opazovanj pa so vijolični
“pravokotniki”1, ki predstavljajo območje, kjer se zelo verjetno nahaja prava točka T .

Slika 1–1 prikazuje številne različne lege točke T , ki se medseboj razlikujejo po tem, da imajo različno
orientacijo (smerni kot) in različno oddaljenost, glede na točko A, pri tem, da sta vse kombinacije
natančnosti opazovanj enaki. Pri teh položajih točke T prikazujemo samo še vijolične pravokotnike.
Iz slike lahko vidimo, da enaka natančnost izmerjene dolžine poda vedno enako dimenzijo vijolič-
nega pravokotnika v smeri izmerjene dolžine, neodvisno od položaja točke T . Po drugi strani, pa
natančnost izmerjenega kota poda različne širine vijoličnih pravokotnikov, prečno na smer AT , če se
od točke A oddaljujemo. Natančnost položaja točke T je pri polarni izmeri odvisna od oddaljenosti
od točke A in neodvisna od smeri orientacije (položaja točke B). Položaj točke T je določen bolj
kakovostni, če je bližje točki A in če sta obe opazovanji izmerjeni kakovostno.

1.4.2 Zunanji urez

Podobno, kot pri polarni izmeri, lahko geometrijsko prikažemo tudi zunanji urez, kar prikazujemo na
sliki 1–2. Pri zunanjem urezu izmerimo dva kota, α in β, prvega na točki A (med B in T ) in drugega
na točki B (med A in T ). Položaj točke T je določen s presečiščem dveh premic, ki ju definirata
oba kota. Natančnosti obeh kotov sta podani s pravokotniki, kjer z modrimi prikazujemo natančnost
kota α, z rdečimi pa natančnost kota β. Obomčje, kjer se verjetno nahana pravi položaj točke je
spet prikazan s preseki obeh pravokotnikov in so prikazani v vijoličnem.

1pri poglavju Elipse pogreškov bomo videli, da pravi položaj točke leži nekje znotraj elipse
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Slika 1–2: Zakon o prenosu varianc in kovarianc pri zunanjem urezu

Na sliki 1–2 so prikazani različni položaji točke T , pri tem, da sta natančnosti izmerjenih kotov isti
za vse položaje. Iz slike je razvidno, da na velikost in obliko vijoličnega območja vpliva predvsem
geometrija točk A, B in T , ki doloćajo kot, pod katerim se sekata obe premici kotov α in β. Tu lahko
ovrednotimo izraz “slabi in dobri preseki”, ki se nanašajo na velikost in obliko vijoličnega območja v
odvisosti od kota, pod katerim se sekata obe premici. Dober presek je takrat, ko je vijolično območje
blizu kvadrata in majhno. Slab presek je takrat, ko je vijolično območje zelo veliko ali zelo raztegnjen
pravokotnik. Vidimo, da so vijolični pravokotniki manjši, če se bosta obe premici sekali pod pravim
kotom. V praksi se zato izogibamo situacij z majhnim kotom presekov.

1.4.3 Ločni presek

Pri ločnem preseku položaj točke T določimo z dvema izmerjenima dolžinama, a in b, geometrijsko
pa je položaj določen s presekom dveh krožnic. Na sliki 1–3 različne situacije. Če predpostavimo,
da je natančnost obeh dolžin enaka in neodvisna od velikosti dolžine, potem je natančnost položaja
točke T odvisna zgolj od geometrije točk A, B in T . Tudi tu težimo k tem, da se obe krožnici sekata
pod kotom, ki je bližje pravemu kotu. Položaj točke T pri zelo majhnem presečnem kotu je slabše
kakovosti.

1.4.4 Izmera GNSS

Geometrijski prikaz zakona o prenosu varianc in kovarianc pri izmeri GNSS pa prikazuje slika 1–4.
Položaj točke T je določen tako, da med točko A (dana točka) in točko T opazujemo bazni vektor,
ki ga v ravnini predstavljata komponenti ∆y in ∆x. Položaj točke T je presek dveh premic, ki sta
med seboj vedno pravokotni, saj je ena vzporedna osi y, druga pa x. Iz slike vidimo, da na kakovost
položaja točke T vpliva samo kakovost izmerjenega baznega vektorja, medtem ko geometrija ne igra
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Slika 1–3: Zakon o prenosu varianc in kovarianc pri ločnem preseku

nobene vloge. Izmera GNSS je z geometričnega stališča tudi zelo preprosta, kar se izkaše tudi pri
izravnavi baznih vektorjev.
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Slika 1–4: Zakon o prenosu varianc in kovarianc pri izmeri GNSS

1.5 Primer 1 – trigonometrično višinomerstvo

S postopkom trigonometričnega višinomerstva želimo določiti višino HB točke B in njeno natančnost
σHB

, pri tem, da imamo podano višino HA = 320,00 m točke A, na katero smo prisilno centrirali ta-
himeter in izmerili njegovo višino i = 25,0 cm. Na točko B smo postavili reflektor na višino l = 2,0 m,
z natančnostjo σl = 5 mm. S tahimetrom smo izmerili poševno dolžino s = 100,0 m, z natančnostjo
σs = 1,0 cm, in zenitno razdaljo z = 85◦, z natančnostjo σz = 15′′. Izračunajte višino točke HB točke
B in njeno natančnost σHB

.

Postopamo po korakih izračuna, ki so predstavljeni v poglavju 1.3.

1. Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.
Ko sestavljamo vektor opazovanj x, moramo razlikovati med opazovanji in konstantami. Kot
opazovanja obravnavamo vse podatke, za katere imamo podane natančnosti. Iz naloge je
razvidno, da imajo natančnosti podana opazovanja s, z in l, medtem ko HA in i nimata podane
natančnosti, zato sta obravnavana kot konstanti. Število opazovanj je n = 3, dimenzija vekorja
x pa je zato 3 × 1. V vektor opazovanj vstavimo numerične vrednosti, vse dolžinske količine
podamo v metrih, kotne pa v radianih:

l =









s

z

l









=









100,0 m
1,4835299
2,0 m









(1–11)

Sestavimo variančno-kovariančno matriko Σxx opazovanj, ki so različne natančnosti, a medseboj
nekorelirana. Dobimo:

7



GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Zakon o prenosu varianc in kovarianc

Σxx =









σ2
s 0 0

0 σ2
z 0

0 0 σ2
l









=









1,000 × 10−4 m2 0 0
0 5,288 × 10−9 0
0 0 2,500 × 10−5 m2









(1–12)

2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.
Ker nas zanima le višina HB točke B, velja m = 1, torej:

y = [HB] (1–13)

3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.
Izhajamo iz enačbe trigonometričnega višinomerstva (zanemarimo vpliv refrakcije in ukrivlje-
nosti Zemlje) in dobimo:

HB = HA + s cos z + i − l = 326,9656 m (1–14)

4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.
Izračunati moramo parcialne odvode neznanke po vseh opazovanjih in sestaviti matriko J. Ker
je enačba (1–14) enostavna, bomo samo zapisali Jakobijevo matriko J:

J =
[

∂HB

∂s
∂HB

∂z
∂HB

∂l

]

=
[

cos z −s sin z −1
]

=

=
[

0,08716 −99,61947 −1,00000
] (1–15)

5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.
Ko imamo sestavljeno kovariančno matriko opazovanj Σxx (enačba (1–12)) in Jakobijevo ma-
triko J (enačba (1–15)), lahko izračunamo kovariančno matriko neznank Σyy:

Σyy = JΣxxJT =
[

σ2
HB

]

=
[

7,8243 × 10−5 m2
]

(1–16)

6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρi,j (i, j = 1, . . . , m ∧ i 6= j).
Izračunamo še natančnost višine točke B:

σHB
= 0,0088 m (1–17)
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Zakon o prenosu varianc in kovarianc

1.6 Primer 2 – geodetski polarni in kartezični koordinatni sistem

Podani imamo dve točki v geodetskem kartezičnem koordinatnem sistemu s pripadajočimi natanč-
nostmi, in sicer A(yA, xA) = (461 300,0 m, 100 600,0 m) (σyA

= 0,1 m, σxA
= 0,075 m) in B(yB, xB) =

(461 500,0 m, 100 500,0 m) (σyB
= 0,08 m, σxB

= 0,05 m), kot to prikazuje slika 1–5. Izračunaj kompo-
nente geodetskega polarnega koordinatnega sistema, to so: dolžino med točkama dAB in oba smerna
kota νB

A ter νA
B ter njihove natančnosti (σdAB

, σνB
A

in σνA
B

) in korelacije (ρdABνB
A

, ρdABνA
B

in ρνB
A

νA
B

).

y

x

νB
A

νA
B

dAB

r

A

r B

Slika 1–5: Skica obeh točk in elementov geodetskega polarnega koordinatnega sistema

Rešitev naloge poteka po spodnjih alinejah.

1. Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.
Podatki naloge kažejo na to, da imamo n = 4 opazovanj, to so koordinate obeh točk, saj imajo
podane natančnosti. Vetkor opazovanj x je torej:

l =













yA

xA

yB

xB













=













461 300,0 m
100 600,0 m
461 500,0 m
100 500,0 m













(1–18)

Sestavimo variančno-kovariančno matriko Σxx opazovanj, ki so različne natančnosti, a medseboj
nekorelirana. Matrika je zato diagonalna, po diagonali pa so variance enake:

σ2
yA

= 1,000 × 10−2 m2 σ2
xA

= 5,625 × 10−3 m2

σ2
yB

= 6,400 × 10−3 m2 σ2
xB

= 2,500 × 10−3 m2
(1–19)

2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.
Zanimajo nas vsi trije elementi geodetskega polarnega koordinatnega sistema, torej:

y =









dAB

νB
A

νA
B









(1–20)
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Zakon o prenosu varianc in kovarianc

3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.
Izhajamo iz enačb pretvorbe med geodetskim kartezičnim koordinatnim sistemom in geodetskih
polarnim koordinatnim sistemom, torej:

dAB =
√

(yB − yA)2 + (xB − xA)2 = 223,607 m

νB
A = arctan

yB − yA

xB − xA

= 116◦33′54,2′′

(1–21)

4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.
Ker imamo n = 3 neznanke in n = 4 opazovanja, je matrika J dimenzije 3 × 4 in ima obliko
(parcialne odvode izpeljite sami za vajo):

J =















∂dAB

∂yA

∂dAB

∂xA

∂dAB

∂yB

∂dAB

∂xB

∂νB
A

∂yA

∂νB
A

∂xA

∂νB
A

∂yB

∂νB
A

∂xB

∂νA
B

∂yA

∂νA
B

∂xA

∂νA
B

∂yB

∂νA
B

∂xB















=









−0,89443 0,44721 0,89443 −0,44721
0,00200 0,00400 −0,00200 −0,00400
0,00200 0,00400 −0,00200 −0,00400









(1–22)

5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.
Ko imamo sestavljeno kovariančno matriko opazovanj Σxx (enačba (1–19)) in Jakobijevo ma-
triko J (enačba (1–22)), lahko izračunamo kovariančno matriko neznank Σyy:

Σyy = JΣxxJT =











σ2
dAB

σdABνB
A

σdABνA
B

σdABνB
A

σ2

νB
A

σνB
A

νA
B

σdABνA
B

σνB
A

νA
B

σ2

νA
B











=

=









1,4745 × 10−2 −1,4803 × 10−5 −1,4803 × 10−5

−1,4803 × 10−5 1,9560 × 10−7 1,9560 × 10−7

−1,4803 × 10−5 1,9560 × 10−7 1,9560 × 10−7









(1–23)

6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρi,j (i, j = 1, . . . , m ∧ i 6= j).
Prvo izračunajmo natančnosti izračunanih količin:

σdAB
= 0,12 m σνB

A
= 91,2′′ σνA

B
= 91,2′′ (1–24)

V drugo pa izračunajmo še korelacije med neznankami:

ρdABνB
A

= −0,28 ρdABνA
B

= −0,28 ρνB
A

νA
B

= 1,00 (1–25)

Izračunane natančnosti iz enačbe (1–24) in korelacije iz enačbe (1–25) podajajo zanimive rezultate.
Vidimo, da sta natančnosti obeh kotov enaki, kota sta popolnoma korelirana (ρνB

A
νA

B
= 1,00), oba

kota sta tudi enako korelirana z dolžino. Rezultat je seveda pričakovan. Smerna kota sta povezana
z enačbo:

νA
B = νB

A + 180◦ (1–26)

Kar pomeni, da če se spremeni en kot, se mora za enako vrednost spremeniti tudi drug kot. Taka
linearna enačba je že zadosten pogoj za popolno korelacijo.
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GIUN 2. letnik; Analiza opazovanj v geodeziji 2 (vaje) Zakon o prenosu varianc in kovarianc

1.7 Primer 3 – izračun dolžine med točkama

Določiti želimo dolžino D med točkama A in B in njeno natančnost σD. A ker je med točkama
ovira, dolžine neposredno ne moremo izmeriti, zato smo stabilizirali začasno točko T , na kateri smo
izmerili dve stranici (a in b) in en kot (α). Situacijo prikazuje slika 1–6. Opazovanja s pripadajočimi
natančnostmi so: a = 40,00 m (σa = 0,03 m), b = 60,00 m (σb = 0,05 m) in α = 45◦ (σα = 2,5′).
Izračunaj dolžino D, njeno natančnost σD in korelacijo dolžine D z vsemi opazovanji: ρDa, ρDb in
ρDα.

b

a

D =?

α

r

A

r B

b

T

Slika 1–6: Prikaz meritev za določitev dolžine med točkama

1. Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.
V navodilih so podana tri opazovanja, to sta stranici a in b ter kot α, saj imamo za vsa tri
opazovanja podane tudi natančnosti (n = 3). Vektor opazovanj x je velikosti 3×1, vse dolžinske
količine podamo v metrih, kotne pa v radianih:

x =









a

b

α









=









40,00 m
60,00 m

0,7853982









(1–27)

Sestavimo variančno-kovariančno matriko Σxx opazovanj. Le-ta so različne natančnosti, a
medseboj nekorelirana. Matrika je velikosti 3 × 3, variance (diagonalni elementi matrike) pa
imajo vrednosti:

σ2
a = 9,000 × 10−4 m2

σ2
b = 2,500 × 10−3 m2

σ2
α = 5,289 × 10−7

(1–28)

2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.
V prvi vrsti nas zanima izračun dolžine D. A ker naloga zahteva tudi izračun korelacij med
neznanko (D) in vsemi opazovanji (a, b in α), potem bomo vektor neznank y razširili tako, da
bomo vanj dali tako neznanko D kot tudi vsa opazovanja a, b in α, Zato bo m = 4 in vektor y

bo velikosti 4 × 1:

y =













D

a

b

α













(1–29)
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3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.
Izraziti moramo, kako se dolžina D izrazi s stranicama a in b ter kotom α. S slike 1–6 vidimo, da
imamo trikotnik, kjer imamo izmerjeni dve stranici in vmesni kot, računamo pa tretjo stranico.
Uporabimo torej kosinusni izrek in dobimo:

D =
√

a2 + b2 − 2ab cos α = 42,496 m (1–30)

Za vse ostale tri “neznanke” pa nastavimo identitete:

a = a b = b α = α (1–31)

4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.
Izračunajmo prvo parcialne odvode neznanke D po vseh treh opazovanjih. Odvajamo enačbo
(1–30) po a, b in α in dobimo:

∂D

∂a
=

a − b cos α

D
= −0,05710

∂D

∂b
=

b − a cos α

D
= 0,74633

∂D

∂α
=

ab sin α

D
= 39,935 m

(1–32)

Odvajati moramo tudi enačbe (1–31) po vseh treh opazovanjih. Jakobijeva matrika je velikosti
4 × 3 in ima obliko:

J =





















∂D
∂a

∂D
∂b

∂D
∂α

∂a
∂a

∂a
∂b

∂a
∂α

∂b
∂a

∂b
∂b

∂b
∂α

∂α
∂a

∂α
∂b

∂α
∂α





















=













−0,05710 0,74633 39,93474
1,0 0,0 0,0
0,0 1,0 0,0
0,0 0,0 1,0













(1–33)

5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.
Ko imamo sestavljeno kovariančno matriko opazovanj Σxx (enačba (1–28)) in Jakobijevo ma-
triko J (enačba (1–33)), lahko izračunamo kovariančno matriko neznank Σyy:

Σyy = JΣxxJT =













σ2
D σDa σDb σDα

σDa σ2
a 0 0

σDb 0 σ2
b 0

σDα 0 0 σ2
α













=

=













2,2388 × 10−3 −5,1388 × 10−5 1,8658 × 10−3 2,1119 × 10−5

−5,1388 × 10−5 9,0000 × 10−4 0,0000 0,0000
1,8658 × 10−3 0,0000 2,5000 × 10−3 0,0000
2,1119 × 10−5 0,0000 0,0000 5,2885 × 10−7













(1–34)
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6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρi,j (i, j = 1, . . . , m ∧ i 6= j).
Prvo izračunajmo natančnost σD izračunane dolžine D. Dobimo:

σD =
√

σ2
D = 0,047 m (1–35)

Iz prve vrstice kovariančne matrike neznank Σyy v enačbi (1–34) pa izračunajmo še vse tri
korelacije neznanke z opazovanji, torej:

ρDa =
σDa

σDσa

= −0,04

ρDb =
σDb

σDσb

= 0,79

ρDα =
σDα

σDσα

= 0,61

(1–36)
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1.8 Primer 4 – parcela pravokotne oblike, merjeni stranici

Parcela ima obliko pravokotnega trikotnika, kot to prikazuje slika 1–7. Z razdaljemerom, ki ima
podano natančnost izmerjenih dolžin kot σd = 1,0 cm/10 m smo izmerili stranici a = 61,090 m in
b = 50,170 m. Izračunajte oba notranja kota α in β, njuni natančnosti σα in σβ ter njuno korelacijo
ραβ . Primerjaj rezultate z enako nalogo lanskega leta, pri poglavju Prenos pravih pogreškov.

α

β

a

b

Slika 1–7: Skica opazovanj v parceli oblike pravokotnega trikotnika

1. Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.
Izmerjeni imamo dve stranici, a in b, zato je n = 2. Vektor opazovanj x je velikosti 2 × 1 in
ima obliko:

x =

[

a

b

]

=

[

61,090 m
50,170 m

]

(1–37)

Da sestavimo kovariančno matriko opazovanj Σxx moramo prvo izračunati natančnosti obeh
opazovanj. Velja:

σa = a · σd = 0,061 m σb = a · σd = 0,050 m (1–38)

Na osnovi izračunanih standardnih odklonov iz enačbe (1–38) sestavimo variančno-kovariančno
matriko Σxx, ki je velikosti 2 × 2, in ima obliko:

Σxx =

[

σ2
a 0

0 σ2
b

]

=

[

3,732 × 10−3 m2 0
0 2,517 × 10−3 m2

]

(1–39)

2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.
Glede na navodilo naloge, nas zanimata oba notranja kota, to sta α in β, zato je m = 2 in
vektor y velikosti 2 × 1:

y =

[

α

β

]

(1–40)

3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.
Izračun obeh neznank izhaja iz osnovnih definicij kotnih funkcij v pravokotnem trikotniku.
Velja:

α = arctan
b

a
= 39◦23′40′′ β = arctan

a

b
= 50◦36′20′′ (1–41)
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4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.
Izračunamo vse parcialne odvode in sestavimo matriko J. Le-ta je velikosti 2×2 in ima obliko:

J =





∂α
∂a

∂α
∂b

∂β

∂a

∂β

∂b



 =





−b
a2+b2

a
a2+b2

b
a2+b2

−a
a2+b2



 =

[

−8,028 × 10−3 9,776 × 10−3

8,028 × 10−3 −9,776 × 10−3

]

(1–42)

5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.
Ko imamo sestavljeno kovariančno matriko opazovanj Σxx (enačba (1–39)) in Jakobijevo ma-
triko J (enačba (1–42)), lahko izračunamo kovariančno matriko neznank Σyy:

Σyy = JΣxxJT =

[

σ2
α σαβ

σαβ σ2
β

]

=

[

4,811 × 10−7 −4,811 × 10−7

−4,811 × 10−7 4,811 × 10−7

]

(1–43)

6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρi,j (i, j = 1, . . . , m ∧ i 6= j).
Natančnosti obeh kotov sta:

σα = 143′′ σβ = 143′′ (1–44)

Korelacija med obema kotoma ραβ pa je enaka:

ραβ = −1,00 (1–45)

Kakšna pa je primerjava rezultatov iz enačb (1–44) in (1–45) z rezultati naloge pri prenosu varianc
in kovarianc? V primeru prenosa pravih pogreškov (glej poglavje Zakon o prenosu pravih pogreškov

prejšnjega leta) smo ugotovili, da lahko obstaja situacija ob ustrezni geometriji problema in velikosti
pravih pogreškov opazovanj, ko bo izračun neznank neodvisen od pogreškov v opazovanjih. Tam sta
bila prava pogreška obeh kotov (∆α in ∆β) enaka nič, saj so bili pravi pogreški dolžin taki, da se je
ohranjala oblika trikotnika. V primeru zakona o prenosu varianc in kovarianc, pa take situacije , ko
opazovanja niso korelirana, ni več, saj ne gledamo več na posamezne pogreške ampak na statistične
lastnosti pogreškov.
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1.9 Primer 5 – slepi poligon treh novih točk

Določiti želimo koordinate treh novih točk (T1, T2 in T3) na osnovi dveh dani točk (A in B) ter
opazovanj slepega poligona (d1, β1, d2, β2, d3 in β3), kot to prikazuje slika 1–8. Dane koordinate
točk A in B sta:

• A(yA, xA) = (461 300,0 m, 100 600,0 m) in

• B(yB, xB) = (461 400,0 m, 100 550,0 m).

Opazovanja v slepem poligonu so enaka:

• d1 = 75,0 m, β1 = 100◦,

• d2 = 50,0 m, β2 = 230◦ in

• d3 = 100,0 m, β3 = 75◦.

Če je natančnost vseh dolžin enaka σd = 5,0 cm in je enaka tudi natančnost vseh kotov σβ =
2′, izračunaj koordinate točk T1(y1, x1), T2(y2, x2) in T3(y3, x3). S prenosom varianc in kovarianc
izračunaj tudi natančnosti vseh koordinat in vse korelacije med vsemi koordinatami.

y

x

νB
A

β1

β2

β3

d1

d2

d3

r

A

r B

b

T1

b

T2

b

T3

Slika 1–8: Skica slepega poligona dveh danih in treh novih tock

1. Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.
Število opazovanj je 6, ki jih razvrstimo kot:

x =
[

d1 β1 d2 β2 d3 β3

]T

(1–46)

V vektorju x iz enačbe (1–46) so dolžinske količine v metrih, kotne količine pa v radianih.
Variančno-kovariančna matrika je velikosti 6×6, diagonalna, kjer so na diagonali elementi:

ΣD =
[

σ2
d σ2

β σ2
d σ2

β σ2
d σ2

β

]

(1–47)

Vrednost varianc iz enačbe (1–47) sta σ2
d = 0,0025 m2 in σ2

β = 3,385 × 10−7.
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2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.
Določiti želimo koordinate treh točk novih točk (T1(y1, x1), T2(y2, x2) in T3(y3, x3)), torej je
m = 6 in velja:

y =
[

y1 x1 y2 x2 y3 x3

]T

(1–48)

3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.
Uporabimo enačbe za izračun točk v slepem poligonu. Velja:

y1 = yB + d1 sin
(

νT1

B

)

= 461 444,680 m

x1 = xB + d1 cos
(

νT1

B

)

= 100 610,239 m

y2 = yB + d1 sin
(

νT1

B

)

+ d2 sin
(

νT2

T1

)

= 461 494,590 m

x2 = xB + d1 cos
(

νT1

B

)

+ d2 cos
(

νT2

T1

)

= 100 613,234 m

y3 = yB + d1 sin
(

νT1

B

)

+ d2 sin
(

νT2

T1

)

+ d3 sin
(

νT3

T2

)

= 461 462,968 m

x3 = xB + d1 cos
(

νT1

B

)

+ d2 cos
(

νT2

T1

)

+ d3 cos
(

νT3

T2

)

= 100 708,103 m

(1–49)

V enačbi (1–49) smerne kote med točkami (νT1

B , νT2

T1
in νT3

T2
) izračunamo kot:

νT1

B = νB
A + β1 − 180◦ = 36◦33′54′′

νT2

T1
= νB

A + β1 + β2 − 2 · 180◦ = 86◦33′54′′

νT3

T2
= νB

A + β1 + β2 + β3 − 3 · 180◦ = 341◦33′54′′

(1–50)

4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.
Izračunati moramo vse parcialne odvode, vseh 6 neznank moramo odvajati o vseh 6-ih opazo-
vanjih. Imamo torej 36 parcialnih odvodov, ki pa imajo obliko:

• parcialni odvodi y1:
∂y1

∂d1

= sin
(

νT1

B

) ∂y1

∂β1

= d1 cos
(

νT1

B

)

∂y1

∂d2

= 0
∂y1

∂β2

= 0

∂y1

∂d3

= 0
∂y1

∂β3

= 0

(1–51)

• parcialni odvodi x1:
∂x1

∂d1

= cos
(

νT1

B

) ∂x1

∂β1

= −d1 sin
(

νT1

B

)

∂x1

∂d2

= 0
∂x1

∂β2

= 0

∂x1

∂d3

= 0
∂x1

∂β3

= 0

(1–52)
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• parcialni odvodi y2:

∂y2

∂d1

= sin
(

νT1

B

) ∂y2

∂β1

= d1 cos
(

νT1

B

)

+ d2 cos
(

νT2

T1

)

∂y2

∂d2

= sin
(

νT2

T1

) ∂y2

∂β2

= d2 cos
(

νT2

T1

)

∂y2

∂d3

= 0
∂y2

∂β3

= 0

(1–53)

• parcialni odvodi x2:

∂x2

∂d1

= cos
(

νT1

B

) ∂x2

∂β1

= −d1 sin
(

νT1

B

)

− d2 sin
(

νT2

T1

)

∂x2

∂d2

= cos
(

νT2

T1

) ∂x2

∂β2

= −d2 sin
(

νT2

T1

)

∂x2

∂d3

= 0
∂x2

∂β3

= 0

(1–54)

• parcialni odvodi y3:

∂y3

∂d1

= sin
(

νT1

B

) ∂y3

∂β1

= d1 cos
(

νT1

B

)

+ d2 cos
(

νT2

T1

)

+ d3 cos
(

νT3

T2

)

∂y3

∂d2

= sin
(

νT2

T1

) ∂y3

∂β2

= d2 cos
(

νT2

T1

)

+ d3 cos
(

νT3

T2

)

∂y3

∂d3

= sin
(

νT3

T2

) ∂y2

∂β3

= d3 cos
(

νT3

T2

)

(1–55)

• parcialni odvodi x3:

∂x3

∂d1

= cos
(

νT1

B

) ∂x3

∂β1

= −d1 sin
(

νT1

B

)

− d2 sin
(

νT2

T1

)

− d3 sin
(

νT3

T2

)

∂x3

∂d2

= cos
(

νT2

T1

) ∂x3

∂β2

= −d2 sin
(

νT2

T1

)

− d3 sin
(

νT3

T2

)

∂x3

∂d3

= cos
(

νT3

T2

) ∂x2

∂β3

= −d3 sin
(

νT3

T2

)

(1–56)

Zgornje parcialne odvode vstavimo v Jakobijevo matriko J in dobimo:

J =





































∂y1

∂d1

∂y1

∂β1

∂y1

∂d2

∂y1

∂β2

∂y1

∂d1

∂y1

∂β3

∂x1

∂d1

∂x1

∂β1

∂x1

∂d2

∂x1

∂β2

∂x1

∂d1

∂x1

∂β3

∂y2

∂d1

∂y2

∂β1

∂y2

∂d2

∂y2

∂β2

∂y2

∂d1

∂y2

∂β3

∂x2

∂d1

∂x2

∂β1

∂x2

∂d2

∂x2

∂β2

∂x2

∂d1

∂x2

∂β3

∂y3

∂d1

∂y3

∂β1

∂y3

∂d2

∂y3

∂β2

∂y3

∂d1

∂y3

∂β3

∂x3

∂d1

∂x3

∂β1

∂x3

∂d2

∂x3

∂β2

∂x3

∂d1

∂x3

∂β3





































=

=

























0,596 60,239 0,000 0,000 0,000 0,000
0,803 −44,680 0,000 0,000 0,000 0,000
0,596 63,234 0,998 2,996 0,000 0,000
0,803 −94,590 0,060 −49,910 0,000 0,000
0,596 158,103 0,998 97,864 −0,316 94,868
0,803 −62,968 0,060 −18,287 0,949 31,623

























(1–57)
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5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.
Izračun variančno-kovariančne matrike Σyy sledi po sestavi variančno-kovariančne matrike Σxx

in Jakobijeve matrike J, izpis matrike pa bomo tu, zaradi velikosti matrike, izpustili. Vsi
rezultati so podani v nadaljevanju.

6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρi,j (i, j = 1, . . . , m ∧ i 6= j).
Izračunana natančnost koordinat za vsako točko in pripadajoča korelacija so:

σy1
= 0,046 m σx1

= 0,048 m ρy1x1
= 0,130

σy2
= 0,069 m σx2

= 0,074 m ρy2x2
= −0,143

σy3
= 0,136 m σx3

= 0,075 m ρy3x3
= −0,232

(1–58)

Vse ostale korelacije lahko zapišemo v pregledni obliki:

y1 x1 y2 x2 y3 x3

y1 1,00
x1 0,13 1,00
y2 0,69 0,07 1,00
x2 −0,21 0,86 −0,14 1,00
y3 0,66 −0,18 0,74 −0,53 1,00
x3 −0,03 0,71 0,00 0,71 −0,23 1,00

Korelacije v zgornji preglednici so podane za vse možne kombinacije neznank. V sivem so kore-
lacije neznanke s samimi seboj, zato vedno vrednost 1. Modre so korelacije med koordinatama
iste točke.

Rezultati prikazanega primera prikazujejo osnovno lastnost slepega poligona. Kot prvo, iz mate-
matičnega modela (enačbi (1–49) in (1–50)) lahko razberemo, kako so koordinate posamezne točke
odvisne od opazovanj. Da izračunamo koordinate i-te točke, moramo uporabiti koordinate obeh
danih točk in vsa opazovanja do te, i-te točke. Posledično, natančnost koordinat točk v slepem
poligonu pada z “oddaljevanjem” od začetnih (danih) točk, kjer si kot oddaljenost tu predstavljamo
število vmesnih točk od dane točke do i-te točke. Standardni odkloni se z oddaljevanjem od danih
točk večajo, kakovost je vedno slabša. V praksi bi zato morali biti zelo previdni pri uporabi slepega
poligona, zato, če je le možno, naj se poligon zaključi na dani točki.
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1.10 Primer 6 – površina zaključenega poligona

Določiti želimo površino parcele S, kjer smo z geodetskimi metodami določili koordinate štirih točk,
kot to prikazuje slika 1–9. Koordinate točk so T1(y1, x1) = (10 m, 10 m), T2(y2, x2) = (60 m, 20 m),
T3(y3, x3) = (80 m, 60 m) in T4(y4, x4) = (25 m, 75 m), podane pa imamo tudi natančnosti vseh ko-
ordinat, in sicer σy1

= 0,010 m, σx1
= 0,020 m, σy2

= 0,015 m, σx2
= 0,020 m, σy3

= 0,005 m,
σx3

= 0,005 m, σy4
= 0,020 m, σx4

= 0,010 m . Izračunaj površino parcele S, njeno natančnost σS in
korelacije površine parcele z vsemi opazovanji (ρSy1

, . . . , ρSx4
).

y

x

rs

rs

rs

rs

b

T1(y1, x1)

b

T2(y2, x2)

b

T3(y3, x3)

b

T4(y4, x4)

S

Slika 1–9: Določitev površine iz koordinat točk poligona

1. Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.
Računamo površino S iz koordinat štirih točk, torej n = 8. Vektor opazovanj x ima obliko:

x =



































y1

x1

y2

x2

y3

x3

y4

x4



































=



































10,0 m
10,0 m
60,0 m
20,0 m
80,0 m
60,0 m
25,0 m
75,0 m



































(1–59)

Variance opazovanj, ki sestavljajo variančno-kovariančno matriko Σxx velikosti 8 × 8, so:

σ2
y1

= 0,000100 m2 σ2
x1

= 0,000400 m2

σ2
y2

= 0,000225 m2 σ2
x2

= 0,000400 m2

σ2
y3

= 0,000025 m2 σ2
x3

= 0,000025 m2

σ2
y4

= 0,000400 m2 σ2
x4

= 0,000100 m2

(1–60)

2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.
Ker računamo površino parcele (poligona) S, je zato število neznank enako m = 1. Vektor
neznank y je podan z:

y =
[

S
]

(1–61)
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3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.
Površina zaključenega poligona na osnovi koordinat točk poligona se za podan primer izračuna
kot:

S =
1
2

(y1 − y2)(x1 + x2) +
1
2

(y2 − y3)(x2 + x3)+

1
2

(y3 − y4)(x3 + x4) +
1
2

(y4 − y1)(x4 + x1)
(1–62)

Za izračun površine S iz enačbe (1–62) uporabimo numerične vrednosti opazovanj iz enačbe
(1–59) in dobimo:

S = 2 800,00 m2 (1–63)

4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.
Parcialni odvodi enačbe (1–62) po vseh koordinatah (opazovanjih) imajo, po krajši matematični
akrobaciji, obliko:

∂S

∂y1

=
x2 − x4

2
= −27,50 m

∂S

∂x1

= −y2 − y4

2
= −17,50 m

∂S

∂y2

=
x3 − x1

2
= 25,00 m

∂S

∂x2

= −y3 − y1

2
= −35,00 m

∂S

∂y3

=
x4 − x2

2
= 27,50 m

∂S

∂x3

= −y4 − y2

2
= 17,50 m

∂S

∂y4

=
x1 − x3

2
= −25,00 m

∂S

∂x4

= −y1 − y3

2
= 35,00 m

(1–64)

Matrika J je velikosti m × n = 1 × 8 in ima obliko:

J =
[

∂S
∂y1

∂S
∂x1

∂S
∂y2

∂S
∂x2

∂S
∂y3

∂S
∂x3

∂S
∂y4

∂S
∂x4

]

=
[

−27,50 m −17,50 m 25,00 m −35,00 m 27,50 m 17,50 m −25,00 m 35,00 m
]

(1–65)

5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.
Ko imamo sestavljeno kovariančno matriko opazovanj Σxx (iz enačbe (1–60)) in Jakobijevo
matriko J (enačba (1–65)), lahko izračunamo kovariančno matriko neznank Σyy:

Σyy =
[

σ2
S

]

=
[

1,2278 m4
]

(1–66)

6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρi,j (i, j = 1, . . . , m ∧ i 6= j).
Natančnost površine S je torej:

σS = 1,11 m2 (1–67)

7. Izračun korelacije neznanke S z vsemi opazovanji iz vektorja x .
Za izračun korelacije med neznankami in opazovanji moramo razširiti vektor neznank v (glej
pod-poglavje 1.2) tako, da bo enak:

y =

[

S

x

]

=

[

y

x

]

(1–68)
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Izračunajmo sedaj razširjeno jakobijevo matriko J, ki ima obliko:

J =

[

∂y

∂x

∂x

∂x

]

=

[

J

I

]

(1–69)

Variančno kovariančna matrika Σyy ima obliko:

Σyy = JΣxxJ
T

=

[

J

I

]

Σxx

[

J I
]T

=

[

JΣxxJT JΣxx

ΣxxJT Σxx

]

=

[

Σyy Σyx

Σxy Σxx

]

(1–70)

Korelacije med neznankami in opazovanji pridobimo iz matrike Σyx, numerično pa velja:

ρSy1
= −0,25 ρSx1

= −0,32

ρSy2
= 0,34 ρSx2

= −0,63

ρSy3
= 0,12 ρSx3

= 0,08

ρSy4
= −0,45 ρSx4

= 0,32

(1–71)
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1.11 Primer 7 – zunanji urez

Dani sta dve točki, in sicer A(yA, xA) = (10 m, 0 m) in B(yB, xB) = (100 m, 0 m). Do nove točke
T (yT , xT ) smo izmerili dva kota, in sicer α = 30◦ in β = 45◦, oba z natančnostjo (σα = σβ = 1′), kot
to prikazuje slika 1–10. Izračunajte koordinate točke T , kovariančno matriko ΣT položaja točke T ,
natančnosti obeh koordinat σyT

, σxT
in njuno korelacijo ρyT xT

.

y

x

α β
b

A
b

B

b

T

Slika 1–10: Opazovanja zunanjega ureza za določitev koordinat nove točke

Izračun koordinat pri zunanjem urezu smo detajlno prikazali v prejšnjem letu pri poglavju Zakon o

prenosu pravih pogreškov, zato bomo tu vse izpeljave izpistili, bomo pa zapisali vse enačbe in vse
rezultate.

1. Sestavimo vektor opazovanj x in pripadajočo variančno-kovariančno matriko Σxx.
Velikost vektorja opazovanj x in kovariančne matrike Σxx določa število opazovanj, ki je v tem
primeru enako n = 2. V vektor opazovanj damo vsa opazovanja, a ker so vsa dkotne količine,
jih pretvorimo v radiane. Dobimo:

x =

[

α

β

]

=

[

0,523599
0,785398

]

(1–72)

Tudi v kovariančno matriko damo natančnosti opazovanj, ki jih pretvorimo v radiane in, seveda,
kvadriramo, saj gredo na diagonalna mesta variance opazovanj. Izven-diagonalni elementi so
enaki 0, saj nimamo podatka o korelaciji med opazovanjema. Kovariančna matrika Σxx ima
obliko:

Σxx =

[

8,462 × 10−8 0
0 8,462 × 10−8

]

(1–73)

2. Določimo vse naše neznanke yj (j = 1, . . . , m) in sestavimo vektor neznank y.
Zanimajo nas koordinate točke T , torej je m = 2, vektor neznank y pa ima obliko:

y =

[

yT

xT

]

(1–74)

3. Določimo funkcijske zveze med neznankami in opazovanji, yj = fj(x1, x2, x3, . . . , xn), (j =
1, . . . , m) in izračunamo vrednosti neznank y.
Za izračun koordinat točke T moramo prvo izračunati stranico a, stranico med točkama A in
T , ki jo dobimo na osnovi sinusnega izreka v trikotniku:

a = dAB

sin β

sin(α + β)
= 65,885 m (1–75)
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Koordinate točke T izračunamo tako, da izhajamo s točke A, uporabimo stranico a (enačba
(1–75)) in kot α. Velja:

yT = yA + a cos α = dAB

cos α sin β

sin(α + β)
= 67,058 m

xT = xA + a sin α = dAB

sin α sin β

sin(α + β)
= 32,942 m

(1–76)

4. Izračunamo vseh m × n parcialnih odvodov ∂fj

∂xi
in sestavimo Jakobijevo matriko J velikosti

m × n.
Izračunamo vse parcialne odvode, vseh neznank po vseh opazovanjih. Dobimo:

∂yT

∂α
=

−dAB

2
sin 2β

sin2(α + β)
∂yT

∂β
=

dAB

2
sin 2α

sin2(α + β)
∂xT

∂α
= dAB

sin2 β

sin2(α + β)
∂xT

∂β
= dAB

sin2 α

sin2(α + β)

(1–77)

Jakobijeva matrika J je enaka:

J =





∂yT

∂α

∂yT

∂β
∂xT

∂α
∂xT

∂β



 =

[

−48,23085 41,76915
48,23085 24,11543

]

(1–78)

5. Izračunamo kovariančno matriko neznank Σyy = JΣxxJT.
Kovariančno matriko Σyy, ki predstavlja kovariančno matriko točke T , izračunamo na osnovi
Jakobijeve matrike J iz enačbe (1–78) in kovariančne matrike opazovanj Σxx iz enačbe (1–73),
in dobimo:

Σyy =

[

σ2
yT

σyT xT

σyT xT
σ2

xT

]

=

[

3,445 × 10−4 −1,116 × 10−4

−1,116 × 10−4 2,460 × 10−4

]

m2 (1–79)

6. Iz variančno-kovariančne matrike neznank Σyy izračunamo natančnosti neznank σj (j = 1, . . . , m)
in korelacije med neznankami ρi,j (i, j = 1, . . . , m ∧ i 6= j).
Izračunamo natančnosti koordinat σyT

in σxT
ter korelacijo ρyT xT

:

σyT
= 1,86 cm σxT

= 1,57 cm ρyT xT
= −0,38 (1–80)
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