
CHAPTER 8: Orbital Ephemerides of the Sun, Moon, and Planets

E. Myles Standish and James G. Williams

8.1 Fundamental Ephemerides

The fundamental planetary and lunar ephemerides of The Astronomical Almanac, starting in the year 2003,
are DE405/LE405 of Caltech’s Jet Propulsion Laboratory (JPL). They replace JPL’s DE200 which have been
used in the almanac since 1984. Previous to 1984, the fundamental ephemerides were based upon analytical
“theories”; these are described in Section 8.2. DE405/LE405 result from a least-squares adjustment of a
previously existing ephemeris to a variety of observational data (measurements), followed by a numerical
integration of the dynamical equations of motion which describe the gravitational physics of the solar system.
These fundamental ephemerides are the bases for computing the planetary and lunar positions and other
related phenomena that are listed in the almanac.

For the final (integration) phase of the ephemeris creation process, there are three main ingredients, each of
which constitutes a major phase itself:

• the equations of motion describing the gravitational physics which govern the dynamical motions of the
bodies,

• a method for integrating the equations of motion , and

• the initial conditions and dynamical constants; i.e., the starting positions and velocities of the bodies at
some initial epoch along with the values for various constants which affect the motion (e.g., planetary
masses).

It is mainly the accuracy of the third component, the initial conditions and dynamical constants, which
determines the accuracy of modern-day ephemerides, since the other two components (the physics and the
integration method) are both believed to be sufficiently complete and accurate. The values of the initial
conditions and constants are determined by the least squares adjustment of them to the observational data
(measurements), and the accuracy of this adjustment, and thus of the ephemerides themselves, depends
primarily upon the distribution, variety, and accuracy of the observational data. This crucial part of the
ephemeris creation process is given in Section 8.5.

It is assumed that the equations of motion accurately describe the basic physics which govern the motion
of the major bodies of the solar system - at least to the presently observable accuracy. For the motion of
the Moon, the fitting of the lunar ephemeris to the lunar laser-ranging observations is used to estimate the
constants involved and to help distinguish various models of the lunar interior, Earth-raised tides, etc. The
equations of motion are given in Section 8.3.

Numerical integration of the equations of motion is the only known method capable of computing fundamental
ephemerides at an accuracy which is comparable to that of the modern-day observations; analytical theories
have not been able to attain such high accuracy. The computer program which was used to integrate the
equations of motion for DE405/LE405 has been demonstrated to be sufficiently accurate (Newhall et al.,
1983).

The reference frame for the ephemerides is the International Celestial Reference Frame (ICRF: Ma et al.,
1998). The advantages for using the frame are many; they are discussed in Section 8.6.

The independent variable of the equations of motion, and, thus, of the fundamental ephemerides themselves,
may be termed, “Teph”. It is a fully rigorous relativistic coordinate time, implicitly defined by the equations
of motion themselves. Teph may be considered similar to previously-defined “ET” or to “TDB”, since their
average rates are the same, even though there are basic differences in the definitions. The time recently
defined by the IAU, “TCB”, is mathematically equivalent to Teph; TCB and Teph differ by only a constant
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rate. (For a discussion, see Standish, 1998b).

This chapter describes the previous ephemerides used in the Astronomical Almanac [Section 8.2]; presents
the equations of motion used in computing the present ephemeris, DE405 [8.3]; gives some detail about the
numerical integration program [8.4]; describes the observational data to which DE405 was adjusted [8.5];
discusses the reference frame of the ephemerides [8.6]; gives some of the formulae used in reducing the
observational data [8.7]; presents the values of the initial conditions and constants of DE405 [8.8]; estimates
the accuracy of the ephemerides [8.9]; gives sets of Keplerian elements useful for producing approximate
planetary coordinates [8.10]; and shows the sources where DE405/LE405 may be found on CDrom and over
the Internet [8.11].

8.2 Previous Ephemerides used in the Astronomical Almanacs

8.2.1 Ephemerides Prior to 1984

Before 1984, the ephemerides for the Sun, Mercury, Venus, and Mars were based on the theories and tables of
Newcomb (1898). Computerized evaluations of the tables were used from 1960 through 1980. From 1981 to
1983, the ephemerides were based on the evaluations of the theories themselves. The ephemerides of the Sun
were derived from the algorithm given by S. Newcomb in Tables of the Sun (Newcomb, 1898). Newcomb’s
theories of the inner planets (1895–1898) served as the basis for the heliocentric ephemerides of Mercury,
Venus, and Mars. In the case of Mars, the corrections derived by F.E. Ross (1917) were applied.

Ephemerides of the outer planets, Jupiter, Saturn, Uranus, Neptune, and Pluto, were computed from the
heliocentric rectangular coordinates obtained by numerical integration (Eckert et al., 1951). Although per-
turbations by the inner planets (Clemence, 1954) were included in the printed geocentric ephemerides of the
outer planets, they were omitted from the printed heliocentric ephemerides and orbital elements.

The lunar ephemeris, designated by the serial number j = 2, was calculated directly from E.W. Brown’s
algorithm instead of from his Tables of Motion of the Moon (1919). This was specified in the Improved

Lunar Ephemeris. To obtain a strictly gravitational ephemeris expressed in the measure of time defined by
Newcomb’s Tables of the Sun, the fundamental arguments of Brown’s tables were amended by removing the
empirical term and by applying to the Moon’s mean longitude the correction, −8.''72 − 26.''74T − 11.''22T 2,
where T is measured in Julian centuries from 1900 January 0.5 (JED 2415020.0. In addition, this ephemeris
was based on the IAU (1964) System of Astronomical Constants, and was further improved in its precision
by transformation corrections (Eckert et al., 1966, 1969). The expressions for the mean longitude of the
Moon and its perigee were adjusted to remove the implicit partial correction for aberration (Clemence et al.,
1952).

8.2.2 Ephemerides from 1984 through 2002

During the years, 1984–2003, the JPL ephemerides, DE200/LE200, were the bases of the ephemerides in the
Astronomical Almanac. The equations of motion were essentially those used in JPL’s DE102 (Newhall et

al., 1983); they are also described in the Explanatory Supplement (1992). The observations to which these
ephemerides were fit is documented in Standish (1990). The reference frame of DE200 is the mean equator
and dynamical equinox of J2000, as determined and described in Standish (1982).

8.2.3 Ephemerides starting in 2003

Starting in 2003, the fundamental planetary and lunar ephemerides of the Astronomical Almanac are
DE405/LE405, referenced, as noted above, to the International Celestial Reference Frame (ICRF). The
remainder of this chapter describes the creation of DE405.
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8.3 Equations of Motion

Equations of motion describe the forces upon the planets, Sun and Moon which affect their motions and
the torques upon the Moon which affect its orientation. It is believed that the equations described here
are correct and complete to the level of accuracy of the observational data. I.e., given the accuracy of the
observations, there is nothing to suggest that other forces or different forces are present in the solar system.
The uncertainties existing in the planets’ and Moon’s motions are certainly explainable, considering the
uncertainties in the observations and in the fitted initial conditions and dynamical constants.

The major elements of this section were developed at JPL over the past few decades. Just the formulae are
given here; also included are references to their descriptions, previously published by those responsible for
their development.

The equations of motion used for the creation of DE405/LE405 included contributions from: (a) point-
mass interactions among the Moon, planets, and Sun; (b) general relativity (isotropic, parametrized post-
Newtonian); (c) Newtonian perturbations of selected asteroids; (d) action upon the figure of the Earth
from the Moon and Sun; (e) action upon the figure of the Moon from the Earth and Sun; (f) physical
libration of the Moon, modeled as a solid body with tidal and rotational distortion, including both elastic
and dissipational effects, (g) the effect upon the Moon’s motion caused by tides raised upon the Earth by
the Moon and Sun, and (h) the perturbations of 300 asteroids upon the motions of Mars, the Earth, and
the Moon.

8.3.1 Point-Mass Interactions

The principal gravitational force on the nine planets, the Sun, and the Moon is modeled by considering
those bodies to be point masses in the isotropic, parametrized post-Newtonian (PPN) n-body metric (Will,
1974). The n-body equations were derived by Estabrook (1971a) from the variation of a time-independent
Lagrangian action integral formulated in a non-rotating solar-system-barycentric Cartesian coordinate frame.
Also included are Newtonian gravitational perturbations from 300 asteroids, chosen because they have the
most pronounced effect on the Earth–Mars range over the time span covered by the accurate spacecraft
ranging observations.

For each body i, the point-mass acceleration is given by
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=

∑
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rij

]2

+
1

2c2
(rj − ri) · r̈j

}

(8 − 1)

+
1

c2

∑

j 6=i

µj

r3ij
{[ri − rj ] · [(2 + 2γ)ṙi − (1 + 2γ)ṙj ]}(ṙi − ṙj)
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where ri, ṙi, and r̈i are the solar-system-barycentric position, velocity, and acceleration vectors of body i;
µj = Gmj , where G is the gravitational constant and mj is the mass of body j; rij = |rj − ri|; β is the PPN
parameter measuring the nonlinearity in superposition of gravity; γ is the PPN parameter measuring space
curvature produced by unit rest mass (in this integration, as in general relativity, β = γ = 1); vi = |ṙi|; and
c is the velocity of light.
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The quantity r̈j appearing in two terms on the right-hand side of (8-1) denotes the barycentric acceleration
of each body j due to Newtonian effects of the remaining bodies and the asteroids. Thus, the right-hand
side of the equation is dependent upon the left-hand side, and so, rigorously, the computation should be
iterated. However, use of Newtonian accelerations for these terms is sufficiently accurate.

In the next-to-last term on the right-hand side of (8-1), quantities employing the index m refer to the “Big3”
asteroids, Ceres, Pallas, and Vesta. The last term represents forces upon the Earth, Moon, and Mars, only,
from 297 other asteroids, grouped according to three taxonomic classes (C, S, M). The asteroid forces were
computed in the following way:

The orbits of the Big3 asteroids were integrated under the forces of themselves, the nine planets, the
Sun, and the Moon, using initial conditions from the “dastcom” file maintained by JPL’s Solar System
Dynamics Group. These orbits were fit with Chebychev polynomials and used in the succeeding inte-
gration of the 297 non-Big3 asteroids. For the eventual integration of DE405, periodic mean orbits were
used for the Big3 asteroids which had been fit to their integrated orbits.

The 297 individual orbits were integrated under the gravitational forces of the Sun, planets, and the
Big3 asteroids. At each step, the force vectors of these non-Big3 asteroids upon the Earth, Moon and
Mars were computed, summed, and stored in 3 temporary files, one for the sums of the 218 C-class
asteroids, one for the sums of the 58 S-type asteroids, and one for the sums of the 21 M-type asteroids.
Also stored in the same temporary files were the contributions from these non-Big3 asteroids to the Solar
System’s center of mass. The vectors from these temporary files were fit with Chebychev polynomials
and stored in a final file to be used in the main planetary and lunar integration.

The radii, masses, and taxonomic classes of the 297 asteroids used in DE405/LE405 are listed in Section
8.8.

8.3.2 Solar-System Barycenter

In the n-body metric, all dynamical quantities are expressed with respect to a center of mass whose definition
is modified from the usual Newtonian formulation. The solar-system barycenter is given by Estabrook
(1971b) as

∑

i

µ∗
i ri = 0, (8 − 2)
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and where µi is the gravitational constant times the mass of the ith body; vi is the barycentric speed of the
ith body.

During the process of numerical integration the equations of motion for only the Moon and planets were
actually evaluated and integrated. The barycentric position and velocity of the Sun were obtained from the
equations of the barycenter. It should be noted that each of the two barycenter equations depends upon the
other, requiring an iteration during the evaluation of the solar position and velocity.

8.3.3 Figure Effects

Long-term accuracy of the integrated lunar orbit requires the inclusion of the figures of the Earth, Moon,
and Sun in the mathematical model. In DE405 the gravitational effects due to figures include:

1 The force of attraction between the zonal harmonics (through fourth degree) of the Earth and the
point-mass Moon, Sun, Venus, and Jupiter;
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2 the force of attraction between the zonal harmonics (through fourth degree) and the second- through
fourth-degree tesseral harmonics of the Moon and the point-mass Earth, Sun, Venus, and Jupiter;

3 The dynamical form-factor of the Sun (J2).

The contribution to the inertial acceleration of an extended body arising from the interaction of its own
figure with an external point mass is expressed in the ξηζ coordinate system, where the ξ-axis is directed
outward from the extended body to the point mass; the ξζ-plane contains the figure (rotational) pole of the
extended body, and the η-axis completes the right-handed system.

In that system (see, e.g., Moyer, 1971),
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where µ is the gravitational constant G times the mass of the point body; r is the center-of-mass separation
between the two bodies; n1, and n2 are the maximum degrees of the zonal and tesseral expansions, respec-
tively; Pn(sinφ) is the Legendre polynomial of degree n; Pm

n (sinφ) is the associated Legendre function of
degree n and order m; Jn is the zonal harmonic for the extended body; Cnm, Snm are the tesseral harmon-
ics for the extended body; R is the equatorial radius of the extended body; φ is the latitude of the point
mass relative to the body-fixed coordinate system in which the harmonics are expressed; and λ is the east
longitude of the point mass in the same body-fixed coordinate system.

The primes denote differentiation with respect to the argument sinφ. The accelerations are transformed into
the solar-system-barycentric Cartesian system by application of the appropriate rotation matrix.

The interaction between the figure of an extended body and a point mass also induces an inertial acceleration
of the point mass. If r̈fig denotes the acceleration given in (8-3) when expressed in solar-system-barycentric
coordinates, then the corresponding acceleration of the point mass, r̈pm, is

r̈PM = −mfig

mpm

r̈fig (8 − 4)

where mfig and mpm are the masses of the extended body and point mass, respectively.

The orientation of the Earth includes precession, obliquity change (Lieske et al., 1977), and 18.6-year nuta-
tion. The correction for precession, dΦY /dt, was set to -0."3/cty, and the obliquity rate correction, -dΦX/dt,
was taken from (Williams 1994). In addition, offsets to the Earth’s orientation at J2000, ΦX and ΦY , were
determined through the strength of the lunar laser ranging data. The values for all four parameters are given
in Table 8.8.3.

8.3.4 Lunar Gravity Coefficients

For the Moon, the 2nd degree gravity field is time-varying, and the harmonic gravity coefficients are computed
from the moment-of-inertia tensor, where the time dependence has been accounted for. For near principal
axis alignment, the 1st order relations for the coefficients are given by

Jm
2 (t) =

I33(t) − 1
2
[I11(t) + I22(t)]

mR2

Cm
22(t) =

I22(t) − I11(t)

4mR2
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C21(t) = − I13(t)/mR2 (8 − 5)

S21(t) = − I32(t)/mR2

S22(t) = − I21(t)/2mR2

where the Iij are the components of the moment-of-inertia tensor, to be described later; m is the lunar mass
and R, the lunar radius.

8.3.5 Lunar Physical Libration: Coordinates

The orientation of the Moon is given by a set of Euler angles, φ, θ, and ψ, which relate the Moon-centered,
rotating lunar system to the reference frame of the ephemerides (nominally, the ICRF). The elastic Moon
is distorted by tides and rotation, but the mean principal axes are well-defined. This Moon-centered mean-
principal-axis frame is here called the selenographic frame. The angles are φ, the angle from the x-axis of
the ephemeris reference frame along the xy-plane to the intersection of the lunar equator; θ, the inclination
of the lunar equator upon the xy-plane; and ψ, the longitude from that intersection along the lunar equator
to the prime meridian.

Instead of integrating the second derivatives of the Euler angles, their first derivatives are expressed in terms
of the selenocentric, body-fixed angular velocity vector, ωωω:

φ̇ = (ωx sinψ + ωy cosψ)/ sin θ

θ̇ = ωx cosψ − ωy sinψ (8 − 6)

ψ̇ = ωz − φ̇ cos θ

The first derivatives of the Euler angles and the first derivatives of ωωω are integrated, as seen in the following
subsection.

8.3.6 Physical Libration Differential Equations

The moment of inertia tensor, I, has a rigid-body contribution plus two variable contributions due to tidal
and rotational distortions. The distortions are functions of the lunar position and rotational velocities,
computed at time, t− τm, where τm is a time-lag of about 4 hours in DE405, as determined from the fits to
the lunar laser-ranging data. The time delay allows for dissipation when flexing the Moon (Williams et al.,
2001).

The angular momentum vector can be expressed in inertial or body-fixed coordinates; it is the product of
the moment of inertia tensor (given below) and the angular velocity vector: L = I ωωω. The time derivative of
the angular momentum vector is equal to the torque. In an inertial coordinate system: N = dL/dt, but in
a rotating system,

N =
d

dt
(I ωωω) + ωωω × I ωωω. (8 − 7)

where the second term on the right side puts the time derivative into the body-fixed system.

The complete equation of motion for the lunar librations is then given by

ω̇ωω = I−1 {ΣiNfig−pm + Nfig−fig − İ ωωω − ωωω × I ωωω}, (8 − 8)

where the torques have been separated into torques upon the lunar figure from external point masses and
from the Earth’s extended figure. These are discussed later in the section.

8.3.7 The Moment of Inertia Tensor
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The three parts of the moment of inertia tensor represent the rigid body, the tidal distortion, and the
spin distortion, where the latter two include both elasticity and dissipation. The body-fixed selenographic
reference frame uses the rigid body principal axes. In this frame, the tensor is

I =





A 0 0
0 B 0
0 0 C
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3
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3
(ω2 + 2n2)





where the coordinates and rotational velocities, r and ωωω, are evaluated at time t− τm, and where k2m is the
lunar potential Love number; me is the mass of the Earth; Rm is the equatorial radius of the Moon; r is
the Earth-Moon distance; x, y, z are the components of the Earth-Moon vector aligned with the rigid body
principal axes; ωx, ωy, ωz are the components of ωωω in the selenographic system; and n is the average lunar
mean motion.

8.3.8 Time Derivative of the Inertia Tensor
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8.3.9 Principal Moments

The rigid-body principal moments are A, B, and C, with the C axis aligned toward the pole.

A =
2(1 − βLγL)

(2βL − γL + βLγL)
MmR2

mJ
rigid
2

B =
2(1 + γL)

(2βL − γL + βLγL)
MmR2

mJ
rigid
2 (8 − 11)

C =
2(1 + βL)

(2βL − γL + βLγL)
MmR2

mJ
rigid
2

where βL and γL are defined by the relations, βL = (C −A)/B and γL = (B −A)/C; am is the semi-major

axis of the lunar orbit; and J rigid
2 = J input

2 + k2m
Me

Mm

(

Rm

am

)3

. Note that J input
2 does not have physical

significance. The quantities, J input
2 , βL, γL, µm, the 3rd degree harmonics, k2m, and τm are quantities which
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are solved for in the least squares data fits and then input into the integration program; Rm and the 4th

degree harmonics are input, but not solved for; A, B, C, and J rigid
2 are derived from the preceding relations.

For further discussion, see Newhall and Williams, (1997).

8.3.10 Figure – Point Mass Torques upon the Moon

From a single point-mass (body) acting upon the figure of the Moon, the lunar torque is given by

Nfig−pm = Mmrpm × r̈fig (8 − 12)

where rpm is the selenocentric position of the point mass and r̈fig is the inertial acceleration due to the
point-mass. Torques are computed for the figure of the Moon interacting with the Earth, Sun, Venus, and
Jupiter.

8.3.11 Figure-Figure Torque upon the Moon

Yoder (1979) and Eckhardt (1981) showed that figure-figure torques are important for the Moon. Three
significant terms of the torque upon the figure of the Moon from the Earth’s figure (J2e) are

Nfig−fig =
15 µeR2

eJ2e

2 r5e
{ (1 − 7 sin2 φ)[̂re × Ir̂e]

+ 2 sinφ [̂re × IP̂e + P̂e × Ir̂e] (8 − 13)

− 2

5
[P̂e × IP̂e] }

where P̂e is the direction vector of the Earth’s pole and r̂e is the direction vector of the Earth from the
Moon, both expressed in the selenographic reference frame; I is the lunar moment of inertia tensor; Re is the
equatorial radius of the Earth in AU’s; and for this equation, φ is defined by sinφ = r̂e · P̂e. Figure-figure
acceleration of the lunar orbit is not considered.

8.3.12 Acceleration of the Moon from Earth Tides

The tides raised upon the Earth by the Sun and Moon affect, in turn, the motion of the Moon. For this, let

G = gravitational constant,

for the distorted body (in this case, the Earth),

M = mass
R = radius
θ̇ = sidereal rotation rate

k2j = frequency dependent Love numbers (j = 0,1,2 ⇒ slow zonal, diurnal, semidiurnal tides)
τj = frequency dependent time delays (j = 0,1,2 ⇒ slow zonal, diurnal, semidiurnal tidal dissipation)

for the perturbed body (in this case, the Moon),

m = mass
r = position (centered on mass M)

for the tide-raising body (in this case, the Moon and Sun),

m′ = mass
r′ = position (centered on mass M)
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For each frequency band, back-date the position of the tide-raising body by the time-delay, τj , and rotate

that vector, about the distorted body’s rotational pole, through the lag angle, θ̇τj , giving

r∗j = R3(θ̇τj)r
′(t− τj). (8 − 14)

For the acceleration of the perturbed body with respect to the distorted body (Moon with respect to Earth),
break r and r∗ into equatorial and polar components (with respect to the distorted body): r = ρρρ + z and
r∗ = ρρρ∗ + z∗.

r̈(tide) =
3

2

Gm′(1 + m
M

)R5

r5

{ k20

r∗50

(

[2z∗20 z + ρ∗20 ρρρ] −
5[(zz∗0)2 + 1

2
(ρρ∗0)

2]r

r2
+ r∗20 r

)

+
k21

r∗51

(

2[(ρρρ · ρρρ∗1)z∗1 + zz∗1ρρρ
∗
1] −

10zz∗1(ρρρ · ρρρ∗1)r
r2

)

(8 − 15)

+
k22

r∗52

(

[2(ρρρ · ρρρ∗2)ρρρ∗2 − ρ∗22 ρρρ] −
5[(ρρρ · ρρρ∗2)2 − 1

2
(ρρ∗2)

2]r

r2

) }

Note that ρρ∗i = |ρ||ρ∗i |; it is not ρ · ρ∗i . The acceleration from both Sun- and Moon-raised tides is computed.
Tides raised on the Earth by the Moon do not influence the mutual barycentric motion, and the effect of
Sun-raised tides on the barycentric motion is not considered. The tidal acceleration due to tidal dissipation
is implicit in the above acceleration. The explicit conversion of the three Love numbers and time delays to
tidal ṅ requires a separate theory.

8.4 The Numerical Integration of DE405/LE405

The numerical integration of (8-1), (8-6), and (8-8) was carried out using a variable-step-size, variable-order
Adams method (Krogh, 1972). The actual order of the 33 equations at any instant is determined by a
specified error bound and by the behavior of backward differences of accelerations.

It has proved numerically more suitable to integrate the lunar ephemeris relative to the Earth rather than
to the solar-system barycenter. The solar-system barycentric Earth and Moon states are replaced by the
quantities rem and rB, given by

rem = rm − re (8 − 16)

and

rB =
µere + µmrm
µe + µm

, (8 − 17)

where the subscripts e and m denote the Earth and Moon, respectively. Note that rem is the difference of
solar-system barycentric vectors and is distinguished from a geocentric vector by the relativistic transforma-
tion from the barycenter to geocenter. (The vector rB can be interpreted as representing the coordinates of
the Newtonian Earth–Moon barycenter relative to the solar-system barycenter. It has no physical signifi-
cance and does not appear in force calculations; it is solely a vehicle for improving the numerical behavior
of the differential equations.)

8.4.1 Estimated Integration Error

The method of error control used in the integration puts a limit on the absolute value of the estimated
error in velocity of each equation at the end of every integration step. Step size and integration orders
were adjusted on the basis of estimated error. The limits selected for DE405 were 2 × 10−17au/day in each
component of the equations of motion for the planets and Moon, and 2× 10−15 rad d−1 for each component
of the libration equations.
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Integrations prior to DE405 were performed on a Univac mainframe computer in double precision, with a
60-bit mantissa; DE405 was integrated on a VAX Alpha in quadruple precision. In all cases, the integration
error has been significantly less than the estimated error resulting from the uncertainties in the adjustment
of the initial conditions and constants to the observational data. These latter errors are discussed later in
Section 8.9.

8.4.2 Adopted Constants

The integration requires the input of numerical values for a number of parameters. Some of these parameters,
such as the initial positions and velocities of the planets and Moon, result from the least-squares fits and are
different in each fit. Other parameters, such as some of the masses and the Earth’s zonal harmonics, come
from outside sources and are only rarely changed for these present purposes. Some parameters, such as the
mass of the Earth–Moon system, can be derived from the data, but for convenience are changed only when
statistically significant improvements can be made over the standard values. The lists of initial conditions
and constants are given in Section 8.8.

The list of the initial conditions and dynamical constants used in the integration of the equations of motion
used for the creation of DE405 is given in Section 8.8. Also given in Section 8.8 is a list of constants used in
the reduction of the observational data which were determined in the least squares solution.

8.5 Observational Data Fit by the Planetary and Lunar Ephemerides

In creating modern ephemerides, the majority of the effort is directed toward the set of observational data
(measurements) to which the ephemerides are fit and to the fitting process itself. This section describes the
observational data used in the creation of DE405/LE405. These observational data and their references are
available over the internet at URL#1.

Table 8.5.1 presents the different types of observational data fit by DE405, along with the time-span, the
bodies observed, the coordinates measured, the inherent accuracy, and the number of observations. These
different sets of observations are discussed briefly here, with some of the unique features of their reductions
presented in Section 8.7. References to the data can be found in the website mentioned above.

8.5.1 Optical Data

Classical ephemerides over the past centuries have been based entirely upon optical observations: almost
exclusively, meridian circle transit timings. With the advent of planetary radar, spacecraft missions, VLBI,
etc., the situation for the four inner planets has changed dramatically.

All of the optical observations for the Sun, Mercury, Venus, and Mars were omitted from the least squares
adjustment leading to DE405. The newer and more accurate data types determine these orbits far more
accurately (by orders of magnitude) than do the optical data. Since relatively large systematic errors are
known to remain in the optical observations, even after the many corrections described in Standish (1990),
and since at that time there was a large uncertainty connected with the frame-tie between the FK5 and ICRF
reference frames, inclusion of the optical observations for the inner planets could have been detrimental for
their ephemerides. Thus, the initial conditions for the inner four planets were adjusted to ranging data
primarily, with the VLBI observations serving to orient the whole inner planetary system onto the ICRF.

For Jupiter, the initial conditions were fit to a number of different types of observations, not all of which
seemed to be fully consistent with each other. Since that time, however, subsequent analyses of the Jupiter
ephemeris, using more recent measurements from the Galileo spacecraft, indicate that the errors are no larger
than about 150 km (0.''05).

For the outermost four planets, the optical observations are effectively the only observations and are expected
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to remain so for a number of years.

8.5.2 Meridian Transits

Transit observations are differential in nature – the planetary observations undergo the same processing as
those of the observed stars, both being related to the standard catalog of the epoch. The observations are
published as geocentric apparent right ascensions and declinations, taken at the time of meridian passage.
For comparison, then, one obtains a computed position from the ephemerides by iterating to find the time
at which the local apparent hour angle of the planet is zero. The formulation for computing apparent places
is essentially identical to that described in Chapter 7.

8.5.3 Photographic and CCD Astrometry

Photographic and CCD astrometric observations are handled in the same way. The observations based upon
the 1950 reference frame (those of Pluto) were transformed onto the J2000 frame using the precession and
equinox corrections of Fricke (1971, 1982). Those based upon the (J2000) FK5 were then transformed onto
the ICRF using preliminary corrections supplied by Morrison (1996).

8.5.4 Occultation Timings

The timings were supplied in ”normal point” form - corrections to the specific ephemeris used in the re-
ductions. The reductions were made by those modeling the Uranian rings and the Neptunian disk and
transmitted to the author by Nicholson (1992).

8.5.5 Astrolabe

Astrolabe observations are effectively timings of an object when it’s apparent altitude above the horizon
attains a certain pre-determined value. These observations are described in Debarbat and Guinot (1970).

8.5.6 Radiometric Emission Measurements

The radiometric emission from the Jovian and Saturnian satellites and from the disks of Uranus and Neptune
were measured differentially against the then-existing radio reference catalogue, a precursor to the IERS
(International Earth Rotation Service) Radio Catalogue, which is itself the precursor of the ICRF. The
observations were taken at the Very Large Array (VLA) in Soccoro, New Mexico by Muhleman et al. (1985,
1986, 1988) and by Berge et al. (1988). They are presented in ”normal point” form - corrections to the
specific ephemeris used in the reductions.

8.5.7 Ranging Data

A “range” measurement is the actual round-trip time of the electromagnetic signal from when it leaves the
transmitter until the time it arrives at the receiver. The signal is returned from a spacecraft transponder or
from a planet, having bounced off of a spot on the surface where the normal to the surface points toward
the Earth. The timing is done at the antennae by atomic clocks in what may be considered UTC.

The ranging observations reflected from the surface of Mercury, Venus, or Mars, are accurate to a level
of about 100 meters. However, for ephemeris purposes, variations in the topography of a planet’s surface
introduce a noise-like uncertainty. This enters directly into the process of deducing the distance from the
spot on the surface to the center of mass of the planet. Methods to reduce these uncertainties are described
in Section 8.7.

Ranging observations to spacecraft can be accurate to a level of only a couple of meters, though these
observations are also affected by a number of factors, including the delay of the signal through the solar
corona, delays in the electronic circuitry, and uncertainties in the spacecraft’s position - either from orbital
uncertainties or from a lander’s position on a planet’s rotating surface.
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In any case, the computations of all ranging measurements are very similar. The formulation is given in
Section 8.7.

8.5.8 Orbiter Range Points

Orbiter range points are received in the form of “normal points”, a representation of modified distance
measurements. The original round-trip range and Doppler measurements are reduced using the JPL Orbit
Determination Program (Moyer, 1971). This reduction is an adjustment for all relevant parameters, except
for those of the planetary ephemeris, including the spacecraft orbit, the planet’s mass and gravity field, etc.
As such, the resultant range residuals represent derived corrections to the nominal planetary ephemeris used
in the reduction. These residuals are then added to the geometric (instantaneous Earth–planet) range in
order to give a pseudo “observed” range point.

References for the sources of the normal points are given in the website URL#1.

8.5.9 Lander Range Data

Lander range data are two-way ranging measurements taken of landed spacecraft on the surface of a planet.
These data are reduced using the formulae given in Section 8.7 with the reflection point on the planet’s surface
being represented by the location of the lander on the planet. For this, one needs the surface coordinates
of the landers and the orientation of the planet in order to orient the lander into the ephemeris reference
frame.

8.5.10 VLBI Data

VLBI measurements of a spacecraft with respect to background sources from a radio source catalogue may
be combined with the planetocentric spacecraft trajectory in order to yield a positional determination of the
planet with respect to the reference frame of the radio source catalogue. For DE405, there were 2 such points
from the Phobos spacecraft nearing its encounter with Mars and 18 from the Magellan spacecraft in its orbit
around Venus. Venus is relatively free from the asteroid perturbations that introduce uncertainties into the
ephemeris of Mars, so that its ephemeris can be more accurately projected in time. Therefore, the Venus
orbit, (which connects Venus into the inner planetary system), in conjunction with the VLBI observations
of Venus, is important in orienting the inner planet system onto the radio frame.

8.5.11 Lunar Laser Range Data

The Lunar Laser Range (LLR) data consist of time-of-flight measurements of the laser pulses from McDonald
Observatory, Haleakala, or L’Observatoire de la Cte d’Azur (OCA) to any one of four retroreflectors on the
Moon and back again. The retroreflectors are at the Apollo 11, 14, and 15 landing sites and on the Lunokhod
2 vehicle. In the solutions for DE405, there were 11218 range points, distributed from 1969 to 1996.

The LLR data are deposited in the National Space Science Data Center and the International Laser Ranging
Service. During the least-squares fit the ranges have been weighted according to the instrumental errors
that accompany each point. The simple post-fit rms residual in one-way range was about 30 cm in 1970 and
improved to about 3 cm throughout the 1990’s.

Table 8.5.1. Observational data fit by DE405. The columns contain the observatory/source, the time
coverage, the bodies measured, the components measured, the a priori uncertainties of a measurement, the
number of observations and the group totals.

Observatory years bodies coords. a priori # group
sigmas totals

OPTICAL MERIDIAN TRANSITS
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Washington 1911–1994 Sun, ..., Nep r.a., dec. 1.''0/0.''5 14242
Herstmonceux 1957–1982 Sun, ..., Nep r.a., dec. 1.''0/0.''5 2851 17093

PHOTOELECTRIC MERIDIAN TRANSITS

La Palma 1984–1993 Mar, ..., Plu r.a., dec. 0.''25 6410
Bordeaux 1985–1996 Sat, Ura, Nep r.a., dec. 0.''25 854
Tokyo 1986–1988 Mar, ..., Nep r.a., dec. 0.''5 498
Flagstaff - USNO 1995 Plu r.a., dec. 0.''1 20 7782

PHOTOGRAPHIC ASTROMETRY OF PLUTO

(Pre-disc) 1914–1927 Pluto r.a., dec. 0.''5 28
Lowell 1930–1951 620
Yerkes-McD 1930–1953 310
(Nrml pts.) 1930–1958 66
MacDonald 1949–1953 56
Yerkes 1962–1963 42
Palomar 1963–1965 8
Dyer 1964–1981 44
Bordeaux 1967 24
Asiago 1969–1978 350
Torino 1973–1982 74
Copenhagen 1975–1978 150
Flagstaff 1980–1994 16
Lick 1980–1985 56
La Silla 1988–1989 58 1902

CCD ASTROMETRY OF URANUS, NEPTUNE AND PLUTO

Flagstaff - USNO 1995–1996 Ura, Nep r.a., dec. 0.''20 313
Flagstaff - USNO 1995–1996 Plu r.a., dec. 0.''20 63
Bordeaux 1995–1996 Plu r.a., dec. 0.''20 13 389

OCCULTATION TIMINGS

Uranus rings 1977–1983 Ura r.a., dec. 0.''14 14
Neptune disk 1968–1985 Nep r.a., dec. 0.''27 18 32

ASTROLABE

Quito 1969 Sat r.a., dec. 0.''3–1.''6 1
Algiers 1969–1973 Mar,Sat 48
SanFernando 1970–1978 Mar,Jup,Sat 338
Besançon 1971–1973 Sat 44
Paris 1971–1978 Mar,Sat 146
OCA 1972–1981 Mar,Jup,Sat 202
Santiago 1975–1985 Ura 284 1063

RADAR RANGING

Arecibo 1967–1982 Mer,Ven range 10 km 284
Haystack 1966–1971 Mer,Ven 1.5 188
Goldstone13 1964–1970 Ven 1.5 9
Gldstn 13–14 1970–1977 Mer,Ven 1.5 23
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Goldstone14 1970–1993 Mer,Ven 1.5 376 880

MARS RADAR–RANGING CLOSURE POINTS

Goldstone14 1971–1993 Mars diff. range 1.5 65 65

RADIO ASTROMETRY OF THERMAL EMISSION

VLA 1987 Jup, ..., Nep r.a., dec. 0.''03–0.''1 10 10

SPACECRAFT MEASUREMENTS

Mariner 9 1971–1972 Mars range 35–120 m 629
Pioneer 10 1973 Jupiter range 3 km 1
Pioneer 11 1974 12 km 1
Viking Lander 1976–1980 Mars range 7 m 1018

1980–1981 12 m 264
Voyager 1 OD 1979 Jupiter r.a., dec. 0.''01, 0.''05 2

range 3 km 1
Voyager 2 OD 1979 range 3 km 1
Phobos OD 1989 Mars range 0.5 km 1
Phobos VLBI 1989 Mars r.a., dec. 0.''01–0.''1 2
Ulysses VLBI & OD 1992 Jupiter r.a., dec. 0.''003, 0.''006 2

range 3 km 1
Magellan VLBI 1990–1994 Venus r.a., dec. 0.''003–0.''01 18
Galileo OD 1995 Jupiter r.a., dec. 0.''05, 0.''2 2

range 20 km 1 1956

FRAME-TIE DETERMINATION

ICRF frame-tie 1988 Earth r̂⊕, ĥ⊕ 0.''003 6 6

LUNAR LASER RANGING

1969–1996 Moon range 2–30 cm 11218 11218

NOMINAL VALUES
1 1

TOTAL 42410

8.6 The Orientation of DE405/LE405

In the past, the 1950-based ephemerides of JPL have been aligned onto the (1950) FK4 reference frame
(Fricke and Kopff, 1963). Starting with DE200, the ephemerides were aligned onto their own mean equator
and dynamical equinox of J2000 (see Standish, 1982).

The JPL planetary and lunar ephemerides starting with DE400 have been aligned onto the International
Celestial Reference Frame (ICRF) - formerly, the ”IERS frame”. This choice of the ICRF is advantageous
for a number of reasons:

The ICRF is now the standard reference frame in astronomy.
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The timing and polar motion data used for the orientation of the Earth, distributed by the IERS, are
now referred to the ICRF.

The ephemerides are now fit to a number of VLBI observations which were referenced to the ICRF.
Among all of the ephemeris observations which are explicitly given in a celestial reference system, these
ICRF-based ones are the most accurate.

The ICRF is stable; it is accessible; it will not show any net rotation when the coordinates are improved
in the future.

8.6.1 Adjustment of DE405 onto the ICRF Reference Frame

DE405 was adjusted to fit the ICRF-based VLBI observations of the Magellan Spacecraft orbiting Venus
(18 points, 1990–94) and of the Phobos Spacecraft as it approached Mars (2 points, 1989) as described in
the previous section. These data serve to align the ephemerides automatically onto the ICRF during the
least-squares adjustment. The inherent accuracy of each of these data points is about 3-10 milliarcseconds.

Ephemerides of the outer planets rely almost entirely upon optical observations. These were initially ref-
erenced to various stellar catalogues, then transformed onto the FK4 using the formulae of Schwan (1983),
then onto the FK5 system by applying the equinox offset and motion parameters of Fricke (1982), and finally
onto the ICRF using a tentative set of transformation tables supplied by Morrison (1996).

8.7 Various formulae used in the reduction of the Observational Data

In the course of reducing various types of observations, coming from many different sources, it is necessary
to apply a number of modeling formulae and corrections to the initially received measurements. This section
presents some of the details.

8.7.1 Phase Corrections

For the planetary disk observations, the planet is usually not fully illuminated and therefore shows a crescent
or gibbous disk. For the outer planets where the phase angle, i, is always small, the following formula, chosen
simply from empirical considerations, was applied to the published transit observations:
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Bk sin 2i, (8 − 18)

where i is the angle between the Earth and the Sun as seen from the planet; Θ is the position angle of
the mid-point of the illuminated edge, measured clockwise from north. Phase corrections were of prime
importance for the inner planets when their optical observations were included in earlier ephemerides. For
the outer planets, the phase corrections for only Jupiter are of much significance.

8.7.2 Corrections to precession and equinox drift

The optical residuals in right ascension and declination were reduced using the 1976 IAU (Fricke, 1971,
1982) values for precession and equinox drift. More recent estimates for precession had indicated a further
correction to the IAU value of ∆p = −0.''3/cty. Also, any existing secular-like trends, such as equinox drift,
were modeled by the quantity, ∆k, using the standard formulae,

∆α = (∆k + ∆n sinα tan δ)T2000

∆δ = (∆n cosα)T2000, (8 − 19)
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where T2000 is the time in centuries past J2000, ∆n = ∆p sin ε, and ε is the obliquity.

In DE405, the value of ∆p was set to −0.''3/cty; that for ∆k was determined to be −0.''062/cty in the solution.

8.7.3 Computation of Ranges

A range measurement is the actual round-trip time of the electromagnetic signal from when it leaves the
transmitter until the time it arrives at the receiver. The timing is done by the (UTC) clock at the antenna;
thus, the observation is essentially the UTC times of transmission and of reception.

For an observation received at the time tR (expressed in units of Teph, the time which is the independent
variable of the equations of motion), the round-trip light-time is given by the difference UTC(tR)−UTC(tR−
τd − τu), where

τu = |rB(tR − τd) − rA(tR − τd − τu)|/c+ ∆τu[rel] + ∆τu[cor] + ∆τu[tropo] (8 − 20)

and
τd = |rA(tR) − rB(tR − τd)|/c+ ∆τd[rel] + ∆τd[cor] + ∆τd[tropo], (8 − 21)

and where τu and τd are the light-times (in Teph units) of the upleg and the downleg, respectively; rA is
the solar-system barycentric position of the antenna on the Earth’s surface; rB is solar-system barycentric
position of the “bounce point”, either a responding spacecraft or the reflection point on the planet’s surface;
c is the velocity of light; and the three ∆τ ′s are the corrections to the light-times due to relativity, the
electron content of the solar corona, and the Earth’s troposphere, respectively. The two formulae are each
solved iteratively, first for τd then for τu.

8.7.4 Antenna Location

The location of the antenna is computed in a straightforward manner using the proper formulae (precession,
nutation, UT1, and polar motion) with which one orients the Earth, and in particular the observing station,
onto the ICRF, the reference frame of the ephemerides. The formulation was the same as that given by the
IERS standards document of J2000 (URL#2) though the geological drifts of the stations were being omitted
during the time of DE405’s creation.

8.7.5 Time Delay for Relativity

The time-delay due to relativity, given by Shapiro (1964), is obtained by integrating along the signal path
over the value of the potential. For each leg of the signal path, the delay is given by the formulae

∆τrel =
(1 + γ)GM
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where γ is the PPN parameter of general relativity and where e, p, and q are the heliocentric distance of the
Earth, the heliocentric distance of the planet, and the geocentric distance of the planet, respectively. These
distances are evaluated at t − τd for the planet, at t − τd − τu for the Earth during the upleg, and at t for
the Earth during the downleg. This formula has been augmented since the creation of DE405 (see Moyer,
2000) in order to allow for the increased length of the signal path due to the path’s bending. Further, it is
now necessary to apply this correction for not only the Sun’s potential but also for that of Jupiter, since the
latter alters Earth-Mars ranging by a meter or so.

8.7.6 Time Delay for the Solar Corona

The delay from the solar corona (see Muhleman and Anderson, 1981) is obtained by integrating along the
signal path from point P1 to point P2 over the density of ionized electrons, Ne (cm−3),

∆τcor =
40.3

cf2

∫ P2

P1

Ne ds, (8 − 23)
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where c is the speed of light (cm/sec), f is the frequency (Hz), and s is the linear distance (cm). The density
is given by

Ne =
A

r6
+
ab/

√

a2 sin2 β + b2 cos2 β

r2
, (8 − 24)

where r is the heliocentric distance expressed in units of the solar radius and β is the solar latitude. The values
for the constants, A, a, and b are included in Table 8.8.4. When near conjunction the major uncertainties
of ranging observations are due to uncertainty in Ne, a number which is highly time-dependent. Since the
delay is frequency dependent, the total delay may be calibrated using dual-frequency ranging; otherwise, the
parameters in the preceding formula must represent some sort of mean values.

For some ranging, measurements were taken in two separate frequencies, so that one can remove the effect
entirely since it is frequency-dependent and may therefore be solved-for.

8.7.8 Time Delay for the Troposphere

The delay from the Earth’s troposphere for radio frequencies is discussed by Chao (1970). For each leg, it is

∆τtropo = 7 nsec/(cos z + 0.0014/(0.045 + cot z)), (8 − 25)

where z is the zenith distance at the antenna.

8.7.9 Modeling the Surface of Mercury

For radar observations, the point of reflection on the surface of Mercury was approximated by a triaxial
ellipsoid. Following Anderson et al. (1996), a set of fully normalized Legendre functions to the second
degree was adjusted to fit the surface:

R0 = + c10
√

3 sinφ+ (c11 cosλ+ s11 sinλ)
√

3 cosφ+ c20

√
5

2
(3sin2φ− 1) (8 − 26)

+ (c21 cosλ+ s21 sinλ)
√

15 sinφ cosφ+ (c22 cos 2λ+ s22 sin 2λ)

√
15

2
cos2φ

where λ is the longitude and φ is the latitude of the echo point on the surface. The least squares adjustment
for DE405 yielded
R0 ≡ 2, 439, 760m c10 = +920± 523m c11 = +186± 38m s11 = −245± 38m
c21 = +79± 157m s21 = +744± 166m c22 = +292± 32m s22 = +345± 34m

Since the latitude, φ, of the radar echo point on Mercury is always within 12 degrees of the equator, c20 is
highly correlated (� 0.99) with R0 and was therefore omitted from the solution. For the other parameters,
they serve merely as a smoothing function for determining the Mercury ephemeris. For more definitive values
in regard to the shape of Mercury, see Anderson et al. (1996).

8.7.10 Modeling the Surface of Venus

The surface of Venus was modeled using a topographical map fit to measurements from the Pioneer Venus
Orbiter spacecraft (Pettengill et al., 1980). The map is referenced to a sphere whose radius was determined
to be 6052.26± 0.03km in the least squares adjustment. With such modeling, the radar residuals of Venus
are reduced from over 2km to less than 1km.

8.7.11 Modeling the Surface of Mars – Closure Points

The severe topography on the surface of Mars shows variations of many kilometers. These introduce scatter
into the observations which is not entirely random, thus presenting the danger of systematic errors.
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Therefore, the radar ranging to Mars was used only in the “closure point” mode. Closure points are pairs
of days during which the observed points on the surface of Mars are nearly identical with respect to their
longitudes and latitudes on Mars. Since the same topographical features are observed during each of the
two days, the uncertainty introduced by the topography may be eliminated by subtracting the residuals of
one day from the corresponding ones of the other day. The remaining difference is then due to only the
ephemeris drift between the two days. The closure points for Mars have a priori uncertainties of about 100m
or less when the points are within 0.2 degrees of each other on the martian surface.

8.7.12 Viking Lander Computations

The range data from the Viking Landers on the surface of Mars were reduced using the formulae given above
with the reflection point on the planet’s surface being represented by the location of the lander on Mars.
For this, one needs the Martian coordinates of the landers as well as a set of angles used to express the
orientation of Mars within the ephemeris reference frame. The position of the lander, expressed in the frame
of the ephemeris, is given by

r = rx(−ε)rz(−Ω)rx(−I)rz(−Ω′
q)rx(−I ′q)rz(−V ′)r0, (8 − 27)

where ε is the obliquity of the ecliptic; Ω and I are the node and inclination of the mean Martian orbit upon
the (J2000) ecliptic; Ωq and Iq are the mean node and inclination of the Martian equator upon the mean
orbit; V is the longitude of the Martian prime meridian measured along the equator from the intersection
of the orbit; and r0, the Mars-fixed coordinates of the lander, and where

Ω′
q = Ωq − ∆ψ, I ′q = Iq + ∆ε and V ′ = V + ∆ψ cos I ′q , (8 − 28)

where ∆ψ and ∆ε express the nutation of Mars, computed from the formulation of Lyttleton et al. (1979).
The Mars-fixed coordinates of the lander are computed from the cylindrical coordinates,

rT
0 = [u cosλ, u sinλ, v]T . (8 − 29)

The values for the parameters used in the reductions are given in Section 8.8. The values for ε, Ω, and
I were adopted: those for Ωq , Iq , and V , as well as the coordinates of the landers, were estimated in the
least-squares adjustments. For a more extensive treatment including parameter values, see Folkner et al.

(1998).

8.8 The Initial Conditions and Constants of DE405/LE405

The starting conditions for DE405/LE405 were the result of two successive least-squares adjustments. The
first adjustment was a solution for all of the relevant parameters whose values were best determined from
the ephemeris data. Then, some of the parameters were rounded off (at a negligible level) for the sake of
appearance and ease of use. These rounded values were then forced as known constants into the second
solution which produced a minor adjustment to the other parameters.

This chapter gives the numerical values of all of the parameters that were used in the final integration of
DE405/LE405. The starting epoch was Julian Ephemeris Date 2440400.5 (June 28, 1969) – chosen as being
the last “0400” date before the start of the Lunar Laser Ranging observations. Table 8.8.1 gives the cartesian
coordinates of the heliocentric planets, the Solar-System-Barycentric Sun, and the geocentric Moon. The
orientation parameters of the Moon are given in Table 8.8.2, the dynamical constants (those in the equations
of motion) are presented in Table 8.8.3, a number of parameters used in the reduction of the observational
data (but not in the equations of motion) are shown in Table 8.8.4, and Table 8.8.5 gives the radii and
taxonomic classes of the 297 non-Big3 asteroids used in DE405.
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Table 8.8.1.

Initial Conditions at JED (Teph) 2440400.5 (June 28, 1969). Coordinates and velocities [au, au/day] with
respect to the International Celestial Reference Frame (“ICRF”; ∼ J2000 equator & equinox): heliocentric
planets, solar-system barycentric Sun, and geocentric Moon.

Mercury 0.35726020644727541518 -0.09154904243051842990 -0.08598103998694037053
0.00336784566219378527 0.02488934284224928990 0.01294407158679596663

Venus 0.60824943318560406033 -0.34913244319590053792 -0.19554434578540693592
0.01095242010990883868 0.01561250673986247038 0.00632887645174666542

EM Bary 0.11601490913916648627 -0.92660555364038517604 -0.40180627760698804496
0.01681162005220228976 0.00174313168798203152 0.00075597376713614610

Mars -0.11468858243909270380 -1.32836653083348816476 -0.60615518941938081574
0.01448200480794474793 0.00023728549236071136 -0.00028374983610239698

Jupiter -5.38420940699214597622 -0.83124765616108382433 -0.22509475703354987777
0.00109236329121849772 -0.00652329419119226767 -0.00282301226721943903

Saturn 7.88988993382281817537 4.59571072692601301962 1.55843151672508969735
-0.00321720349109366378 0.00433063223355569175 0.00192641746379945286

Uranus -18.26990081497826660524 -1.16271158021904696130 -0.25036954074255487461
0.00022154016562741063 -0.00376765355824616179 -0.00165324380492239354

Neptune -16.05954509192446441763 -23.94294829087950141524 -9.40042278035400838599
0.00264312279157656145 -0.00150349208075879462 -0.00068127100487234772

Pluto -30.48782211215555045830 -0.87324543019672926542 8.91129698418475509659
0.00032256219593323324 -0.00314874792755160542 -0.00108017793159369583

Sun 0.00450250884530125842 0.00076707348146464055 0.00026605632781203556
-0.00000035174423541454 0.00000517762777222281 0.00000222910220557907

Moon -0.00080817732791148419 -0.00199463000162039941 -0.00108726266083810178
0.00060108481665912983 -0.00016744546061515148 -0.00008556214497398616

Table 8.8.2.

J2000 angular coordinates of the lunar physical librations [rad, rad/day].

φM , θM , ψM 0.00512995970515812456 0.38239065587686011507 1.29414222411027863099
ωxM , ωyM , ωzM 0.00004524704499022800 -0.00000223092763198743 0.22994485870136698411

Table 8.8.3.

Dynamical Constants used in the Integration of DE405/LE405.

Defining Constants, Scale Factor
k2 0.017202098952 Gauss’ (gravitational) constant
c 299792.458 [km/sec] speed of light
au 149597870.691 [km/au] scale factor

Planetary Masses
GMs/GM1 6023600. mass−1 for Mercury
GMs/GM2 408523.71 mass−1 for Venus
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GMs/GMB 328900.5614 mass−1 for EM-Bary
GMs/GM4 3098708. mass−1 for Mars
GMs/GM5 1047.3486 mass−1 for Jupiter
GMs/GM6 3497.898 mass−1 for Saturn
GMs/GM7 22902.98 mass−1 for Uranus
GMs/GM8 19412.24 mass−1 for Neptune
GMs/GM9 135200000. mass−1 for Pluto

GMe/GMm 81.30056 Earth-Moon mass ratio

Asteroid Masses and Densities
mCeres 4.7 ×10−10 GMs Mass of Ceres
mPallas 1.0 ×10−10 GMs Mass of Pallas
mV esta 1.3 ×10−10 GMs Mass of Vesta

ρC 1.8 Mean density of C-type asteroids
ρS 2.4 Mean density of S-type asteroids
ρM 5.0 Mean density of M-type asteroids

Relativity, Ġ, J2(Sun)
β 1.0 PPN parameter
γ 1.0 PPN parameter

Ġ 0.0 rate of change of the gravitational constant

J2s 2 × 10−7 dynamical form-factor of the Sun

Earth Parameters

Re 6378.137 [km] radius of the Earth
J2e 0.001082626 zonal harmonics of the Earth
J3e -0.000002533
J4e -0.000001616

k2e0 0.34 potential Love number for the rigid Earth tide
k2e1 0.30 for the Earth’s tidal deformation
k2e2 0.30 for the Earth’s rotational deformation

τe0 0.0 time-lag for the rigid Earth tide
τe1 0.01290895939 [days] for the Earth’s tidal deformation
τe2 0.00694178558 [days] for the Earth’s rotational deformation

ΦX 0.006358 ["] X-axis offset at J2000
ΦY -0.015571 ["] Y-axis offset at J2000
dΦX/dt 0.000244 ["/yr] negative obliquity correction : −∆ε
dΦY /dt -0.001193 ["/yr] precession correction : +∆p sin ε

Moon Parameters

Rm 1738.0 [km] radius of the Moon

βL 0.0006316121 lunar moment parameters
γL 0.0002278583

k2m 0.0299221167 potential love number of the Moon
τm 0.1667165558 [days] time-lag for the lunar solid-body tide
∗ J2m 0.000204312007 input zonal harmonics of the Moon
J3m 0.000008785470
J4m -0.000000145383
C3,1m 0.000030803810 input tesseral harmonics of the Moon
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C3,2m 0.000004879807
C3,3m 0.000001770176
S3,1m 0.000004259329
S3,2m 0.000001695516
S3,3m -0.000000270970
C4,1m -0.000007177801
C4,2m -0.000001439518
C4,3m -0.000000085479
C4,4m -0.000000154904
S4,1m 0.000002947434
S4,2m -0.000002884372
S4,3m -0.000000788967
S4,4m 0.000000056404

∗ Note, as described in Section 8.3, the values used for J2m, C2,2m, C2,1m, S2,1m, and S2,2m are computed
from the (time-varying) lunar moment-of-inertia tensor. The J2m listed here is input; the rigid value, used
in the force and torque equations, is derived from this input value and from the potential Love number, k2m.
The rigid value of C2,2m is computed from J2m, βL, and γL.

Table 8.8.4.

Auxiliary Constants used in the Observational Reductions for DE405/LE405.

Mars Orientation Parameters

ε 23.4392811 [o] Mean obliquity of the ecliptic
ε̇ 0.0 [o/day]
Ω 49.6167 [o] Node of Mars’ mean orbit upon ecliptic
Ω̇ 0.0 [o/day]
I 1.85137 [o] Inclination of Mars’ mean orbit upon ecliptic
İ 0.0 [o/day]
Ωq 35.4371 [o] Node of Mars’ equator upon Mars’ orbit

Ω̇q -5.76×10−6 [o/day]
Iq 25.1886 [o] Inclination of Mars’ equator upon Mars’ orbit

İq -0.1094×10−6 [o/day]
V 1.3361259 [o] Longitude of Mars’ prime meridian
V̇ 350.89198512444 [o/day]

Viking Spacecraft Coordinates
λ1 311.82160 [o] longitude of Viking Lander # 1
u1 3136.520 [km] axial distance
v1 1284.469 [km] z-height
λ1 134.05322 [o] longitude of Viking Lander # 2
u1 2277.366 [km] axial distance
v1 2500.054 [km] z-height

Solar Corona Parameters [see (8-24)]

A 1.06×108 [cm−3]
a 4.89×105 [cm−3]
b 3.91×105 [cm−3]
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8.8.1 Asteroids

The initial conditions for all 300 asteroids came from a file maintained by the Solar System Dynamics Group
at JPL. The radii from the same file were used to compute the masses of each of the 297 non-Big3 individual
asteroids from the formula, GM = 6.27× 10−22R3ρk, where R is the radius of the asteroid in kilometers and
where ρk is the density of the kth taxonomic class of asteroids (S, C, or M), given in Table 8.8.5.

Table 8.8.5.
The 297 non-Big3 individual asteroids used in the integration of DE405. The taxonomic class and the radius
in km are given.

0010 Hygiea C 214.5 0109 Felicitas C 45.8 0238 Hypatia C 78.0
0013 Egeria C 107.5 0111 Ate C 69.5 0240 Vanadis C 54.0
0019 Fortuna C 100.0 0112 Iphigenia C 37.8 0241 Germania C 84.5
0024 Themis C 99.0 0114 Kassandra C 51.5 0247 Eukrate C 68.5
0031 Euphrosyne C 124.0 0117 Lomia C 77.0 0259 Aletheia C 92.5
0034 Circe C 59.0 0120 Lachesis C 89.0 0266 Aline C 56.5
0035 Leukothea C 54.0 0121 Hermione C 108.5 0268 Adorea C 71.0
0036 Atalante C 54.5 0127 Johanna C 61.0 0275 Sapientia C 57.5
0038 Leda C 60.0 0128 Nemesis C 97.0 0276 Adelheid C 63.5
0041 Daphne C 91.0 0130 Elektra C 94.5 0283 Emma C 75.0
0045 Eugenia C 107.0 0134 Sophrosyne C 53.5 0303 Josephina C 51.5
0046 Hestia C 65.5 0137 Meliboea C 75.0 0304 Olga C 34.2
0047 Aglaja C 68.5 0139 Juewa C 81.0 0308 Polyxo C 74.0
0048 Doris C 112.5 0140 Siwa C 57.0 0313 Chaldaea C 50.5
0049 Pales C 77.0 0141 Lumen C 67.5 0324 Bamberga C 114.0
0050 Virginia C 44.0 0143 Adria C 46.4 0326 Tamara C 50.0
0051 Nemausa C 76.5 0144 Vibilia C 73.0 0329 Svea C 40.2
0052 Europa C 156.0 0145 Adeona C 77.5 0334 Chicago C 85.0
0053 Kalypso C 59.5 0146 Lucina C 68.5 0335 Roberta C 46.8
0054 Alexandra C 85.5 0147 Protogeneia C 68.5 0336 Lacadiera C 36.0
0056 Melete C 58.5 0150 Nuwa C 78.5 0344 Desiderata C 69.0
0058 Concordia C 48.9 0154 Bertha C 96.0 0345 Tercidina C 50.0
0059 Elpis C 86.5 0156 Xanthippe C 63.0 0350 Ornamenta C 61.5
0062 Erato C 49.6 0159 Aemilia C 65.5 0356 Liguria C 67.5
0065 Cybele C 120.0 0160 Una C 42.5 0357 Ninina C 55.0
0070 Panopaea C 63.5 0162 Laurentia C 52.5 0358 Apollonia C 45.9
0072 Feronia C 44.6 0163 Erigone C 38.2 0360 Carlova C 60.5
0074 Galatea C 61.5 0164 Eva C 55.0 0362 Havnia C 49.0
0076 Freia C 95.0 0165 Loreley C 80.0 0363 Padua C 48.5
0078 Diana C 62.5 0168 Sibylla C 77.0 0365 Corduba C 55.0
0081 Terpsichore C 62.0 0171 Ophelia C 60.5 0366 Vincentina C 49.0
0083 Beatrix C 42.1 0173 Ino C 79.5 0372 Palma C 97.5
0084 Klio C 41.5 0175 Andromache C 53.5 0373 Melusina C 49.8
0085 Io C 78.5 0176 Iduna C 62.5 0375 Ursula C 108.0
0086 Semele C 63.5 0185 Eunike C 82.5 0377 Campania C 47.2
0087 Sylvia C 135.5 0187 Lamberta C 67.5 0381 Myrrha C 62.0
0088 Thisbe C 116.0 0191 Kolga C 52.5 0386 Siegena C 86.5
0090 Antiope C 62.5 0194 Prokne C 87.0 0388 Charybdis C 60.0
0091 Aegina C 57.0 0195 Eurykleia C 44.9 0393 Lampetia C 53.0
0093 Minerva C 85.5 0200 Dynamene C 66.0 0404 Arsinoe C 50.5
0094 Aurora C 106.0 0203 Pompeja C 60.0 0405 Thia C 64.5
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0095 Arethusa C 72.5 0205 Martha C 41.8 0407 Arachne C 48.8
0096 Aegle C 87.0 0206 Hersilia C 56.5 0409 Aspasia C 84.0
0098 Ianthe C 54.5 0209 Dido C 74.5 0410 Chloris C 64.0
0099 Dike C 39.5 0210 Isabella C 45.0 0412 Elisabetha C 46.6
0102 Miriam C 43.0 0211 Isolda C 74.0 0419 Aurelia C 66.5
0104 Klymene C 63.5 0212 Medea C 70.0 0420 Bertholda C 73.0
0105 Artemis C 61.5 0213 Lilaea C 42.3 0423 Diotima C 108.5
0106 Dione C 73.5 0225 Henrietta C 62.0 0424 Gratia C 45.2
0107 Camilla C 118.5 0233 Asterope C 54.0 0426 Hippo C 67.0
0431 Nephele C 48.9 0751 Faina C 57.5 0071 Niobe S 43.6
0442 Eichsfeldia C 33.8 0762 Pulcova C 71.0 0080 Sappho S 40.9
0444 Gyptis C 85.0 0769 Tatjana C 51.0 0089 Julia S 79.5
0449 Hamburga C 44.3 0772 Tanete C 61.5 0103 Hera S 47.6
0451 Patientia C 115.0 0773 Irmintraud C 49.5 0115 Thyra S 41.8
0454 Mathesis C 42.2 0776 Berbericia C 88.5 0124 Alkeste S 39.8
0455 Bruchsalia C 43.8 0780 Armenia C 48.5 0148 Gallia S 52.0
0466 Tisiphone C 60.5 0788 Hohensteina C 54.5 0181 Eucharis S 53.5
0469 Argentina C 64.5 0790 Pretoria C 88.0 0192 Nausikaa S 53.5
0476 Hedwig C 60.5 0791 Ani C 53.5 0196 Philomela S 73.0
0481 Emita C 58.0 0804 Hispania C 80.5 0221 Eos S 55.0
0488 Kreusa C 79.0 0814 Tauris C 58.0 0230 Athamantis S 57.5
0489 Comacina C 72.0 0895 Helio C 73.5 0236 Honoria S 45.2
0490 Veritas C 60.5 0909 Ulla C 60.0 0287 Nephthys S 35.0
0491 Carina C 50.5 0914 Palisana C 39.5 0328 Gudrun S 23.5
0498 Tokio C 42.4 1015 Christa C 50.5 0346 Hermentaria S 55.0
0505 Cava C 57.5 1021 Flammario C 51.5 0349 Dembowska S 71.5
0506 Marion C 54.5 1093 Freda C 60.0 0354 Eleonora S 81.0
0508 Princetonia C 73.5 1467 Mashona C 56.0 0385 Ilmatar S 47.0
0511 Davida C 168.5 0003 Juno S 133.5 0387 Aquitania S 53.0
0514 Armida C 55.0 0005 Astraea S 62.5 0389 Industria S 40.8
0521 Brixia C 60.5 0006 Hebe S 96.0 0416 Vaticana S 44.8
0535 Montague C 38.5 0007 Iris S 101.5 0433 Eros S 10.0
0536 Merapi C 79.0 0008 Flora S 70.5 0471 Papagena S 67.5
0545 Messalina C 57.5 0009 Metis S 85.0 0532 Herculina S 112.5
0554 Peraga C 49.2 0011 Parthenope S 81.0 0674 Rachele S 50.5
0566 Stereoskopia C 87.5 0012 Victoria S 58.5 0980 Anacostia S 44.5
0568 Cheruskia C 44.9 0014 Irene S 83.5 1036 Ganymed S 20.5
0595 Polyxena C 57.0 0015 Eunomia S 136.0 0016 Psyche M 132.0
0596 Scheila C 58.5 0017 Thetis S 46.6 0021 Lutetia M 49.8
0602 Marianna C 65.0 0018 Melpomene S 74.0 0022 Kalliope M 93.5
0618 Elfriede C 62.0 0020 Massalia S 75.5 0069 Hesperia M 71.5
0626 Notburga C 52.0 0023 Thalia S 55.5 0075 Eurydike M 29.1
0635 Vundtia C 50.0 0025 Phocaea S 39.1 0077 Frigga M 35.5
0654 Zelinda C 66.0 0026 Proserpina S 49.4 0092 Undina M 66.0
0663 Gerlinde C 52.0 0027 Euterpe S 65.5 0097 Klotho M 43.5
0683 Lanzia C 58.0 0028 Bellona S 63.0 0110 Lydia M 44.5
0690 Wratislavia C 72.5 0029 Amphitrite S 109.5 0129 Antigone M 62.5
0691 Lehigh C 46.3 0030 Urania S 52.0 0135 Hertha M 41.0
0694 Ekard C 46.4 0032 Pomona S 41.3 0201 Penelope M 35.2
0702 Alauda C 101.0 0037 Fides S 56.0 0216 Kleopatra M 70.0
0704 Interamnia C 166.5 0039 Laetitia S 79.5 0224 Oceana M 35.0
0705 Erminia C 69.5 0040 Harmonia S 55.5 0250 Bettina M 42.8
0709 Fringilla C 49.8 0042 Isis S 53.5 0322 Phaeo M 36.9
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0712 Boliviana C 66.0 0043 Ariadne S 32.6 0337 Devosa M 31.6
0713 Luscinia C 54.5 0044 Nysa S 36.6 0338 Budrosa M 31.1
0739 Mandeville C 55.0 0057 Mnemosyne S 58.0 0347 Pariana M 27.1
0740 Cantabia C 47.2 0063 Ausonia S 54.0 0369 Aeria M 31.1
0747 Winchester C 89.0 0068 Leto S 63.5 0849 Ara M 49.0

8.9 The Positional Errors of the Planetary and Lunar Ephemerides

Estimates of ephemeris errors are based upon a number of factors, including the accuracies of the observa-
tional data, the stability to various parameter and data combinations tested in the least squares adjustments,
the observed abilities to predict positions into the future, knowledge of the uncertainties associated with var-
ious relevant factors, etc. However, one may get a more definitive assessment comparing two ephemerides,
assuming that the differences are due mainly to the older ephemeris, the newer one having benefitted from
refined modeling and enhanced data sets.

This section first discusses the accuracies of the ephemerides, showing how the different data types contribute
to the various ephemeris parameters; it then presents comparisons of DE200 and of DE405 with a recent
ephemeris, DE409.

8.9.1 Inner 4 planets : ephemerides from ranging and VLBI

The ephemerides of the four innermost planets along with the Moon and the Sun are all well-known with
respect to each other (intra-planet distances and angles) because of the accurate ranging observations to
which the ephemerides are adjusted. Furthermore, the mean motion of this whole inner-body system is also
well-determined by fitting to the ranging observations. For explanations of this latter fact, see Williams and
Standish (1989) or Standish and Williams (1990).

The orientation of the inner planet system is provided by VLBI observations of the Magellan Spacecraft
orbiting Venus and the Phobos Spacecraft on its approach to Mars. These observations link the spacecraft
to the ICRF (International Celestial Reference System), and thus the planet to the ICRF, given that the
planetocentric spacecraft orbit is sufficiently well-determined. An additional frame-tie (Folkner et al., 1993)
was determined using the well-established Earth-based positions of the VLBI antennae, linked to the LLR
(lunar laser ranging) telescopes by means of ground surveys. The positions of these telescopes, in turn, are
connected to the Moon’s orbit using the LLR data, and since the Moon’s orbit is sensitive to the position of
the strongly perturbing Sun, it is tied to the heliocentric Earth orbit.

Radar ranging observations have inherent accuracies of less than 100 meters, though the unmodeled uncer-
tainties introduced by the surface topographies are a few hundred meters and more. Spacecraft orbits, on
the other hand, have shown accuracies of 10 meters or less. The VLBI observations have uncertainties of
a few milliarcseconds; with about 20 of them, the uncertainty of the orientation of the whole inner planet
ephemeris system of DE405 is 0.''001–0.''002 which is the equivalent of a kilometer or so at the typical distances
between the inner planets.

Thus, during the present decade or so, relative distances between two of the inner-solar-system bodies are
accurate to 100–200 meters; relative angles between the inner bodies (e.g., Earth-Sun-planet angle) are
accurate to less than 0.''001. The orientation is accurate to 0.''001–0.''002. Away from the present epoch of
accurate ranging and VLBI, the accuracies deteriorate due to the uncertainties in the mean motions caused
by the perturbative effects of the asteroids.

8.9.2 Uncertainties from asteroid perturbations

The masses of the asteroids are not well-known, and therefore it has not been possible to model their
perturbations with full accuracy. Williams (1984) estimated that due to the asteroids, the mean motions of
the inner planets have uncertainties on the order of 0.''02/century – a couple of kilometers per decade.
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8.9.3 Outer planets : reliance on the classical optical observations

In contrast to those of the inner planets, the ephemerides of the outer planets rely almost entirely upon
optical observations in which systematic errors over the past have been at the level of 0.''1 or so. As a result,
the outer planet ephemerides are much less accurate than those of the planets observed with ranging. Modern
CCD measurements now show single (presumably random) observation measurement errors of about 0.''1 so
that present-day plane-of-sky positions (directions) are determined to a few hundredths of an arcsecond. For
times away from the present, the accuracy deteriorates significantly, especially with the outermost planets.

8.9.4 Planetary Positional Errors in the Almancs, 1984–2002

A comparison between DE200, created before 1980, and DE409, created in 2003, shows differences which
must, for the most part, be attributed to the errors in DE200; thus, these differences give good estimates of
the errors in the positions of the Astronomical Almanac for the years, 1984–2002. Plots of the differences
are given in Figs. 8.9.1a–8.9.10c.

8.9.5 Planetary Position Uncertainties in 2003

One can also compare DE405 with DE409. Importantly, this more recent ephemeris includes both ranging
and VLBI measurements of the MGS (1999–) and the Odyssey (2002–) spacecraft in orbit around Mars
(Konopliv, 2002, 2003 and Border, 2002, 2003), and also the continuing CCD measurements of the outer
planets and their satellites (Stone, 1998, 2000). As such, DE409 is believed to be more accurate than DE405,
and the differences certainly represent the sizes of the uncertainties in DE405, if not estimates of the actual
errors themselves. The differences, DE405-DE409, are shown in Figs. 8.9.11a–8.9.20c.

It may be immediately noticed that the later differences, DE405–DE409, are significantly smaller than those
of DE200–DE405. As the observational data accumulate, the convergence of the ephemerides becomes a
good indicator of the inherent errors and uncertainties.

The comparisons of both DE200 and DE405 with DE409 are discussed in further detail in Standish (2004).

8.10 Keplerian Elements for Approximate Positions of the Major Planets

Lower accuracy formulae for planetary positions have a number of important applications when one doesn’t
need the full accuracy of an integrated ephemeris. They are often used in observation scheduling, telescope
pointing, and prediction of certain phenomena as well as in the planning and design of spacecraft missions.

Approximate positions of the nine major planets may be found by using Keplerian formulae with their
associated elements and rates. Such elements are not intended to represent any sort of mean; they are
simply the result of being adjusted for a best fit. As such, it must be noted that the elements are not valid
outside the given time-interval over which they were fit.

The elements are given below in Table 8.10.2 or in Tables 8.10.3 and 8.10.4, depending upon the time-interval
over which they were fit and within which they are to be used.

Formulae for using them are given here.

8.10.1 Formulae for using the Keplerian elements

Keplerian elements given in the tables below are

ao, ȧ : semi-major axis [au, au/century]
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eo, ė : eccentricity [radians, radians/century]
Io, İ : inclination [degrees, degrees/century]
Lo, L̇ : mean longitude [degrees, degrees/century]
$o, $̇ : longitude of perihelion [degrees, degrees/century] ($ = ω + Ω)
Ωo, Ω̇ : longitude of the ascending node [degrees, degrees/century]

In order to obtain the coordinates of one of the planets at a given Julian Ephemeris Date, Teph,

1. Compute the value of each of that planet’s six elements: a = ao + ȧT, etc., where T, the number of
centuries past J2000.0, is T=(Teph-2451545.0)/36525.

2. Compute the argument of perihelion, ω, and the mean anomaly, M :

ω = $ − Ω ; M = L − $ + bT2 + c cos(fT) + s sin(fT) (8 − 30)

where the last three terms must be added to M for Jupiter through Pluto when using the formulae for
3000 BC to 3000 AD.

3. Modulus the mean anomaly so that −180o ≤ M ≤ +180o and then obtain the eccentric anomaly, E,
from the solution of Kepler’s equation (see below):

M = E − e∗ sinE, (8 − 31)

where e∗ = 180/π e = 57.29578 e.

4. Compute the planet’s heliocentric coordinates in its orbital plane, r′, with the x′-axis aligned from the
focus to the perihelion:

x′ = a(cosE − e) ; y′ = a
√

1 − e2 sinE ; z′ = 0. (8 − 32)

5. Compute the coordinates, recl, in the J2000 ecliptic plane, with the x-axis aligned toward the equinox:

recl = Mr′ ≡ Rz(−Ω)Rx(−I)Rz(−ω)r′ (8 − 33)

so that

xecl = (cosω cosΩ − sinω sin Ω cos I) x′ + (− sinω cosΩ − cosω sinΩ cos I) y′

yecl = (cosω sin Ω + sinω cosΩ cos I) x′ + (− sinω sin Ω + cosω cosΩ cos I) y′

zecl = (sinω sin I) x′ + (cosω sin I) y′
(8 − 34)

6. If desired, obtain the equatorial coordinates in the “ICRF”, or “J2000 frame”, req :

xeq = xecl

yeq = + cos ε yecl − sin ε zecl

zeq = + sin ε yecl + cos ε zecl

(8 − 35)

where the obliquity at J2000 is ε = 23.o43928.

8.10.2 Solution of Kepler’s Equation, M = E − e∗ sinE

Given the mean anomaly, M , and the eccentricity, e∗, both in degrees, start with

26



E0 = M + e∗ sinM (8-36)

and iterate the following three equations, with n = 0, 1, 2, ..., until |∆E| ≤ tol (noting that e∗ is in degrees;
e is in radians):

∆M = M − (En − e∗ sinEn) ∆E = ∆M/(1 − e cosEn) ; En+1 = En + ∆E. (8-37)

For the approximate formulae in this present context, tol = 10−6degrees is sufficient.

8.10.3 Approximate Accuracies of the Keplerian Formulae

Table 8.10.1 gives the accuracies that one can expect from the Keplerian formulation given in this section

Table 8.10.1

Approximate errors, in heliocentric longitude, λ, latitude, φ, and in distance, ρ, from the Keplerian formu-
lation of the present section.

1800 – 2050 3000 BC to 3000 AD

λ ["] φ ["] ρ [1000km] λ ["] φ ["] ρ [1000km]

Mercury 15 1 1 20 15 1
Venus 20 1 4 40 30 8
EM Bary 20 8 6 40 15 15
Mars 40 2 25 100 40 30
Jupiter 400 10 600 600 100 1000
Saturn 600 25 1500 1000 100 4000
Uranus 50 2 1000 2000 30 8000
Neptune 10 1 200 400 15 4000
Pluto 5 2 300 400 100 2500

Table 8.10.2

Keplerian elements and their rates, with respect to the mean ecliptic and equinox of J2000, valid for the
time-interval 1800 AD - 2050 AD.

a e I L $ Ω
[au, au/cty] [rad, rad/cty] [deg, deg/cty] [deg, deg/cty] [deg, deg/cty] [deg, deg/cty]

Mercury 0.38709927 0.20563593 7.00497902 252.25032350 77.45779628 48.33076593
0.00000037 0.00001906 -0.00594749 149472.67411175 0.16047689 -0.12534081

Venus 0.72333566 0.00677672 3.39467605 181.97909950 131.60246718 76.67984255
0.00000390 -0.00004107 -0.00078890 58517.81538729 0.00268329 -0.27769418

EM Bary 1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 0.0
0.00000562 -0.00004392 -0.01294668 35999.37244981 0.32327364 0.0

Mars 1.52371034 0.09339410 1.84969142 -4.55343205 -23.94362959 49.55953891
0.00001847 0.00007882 -0.00813131 19140.30268499 0.44441088 -0.29257343

Jupiter 5.20288700 0.04838624 1.30439695 34.39644051 14.72847983 100.47390909
-0.00011607 -0.00013253 -0.00183714 3034.74612775 0.21252668 0.20469106

Saturn 9.53667594 0.05386179 2.48599187 49.95424423 92.59887831 113.66242448
-0.00125060 -0.00050991 0.00193609 1222.49362201 -0.41897216 -0.28867794
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Uranus 19.18916464 0.04725744 0.77263783 313.23810451 170.95427630 74.01692503
-0.00196176 -0.00004397 -0.00242939 428.48202785 0.40805281 0.04240589

Neptune 30.06992276 0.00859048 1.77004347 -55.12002969 44.96476227 131.78422574
0.00026291 0.00005105 0.00035372 218.45945325 -0.32241464 -0.00508664

Pluto 39.48211675 0.24882730 17.14001206 238.92903833 224.06891629 110.30393684
-0.00031596 0.00005170 0.00004818 145.20780515 -0.04062942 -0.01183482

Table 8.10.3

Keplerian elements and their rates, with respect to the mean ecliptic and equinox of J2000, valid for the time-
interval 3000 BC – 3000 AD. Further, the computation of M for Jupiter through Pluto must be augmented
by the additional terms described above and given in Table 8.10.4.

a e I L $ Ω
[au, au/cty] [rad, rad/cty] [deg, deg/cty] [deg, deg/cty] [deg, deg/cty] [deg, deg/cty]

Mercury 0.38709843 0.20563661 7.00559432 252.25166724 77.45771895 48.33961819
0.00000000 0.00002123 -0.00590158 149472.67486623 0.15940013 -0.12214182

Venus 0.72332102 0.00676399 3.39777545 181.97970850 131.76755713 76.67261496
-0.00000026 -0.00005107 0.00043494 58517.81560260 0.05679648 -0.27274174

EM Bary 1.00000018 0.01673163 -0.00054346 100.46691572 102.93005885 -5.11260389
-0.00000003 -0.00003661 -0.01337178 35999.37306329 0.31795260 -0.24123856

Mars 1.52371243 0.09336511 1.85181869 -4.56813164 -23.91744784 49.71320984
0.00000097 0.00009149 -0.00724757 19140.29934243 0.45223625 -0.26852431

Jupiter 5.20248019 0.04853590 1.29861416 34.33479152 14.27495244 100.29282654
-0.00002864 0.00018026 -0.00322699 3034.90371757 0.18199196 0.13024619

Saturn 9.54149883 0.05550825 2.49424102 50.07571329 92.86136063 113.63998702
-0.00003065 -0.00032044 0.00451969 1222.11494724 0.54179478 -0.25015002

Uranus 19.18797948 0.04685740 0.77298127 314.20276625 172.43404441 73.96250215
-0.00020455 -0.00001550 -0.00180155 428.49512595 0.09266985 0.05739699

Neptune 30.06952752 0.00895439 1.77005520 304.22289287 46.68158724 131.78635853
0.00006447 0.00000818 0.00022400 218.46515314 0.01009938 -0.00606302

Pluto 39.48686035 0.24885238 17.14104260 238.96535011 224.09702598 110.30167986
0.00449751 0.00006016 0.00000501 145.18042903 -0.00968827 -0.00809981

Table 8.10.4

Additional terms which must be added to the computation of M for Jupiter through Pluto, 3000 BC to 3000
AD, as described above.

b c s f
[o/cty2] [o] [o] [o/cty]

Jupiter -0.00012452 0.06064060 -0.35635438 38.35125000
Saturn 0.00025899 -0.13434469 0.87320147 38.35125000
Uranus 0.00058331 -0.97731848 0.17689245 7.67025000
Neptune -0.00041348 0.68346318 -0.10162547 7.67025000
Pluto -0.01262724

8.11 The Availability of Ephemerides

The fundamental ephemerides used in the Astronomical Almanac since 1984, DE200 (1984-2002) and
DE405(2003-), are both available on a CD-ROM from the publisher, Willmann-Bell. The package allows a
professional user to obtain the rectangular coordinates of the Sun, Moon, and nine major planets by means
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of a simple subroutine written in standard fortran:

URL#3

Willmann-Bell, Inc.

PO Box 35025

Richmond, VA 23235

804-320-7016

804-272-5920 (Fax)

The ephemerides are also available via FTP from URL#4. There are also references to other packages and
toolkits for the use of the ephemerides, as well as to the software being available in other programming
languages. These are documented in the ”README” on URL#4.

The README on URL#4 also contains a few modifications to the software from the CD-ROM. However,
it should be easier for the user to retrieve the software from the website, even when using the data files from
the CD-ROM.

One may also use the interactive website, ”Horizons”, URL#5, which uses the JPL ephemerides, giving
positional data (in 2003) for over 70 astronomical quantities for the 9 planets, more than 115 natural satellites
and approaching 200,000 asteroids and comets; Horizons uses the full precision of the JPL ephemerides.

There are certainly other sources of ephemerides, though not all use DE200 or DE405, the fundamental
ephemerides of the Astronomical Almanac. Further, there do exist a number of packages which provide less
accurate positions for the solar system bodies.

A description of a number of options may be found at URL#6.
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