Electronic Total Stations Are Levels Too

By Jesse Kozlowski, PLS

Precise Trigonometric Leveling Using Modern Total Station Instruments

Trigonometric Leveling

Trigonometric Leveling Target

Side View

Trig-Target Views At Various Distances

Trigonometric Leveling Level Ground

Observation Procedure

Pointings - 2 Sets of D\&R ZA \quad What Gets Recorded?
1 Direct on Backsite
2 Swing Alidade
3 Direct on Foresite
4 Plunge Scope
5 Reverse on Foresite
6 Swing Alidade
7 Reverse on Backsite
That completes one set of
Direct and Reverse Pointings
8 Re-point on Backsite in Reverse
9 Swing Alidade
10 Reverse on Foresite
11 Plunge Scope
12 Direct on Foresight
13 Swing Alidade
14 Direct on Backsite

Vertical Distances to the millimeter or tenth of a millimeter.
Be sure to record the algebraic sign!!!
Slope Distances to the nearest decimeter just to keep track of the distance traveled.

Make sure that all the necessary corrections are being applied!!!

Temperature
Pressure
PPM
EDM Constant
Reflector Constant
Curvature and Refraction

A Data Collector with a Trig Leveling Routine would be great!!!!

Trigonometric Leveling
 Leveling Up Hill

Trigonometric Leveling Leveling Down Hill

Trigonometric Leveling

Leveling Down and Up Hill

Backsight
Difference In Elevation
$=+1.115 \mathrm{~m}$

Trigonometric Leveling

Leveling Up and Down Hill

Conventional Differential Leveling

Balanced Setup

Consistent collimation error CANCELS in a BALANCED setup since the BACKSIGHT distance is equal to the FORESIGHT distance.

Conventional Differential Leveling

Imbalanced Setup

Trigonometric Leveling Imbalanced Setup

Collimation ERROR CANCELS in a BALANCED or IMBALANCED SETUP in TRIGONOMETRIC LEVELING

Conventional Differential Leveling

Refraction Effects

Refraction error, r, DOES NOT CANCEL on SLOPING terrain since r_{B} is NOT EQUAL to r_{F}, even if S_{B} is EQUAL TO S_{F}

Trigonometric Leveling

Refraction Effects

How Far?

That primarily depends on the precision of the vertical circle.

1mm EDM and 0.5 Second Total Station

Zenith Angle

		89	88	87	86	85	84	83	82	81	80	79	78	77	76	
	10	0.03	0.04	0.06	0.07	09	0.11	0.	0.14	0.16	0.18	0.19	1	23	0.24	0.26
	20	0.05	0.06	0.07	0.08	0.10	0.12	0.13	0.15	0.16	0.18	0.20	0.21	0.23	0.25	6
	30	0.07	0.08	0.09	0.10	0.11	0.13	0.14	0.16	0.17	0.19	0.20	0.22	0.24	0.25	. 27
	40	0.10	0.10	0.11	0.12	0.13	0.14	0.16	0.17	0.18	0.20	0.21	0.23	0.24	. 26	28
	50	0.12	0.13	13	0	15	0.16	0.	0.18	0.20	0.21	0.22	0.24	0.25	. 27	28
	60	0.15	0.15	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.23	0.24	0.25	0.27	0.28	29
	70	0.17	0.17	0.18	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.27	0.28	0.29	31
	80	0.19	0.20	0.20	0.21	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.31	32
	90	0.22	0.22	0.22	0.23	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.3	0.32	. 33
	100	0.24	0.24	0.25	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.34	. 3
	110	0.27	0.27	0.27	0.27	0.28	0.29	0.29	0.30	0.31	0.31	0.32	0.33	0.34	0.35	. 7
	120	0.29	0.29	0.30	0.30	0.30	0.3	0.31	0.32	0.33	0.33	0.34	0.35	0.36	0.37	38
	130	0.32	0.32	0.32	0.32	0.33	0.33	0.34	0.34	0.35	0.36	0.36	0.37	. 38	0.39	40
	140	0.34	0.34	0.34	0.35	0.35	0.35	0.36	0.36	0.37	0.38	0.38	0.39	0.40	0.41	42
	150	0.36	0.37	0.37	0.37	0.37	0.38	0.38	0.39	0.39	0.40	0.40	0.41	0.42	0.43	44
	160	0.39	0.39	0.39	0.39	0.40	0.40	0.40	0.41	0.41	0.42	0.43	0.43	0.44	0.45	46
	170	0.41	0.41	0.41	0.42	0.42	0.42	0.43	0.43	0.44	0.44	0.45	0.45	0.46	0.47	0.47
	180	0.44	0.44	0.44	0.44	0.44	0.45	0.45	0.45	0.46	0.46	0.47	0.47	0.48	0.49	. 49
	190	0.46	0.46	0.46	0.46	0.47	0.47	0.47	0.48	0.48	0.49	0.49	0.50	0.50	0.51	1
	200	0.49	0.	0.	0.	0.	0.	0	0	0.50	0.51		0.52		5	

Expected Accuracy (mm)

1mm EDM and 1.0 Second Total Station

Zenith Angle

	89	88	87	86	85	84	83	82	81	80	79	78	77	76	5
10	0.05	0.06	0.07	0.08	0.10	0.12	0.13	0.15	0.16	0.18	0.20	0.21	0.23	25	26
20	0.10	0.10	0.11	0.12	13	0.14	0.16	7	0.18	0.20	1	2	4		0.28
30	0.	15	0.15	0	17	0.	0.	0.20	0.	0.23	0.24	0.25	27	28	0.29
40	0.19	0.20	0.20	0.21	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.31	. 32
50	0.24	0.24	0.25	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.34	. 35
60	0.29	0.29	0.	0.30	0.30	0.	0.31	0.32	0.33	0.33	0.34	0.35	36	37	. 38
70	0.3	0.3	0.34	0.35	0.35	0.3	0.36	0.36	0.37	0.38	0.	0.39	0.40	0.41	42
80	0.39	0.39	0.	0.39	0.40	0.40	0.40	0.	0.41	0.42	0.43	0.43	0.44	45	46
90	0.44	0.44	0.	0.44	0.44	0.45	0.45	0.45	0.46	0.46	0.47	0.47	0.48	0.49	49
100	0.49	0.49	0.	0.49	0.49	0.49	0.50	0.	0.50	0.51	0.	0.52	0.52	0.53	. 54
O0 110	0.53	0.53	0.5	0.54	0.54	0.54	0.54	0.55	0.55	0.55	0.56	0.56	57	0.57	. 58
~ 120	0.58	0.58	0.58	0.58	0.59	0.59	0.59	0.59	0.60	0.60	0.60	0.61	0.61	0.61	0. 62
130	0.63	0.63	0	0.63	0.63	0.6	0.64	0.64	0.6	0.64	0.65	0.65	0.65	6	66
140	0.68	0.68	0.6	0.6	0.68	0.6	0.68	0.	0.6	0.69	0.	0.70	0.70	0.70	0.70
150	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.74	0.74	0.74	0.74	74	75	0.75
160	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.79	0.79	0.79	0.79
170	0.82	0.82	0.82	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.84	. 84
180	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.88	0.88	0.88	0.88	0.88	0.88	0.88	. 88
190	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93
200	0.97	0.97	0.9	0.97	0.97	0.97	0.97	0.97	0.9	0.97	0.	0.97	0.97	0.97	

Expected Accuracy (mm)

2mm EDM and 3.0 Second Total Station

Zenith Angle

		89	88	87	86	85	84	83	82	81	80	79	78	77	76	75
		0.1	0.1	0.1	0.20	0.23	0.25	0.	0.	0.	0.38	0.41	0.44	0.47	0.50	0.54
	20	0.2	0.30	0.31	0.32	0.34	0.36	0.3	0.4	0.42	0.45	0.48	50	0.53	0.56	0.59
	30	0.	0.4	0.45	0.46	0.47	0.48	0.50	0.	0.53	0.55	0.57	0.60	0.6	0.64	0.67
	40	0.5	0.5	0.5	0.60	0.61	0.62	0.63	0.6	0.65	0.67	0.69	0.70	0.7	0.74	0.76
	50	0.73	0.7	0.73	0.74	. 75	0.75	0.76	0.77	0.78	0.80	0.81	0.82	0.84	0.86	0.87
	60	0.87	0.87	0.88	0.88	0.89	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.98	0.99
	70	1.02	1.02	1.02	1.03	1.03	1.03	1.04	1.05	1.05	1.06	1.07	1.08	1.09	1.10	
	80	1.16	1.16	1.17	1.17	1.17	1.18	1.18	1.19	1.19	1.20	1.20	1.21	1.22	1.23	1.24
	90	1.31	1.31	1.31	1.31	1.32	1.32	1.32	1.33	1.33	1.34	34	35	1.35	1.36	1.37
	100	1.45	1.46	1.46	1.46	1.46	1.46	1.46	1.47	1.47	1.47	1.48	1.48	1.49	1.49	. 50
	110	60	1.60	1.60	1.60	1.60	1.60	1.61	1.61	1.61	1.61	1.62	1.62	1.62	1.63	63
	120	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.76	1.76	1.76	1.76	1.76
	130	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.90	1.90	1.90	1.90
	140	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.03	2.03	2.03	2.03	. 03
	150	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.17	2.17	2.17	.17
	160	2.33	2.33	2.33	2.33	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.31	2.31	2.31	. 31
	170	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.46	2.46	2.46	2.46	2.45	2.45	2.4	. 44
	180	2.62	2.62	2.62	2.62	2.61	2.61	2.61	2.61	2.60	2.60	2.60	2.59	2.59	2.59	58
	190	2.76	2.76	2.76	2.76	2.76	2.76	2.75	2.75	2.	2.74	2.74	2.73	2.73	2.72	
	200	2.91	2.91				2.90									

Expected Accuracy (mm)

