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Shape of the Earth, constants, formulae
and methods

I Introduction
This pamphlet supersedes both the HMSO booklet Constants Formulae
and Methods Used in the Transverse Mercator Projection, which is out
of print, and the Ordnance Survey pamphlet Transverse Mercator
Projection.

Because of the increasing use of satellite navigation systems a short
description of the shape of the Earth and its mathematical
representation are given as well as the constants for the projection.

2 The shape of the Earth
2.1 The nature of the Earth
The Earth is a planet orbiting the Sun and spinning on its axis with
72% of its surface covered by the oceans and the remainder covered by
the continents. The continental surface varies greatly in texture and
profile unlike the oceans where, with sea water being fairly uniform,
both texture and profile are approximately constant.

2.2 The Earth’s mass and gravity
The Earth has mass and a centre of mass. Masses exert a gravitational
attraction whose force is related to the distance from the point in
question to the centre of mass. Therefore, gravity tends to decrease
with distance from the mass. The ocean surfaces deform under many
temporal effects such as tides, currents, weather and so on, many of
which are known and can be modelled mathematically. The removal of
the ocean topography leaves a surface primarily influenced by
gravitation; in fact a surface where gravitational potential is constant
(an equipotential surface). A definition of an equipotential surface is
that in moving from one point on the surface to another no work is
done against gravity. An equipotential surface is convex everywhere
and can be defined mathematically. Many such surfaces can be drawn,
each with its own numerical value of gravitational potential. Although
all these surfaces have the Earth’s centre of mass as their centre, they
are not parallel to each other.

Most measurements on the surface of the Earth are affected by gravity,
including the direction of a plumb-line and the horizontal surface
defined by a spirit level. The direction of the plumb-line (or vertical)
crosses all equipotential surfaces centred at the mass centre of the earth
at right angles. Thus, the vertical is generally a gently curving line.

2.3 The geoid
We can choose an equipotential surface which is nearest to the average
level of the ocean surface and call it the geoid.

Heights referred to sea level are therefore related to the geoid and are
termed orthometric heights. Sea level changes with time and so most
countries define the height of one point with respect to mean sea level
at some time period and refer to this point as the levelling datum.
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Positions determined by geodetic astronomy are related to the geoid in
as much as the instrument's axes are aligned in the direction of, and at
right angles to, the direction of gravity.

2.4 The ellipsoid
No explicit geometrical shape of the geoid has been so far mentioned,
except for the fact that it is convex. The mathematics of computing the
geoid are complicated and various approximations to its shape have
been made. As a first attempt, a spherical Earth introduced negligible
error for some cartographic purposes. The attraction of this choice is
that it is a surface with constant curvature. An ellipse of rotation, with
a semi-minor axis in the polar plane and semi-major axis in the
equatorial plane, is a better match to the geoid. This shape (the
ellipsoid) has been used for geodetic purposes for over two hundred
years. A variety of ‘best-fitting’ ellipsoids (mainly national, regional or
global), each with a different size and orientation to the Earth’s spin
axis, have been used.

2.5 Projections
A projection is required to transfer measurements and positions from
the ellipsoid onto a flat surface suitable for making into a map.
Ordnance Survey uses a modified version of the Transverse Mercator
projection.

In the simple Transverse Mercator projection the surface of the
ellipsoid chosen to represent the Earth is represented on a cylinder
which touches the ellipsoid along a chosen meridian and which is then
unwrapped. The scale is therefore correct along this central meridian
and increases on either side of it.

The modification to the projection is to make the scale too small on
the central meridian by a factor of 0.9996 approximately. The
projection then becomes correct in scale on two lines nearly parallel
with and on either side of the central meridian and about two thirds of
the way between it and the edges of the projection. On the edges, the
projection scale will have increased to approximately 1.0004 of
nominal figure. The change in scale is most conveniently done in
practice by applying the central meridian scale (F0) to all dimensions of
the ellipsoid before calculating the projection. This modification
effectively doubles the width of the area over which the projection can
be usefully applied.

3 Symbols and definitions
a = major semi-axis of ellipsoid
b = minor semi-axis of ellipsoid
e = eccentricity

e2 =
a2 – b2

a2

n =
a – b
a + b

v = radius of curvature at latitude φ perpendicular to a meridian

=
a

(1 – e2sin2 φ)½
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ρ = radius of curvature of a meridian at latitude φ

=
a(1 – e2)

=
ν(1 – e2)

(1 – e2sin2 φ)3/2 (1 – e2sin2 φ)

η2=
ν

 – 1ρ

φ = Latitude of a point.
λ = Longitude of a point measured east (+) or west (–) of

Greenwich.
H = Height of a point above ellipsoid (ellipsoidal height).
h = Height of a point above sea level / geoid (orthometric

height).
φ' = Latitude of the foot of the perpendicular drawn from a point

on the projection to the central meridian.
φο = Latitude of true origin.
λο = Longitude of true origin.
Eο= Grid eastings of true origin.
Nο= Grid northings of true origin.
E = Grid eastings (metres).
N = Grid northings (metres).
E

t
= E – Eο ‘true’ easting.

N
t
= N – Nο ‘true’ northing.

Fο = Scale factor on the central meridian.
F = Scale factor at a point. (This is usually called local scale

factor).
S = True distance between two points on the ellipsoid.
s = Straight-line distance between two points on the projection.
A = True meridional arc.
M= Developed meridional arc = A x Fο.
t = Straight-line direction joining two points on the projection.
T = Direction on the projection of the projected geodesic or line of

sight joining two points.
C = ‘Convergence’ of meridians on the projection that is, the angle

at any point in the projection between the north-south grid
line and the meridian at that point.

P = λ – λο.

4 Coordinate systems
4.1 Concepts
Positions on the Earth are described numerically and unambiguously,
making archiving and computation more straight forward. Any point
on the Earth’s surface can either be referred to the graticule of latitude
and longitude (curvilinear coordinates) on the computation surface (the
ellipsoid), or a three dimensional cartesian system with an origin at the
Earth’s centre of mass. Rectangular Cartesian coordinates are easier to
manipulate than curvilinear coordinates but give no concept of height
above sea level.

Each system has its uses. Three reasons for ellipsoidal coordinates are:

● They are commonly used and accepted in geometrical geodesy.
● They make use of closed formulae, meaning that definition is

exact.
● An ellipsoid positioned close to mean sea level is the first

approximation to W, the gravity potential.
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4.2 Ellipsoidal coordinates
There are many ellipsoids on which geodetic coordinates can be
expressed. The positioning of the ellipsoid relative to the Earth’s
surface is as arbitrary as the selection of the ellipsoid itself. The
defining parameters of a geodetic reference system require both
ellipsoid and datum to be given. These are:

● Length of semi major axis (a).
● Flattening of ellipsoid (f).
● Geodetic latitude and longitude of the origin (φ  λ).
● Geoidal separation at the origin (N).
● Two parameters which align the minor axis to the spin axis

(CIO/BIH).

The last two are fulfilled by the Laplace condition:

Geodetic Azimuth = Astronomic Azimuth – (λA –  λG) sinφG

where  λA is the Astronomic longitude,  λG is the Geodetic longitude
and φG is the Geodetic latitude.

4.3 Cartesian coordinates
Cartesian systems are referred to an assumed Earth centre. Although
terrestrial ellipsoidal coordinates are implicitly referred to an inertial
frame by the use of the CIO/BIH system, the definition of a geocentric
datum is more explicit. The parameters defining a Cartesian system
may be:

 ● Earth’s gravitational constant (GM).
 ● Earth’s angular velocity (ω).
 ● Speed of light (c).
 ● Coordinate set of defined terrestrial points C{P|x,y,z}.

Recently, ellipsoids have been defined which use elements of both
systems. For instance, WGS84 (and also GRS80) has as its defining
parameters:

 ● Semi major axis (a).
 ● Second degree normalised zonal coefficient of the geopotential

(C2,0).
 ● Angular velocity of the Earth (ω).
 ● Earth’s gravitational constant (GM).

5. Coordinate conversions
5.1 Ellipsoidal ➜ Cartesian
The following formulae, quoted in the text books (for example
Bomford G; Geodesy, 4th Edition OUP 1980), are suitable for
conversion of ellipsoidal to Cartesian coordinates. The X-axis is
defined as being parallel to the conventional zero meridian of
Greenwich, the Z-axis parallel to the CIO and the Y-axis at right
angles to these two (eastwards). The Cartesian system may be
geocentric or referred to the vertical at some specified point.

X= (v+N+h)cosφcosλ 5.1
Y = (v+N+h)cosφsinλ 5.2
Z = ((1 – e2)v+N+h)sinφ 5.3

Notice that the height of the point is (N+h) above the ellipsoid. Thus,



9

equations 5.1, 5.2 and 5.3 presuppose knowledge of the geoid/ellipsoid
separation (N).

5.2 Cartesian ➜ ellipsoidal
The reverse transformation, from Cartesian to ellipsoidal coordinates,
does not produce such closed formulae.

tanλ =
Y

5.4
X

tanφ =
Z + e2νsinφ

5.5
(X2 + Y2)½

Approximate values for φ and ν are used and iteration gives rapid
convergence.

A closed formula due to Bowring is:

tanφ =
Z + (e')2bsin3θ

5.6
p – e2acos3θ

Where (e')2, the second eccentricity2 =
e2

(1 – e2)

p = (X2 + Y2)½

tanθ =
Za
pb

H = (N + h) =
p

–ν 5.7
cosφ

or (N + h) = (X2 + Y2)½secφ − ν  using Bomford’s notation.

It is important to note that N needs to be known and that (N + h) is
determined when using equation 5.7. This is the ellipsoidal height and
is not a height obtained by spirit levelling.

Direct ellipsoid to ellipsoid conversions are possible using differential
equations (Heiskanen W A & Moritz H; Physical Geodesy, TU Graz,
1979). However, it is simpler to change ellipsoids via Cartesian
coordinates.

In summary, to convert from:

 ● Ellipsoidal ➜ Cartesian : use equations 5.1, 5.2 and 5.3
 ● Cartesian ➜ ellipsoidal : use equations 5.4, 5.5 and 5.7

6 Useful ellipsoidal constants
National projection UTM OSGRS80 ® grid

a x F0 6 375 020.481 6 375 836.645 6 375 593.856

b x F0 6 353 722.490 6 354 369.181 6 354 217.697

n 0.001673220250 0.001686340651 0.001679220406

e2 0.006670539762 0.006722670062 0.00669438002290
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8 Formulae
The formulae given below assume that the linear quantities (including
a and b) are already in international metres and that they have been
scaled by F

o
. All angles are expressed in radians, including φ and λ . To

convert angles to radians multiply by π/180 that is, a factor of
0.017453293 or 57.29577951 degrees to a radian.

8.1 Developed arc of a meridian from φφφφφ2 to φφφφφ 1

{(1 + n +  n2 +  n3)(φ2 – φ1)}

Mφ2 – Mφ1 = b
– {(3n + 3n2 +   n3)sin(φ2 – φ1)cos(φ2 + φ1)}
+ {(  n2 +   n3)sin2(φ2 – φ1)cos2(φ2 + φ1)}
– {   n3sin3(φ2 – φ1)cos3(φ2 + φ1)}

8.2 E and N from φ and λ
Calculate M from the equation given above in 8.1 by making φ1 equal
to φo and φ2 equal to the latitude of the point. Remember to scale b by
Fo. Calculate ν, ρ, η2 and P from the equations in paragraph 3 above,
remembering to scale a and b by Fo.

I = M + No

II =
ν

sinφcosφ2

III =
ν

sinφcos3φ(5 − tan2φ + 9η2)24

IIIA =
ν

sinφcos5φ(61 − 58tan2φ + tan4φ)720

Then N = (I) + P2(II) + P4 (III) + P6 (IIIA)

IV = νcosφ

V =
ν

cos3φ ν
– tan2φ

6 ρ

5
4

7 Constants
National Universal Transverse OSGRS80 grid
projection Mercator projection  (UTM)

Ellipsoid Airy International (1924) GRS80

a 6 377 563.396 m 6 378 388.000 m 6 378 137.000 m

b 6 356 256.910 m 6 356 911.946 m 6 356 752.3141 m

True origin Zone 30 Zone 31
Lat 49o N Lat 0o Lat 0o Lat 49o N
Long 2o W Long 3o W Long 3o E Long 2o W

False origin E 400 000 m W E 500 000 m W E 400 000 m W
of true origin of true origin of true origin

N 100 000 m N N 0 m N 100 000 m N
of true origin of true origin

Grid coordinates
of true origin
E0 400 000 m 500 000 m 400 000 m
N0 -100 000 m 0 m –100 000 m

Scale on central
meridian (Fo) 0.9996012717 0.9996 0.9996012717

5
4
21
8

15
8

15
8

35
24
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  VI =
ν

cos5φ(5 –18tan2φ +tan4φ +14η2 – 58tan2φη2)
120

Then E = E
o
 + P(IV) + P3(V) + P5(VI)

8.3 φφφφφ and λλλλλ from E and N
The value of φ' must first be calculated using the iterative process
described below.

i) Calculate an initial value for φ' using:

φ'= 
 N – N

0 + φ0

Remember to scale a by F
0
.

a

ii) From paragraph 8.1, calculate
M, using φ' for φ2 and φ0 for φ1. Remember to scale b by F

0
.

iii) Calculate a new value for φ'  using:

φ'new =
  N – N

0
 – M 

  + φold

Remember to scale a by F
0

a

iv) From paragraph 8.1, recalculate M, using φ'new  for φ2 and φo for φ1.

v) If (N – N
0 
– M) is zero or close to zero (say <0.001) then use the

most current value of φ' to calculate ν, ρ and η2 and then calculate
latitude (φ) and longitude (λ) from equations VII to XIIA below.

vi) If (N – N
0 
– M) is not zero or close to zero then go back to step iii

of this process and perform the iteration again.

VII =
tanφ'
2ρν

VIII =
tanφ'

(5 + 3tan2φ' + η2 – 9tan2φ'η2)
24ρν3

IX =
tanφ'

(61 + 90tan2φ' + 45tan4φ')
720ρν5

Then φ = φ' - Et
2(VII) + Et

4(VIII) - Et
6(IX)

X =
secφ'

ν

XI =
secφ' ν

+ 2tan2φ'6ν3 ρ

XII =
secφ'

(5 + 28tan2φ' + 24tan4φ')120ν5

XIIA =
secφ'

(61 + 662tan2φ' + 1320tan4φ' + 720tan6φ')5040ν7

Then λ = λ0 + Et(X) – Et
3(XI) + Et

5(XII) – Et
7(XIIA)

8.4 C from φφφφφ and λ λ λ λ λ

XIII = sinφ
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XIV =
sinφcos2φ

(1 + 3η2 + 2η4)
3

XV =
sinφcos4φ (2 − tan2φ)

15
Then C = P(XIII) + P3(XIV) + P5(XV)

8.5 C from E and N
The value of φ' must first be calculated using the iterative process
described above in  paragraph 8.3 i to vi.

XVI =
tanφ'

ν

XVII =
tanφ'

(1 + tan2φ' – η2 – 2η4)
3ν3

XVIII =
tanφ'

(2 + 5tan2φ' + 3tan4φ')
15ν5

Then C + E
t
(XVI) – E

t
3(XVII) + E

t
5(XVIII)

8.6 F from φφφφφ and λλλλλ

XIX =
cos2φ

(1 + η2)2

XX =
cos4φ (5 − 4tan2φ + 14η2 − 28tan2φη2)

24

Then F = F
0
 (1 + P2(XIX) + P4(XX))

8.7 F from E and N
First use the iterative process described above in paragraph 8.3 i to vi
to obtain a value for φ' and hence η2, ρ and ν.

XXI =
1

2ρν

XXII =
1 + 4η2

24ρ2ν2

Then F = F
0
 (1 + E

t
2(XXI) + E

t
4(XXII))

8.8 (t - T) from E and N
1 and 2 are the terminals of the line. Use the iterative process described
above in paragraph 8.3 i to vi to obtain a value for φ' and hence ρ and
ν. Use the value:

N
m
 = N

1
 + N

2
in place of N in step i of the iterative process.

2

XXIII = 1
6ρν

Then (t
1
 – T

1
) = (2E

t1
 + E

t2
)(N

1
 – N

2
)(XXIII)

(t
2
 – T

2
) = (2E

t2
 + E

t1
)(N

2
 – N

1
)(XXIII)

The answer is in radians. Convert to seconds by multiplying by
1

sin1"



13

9 Worked examples
All the following examples are based on the Airy ellipsoid and the
National projection.

9.1 Ellipsoidal     ➜ Cartesian

Caister water tower
Latitude 52o 39' 27.2531"N
Longitude 1o 43' 4.5177"E
N –0.3 m
h 25.0 m
a 6 377 563.396
b 6 356 256.910
e2 6.67053976E – 03
ν 6.39105063E + 06

X 3 874 938.849 m
Y 116 218.623 m
Z 5 047 168.208 m

9.2 Cartesian     ➜ ➜ ➜ ➜ ➜ ellipsoidal

Caister water tower
X 3 874 938.849 m
Y 116 218.623 m
Z 5 047 168.208 m
a 6 377 563.396
b 6 356 256.910
e2 6.67053976E – 03
λ 1o 43' 4.5177"
approximate φ 52o 30'
... approximate ν 6.39099381E + 06
After 5 iterations:
ν 6.39105063E + 06
φ 52o 39' 27.2531"
H 24.7

Latitude 52o 39' 27.2531"N
Longitude 1o 43' 4.5177"E
Height (H) 24.7 m

9.3 E, N from latitude, longitude

Caister water tower
Latitude 52o 39' 27.2531"N
Longitude 1o 43' 4.5177''E
ν 6.38850233E + 06
ρ 6.37275644E + 06
η2 2.47081362E – 03
M 4.06688296E + 05
P 6.48899730E – 02
I 3.06688296E + 05
II 1.54040791E + 06
III 1.560688E + 05
IIIA –2.0671E + 04
IV 3.87512057E + 06
V –1.700008E + 05
VI –1.0134E + 05

Eastings 651 409.903
Northings 313 177.270
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Framingham
Latitude 52o 34' 26.8915"N
Longitude 1o 20' 21.1080"E
ν 6.38847227E + 06
ρ 6.37266647E + 06
η2 2.48024893E – 03
M 3.97408391E + 05
P 5.82799762E – 02
I 2.97408391E + 05
II 1.54162270E + 06
III 1.572829E + 05
IIIA –2.0516E + 04
IV 3.88249423E + 06
V –1.685014E + 05
VI –1.0165E + 05

Eastings 626 238.248
Northings 302 646.412

9.4 Latitude, longitude from E, N

Caister water tower
Eastings 651 409.903
Northings 313 177.271
φ' 52o 42' 57.2785"N
ν 6.38852334E + 06
ρ 6.37281931E + 06
η2 2.46422052E – 03
M 4.13177271E + 05
E

t
2.51409903E + 05

VII 1.61305625E – 14
VIII 3.339555E – 28
IX 9.4199E – 42
X 2.58400625E – 07
XI 4.698597E – 21
XII 1.6124E – 34
XIIA 6.6577E – 48

Latitude 52o 39' 27.2531"N
Longitude 1o 43' 4.5177"E

Framingham
Eastings 626 238.249
Northings 302 646.415
φ' 52o 37' 16.4305"
ν 6.38848924E + 06
ρ 6.37271726E + 06
η2 2.47492225E – 03
M 4.02646415E + 05
E

t
2.26238249E + 05

VII 1.60757208E – 14
VIII 3.316668E – 28
IX 9.3107E – 42
X 2.57842725E – 07
XI 4.663699E – 21
XII 1.5922E – 34
XIIA 6.5408E – 48

Latitude 52o 34' 26.8916"N
Longitude 1o 20' 21.1081"E
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9.5 Convergence
The convergence C at any point in the projection is the angle between
the ‘North–South’ grid line and the direction of the meridian at that
point. If the (t – T) correction is neglected, then Grid Bearing + C =
True Bearing. (But see para 8.5). C is zero on the grid line E = E

0
. It is

positive to the east and negative to the west of this grid line.
Remember that the meridians converge towards the North Pole which
is situated on the E

0
 grid line.

C from latitude, longitude

Framingham
Latitude 52o 34' 26.8915"N
Longitude 1o 20' 21.1080"E
ν 6.38847227E + 06
ρ 6.37266647E + 06
η2 2.48024893E – 03
XIII 7.94140369E – 01
XIV 9.849793E – 02
XV 2.1123E – 03

Convergence 2o 39' 10.4691"

Caister water tower
Latitude 52o 39' 27.2531"N
Longitude 1o 43' 4.5177"E
ν 6.38850233E + 06
ρ 6.37275644E + 06
η2 2.47081362E – 03
XIII 7.95024300E – 01
XIV 9.822941E – 02
XV 2.0244E – 03

Convergence 2o 57' 26.5561"

C from E, N

Framingham
Eastings 626 238.249
Northings 302 646.415
φ' 52o 37' 16.4305"N
ν 6.38848924E + 06
ρ 6.37271726E + 06
η2 2.47492225E – 03
XVI 2.04892047E – 07
XVII 4.536442E – 21
XVIII 1.588725E – 34

Convergence 2o 39' 10.4692''

Caister water tower
Eastings 651 409.903
Northings 313 177.271
φ' 52o 42' 57.2785"
ν 6.38852334E + 06
ρ 6.37281931E + 06
η2 2.46422052E – 03
XVI 2.05594320E – 07
XVII 4.571747E – 21
XVIII 1.608987E – 34

Convergence 2o 57' 26.5562''
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9.6 Scale factors and true distance from
rectangular coordinates
In order to obtain the true distance (S) from the grid distance (s)
derived from grid coordinates; (or alternatively, in order to convert a
true distance measured on the ground to a grid distance for plotting on
the map or projection) it is necessary to calculate the scale factor and
apply it in the correct sense.

The expression connecting these three quantities is

s = S x F or S = s
F

The scale factor changes from point to point but so slowly that for
most purposes it may be taken as constant within any 10 km square
and equal to the value at the centre at the square considered. In the
worst case the scale factor changes from one side of a 10 km square to
the other by about 6 parts in 100 000. So that a value for the middle of
the square would not be in error by more than 1/30 000 for any
measurement made in that square.

For all practical purposes the scale factor may be taken as depending
only on the distance from the central meridian. In the worst case the
variation of scale from North to South of the projection along a line of
constant easting is less than 1 in 600 000.

The table of scale factors given at the end of this pamphlet may be
used for all ordinary work. Where greater accuracy is required the
formula given in paragraph 8.7 may be used.

For a long line the factor should be calculated for the mid point of the
line. For lines up to 30 km in length the mid point value will give
results with an error not exceeding 1 or 2 parts per million.

If still greater accuracy is needed compute a scale factor for both ends
and the mid point and use Simpson's Rule, viz:

F from latitude, longitude

Caister water tower
Latitude 52o 39' 27.2531"
Longitude 1o 43' 4.5177''E
ν 6.38850233E + 06
ρ 6.37275644E + 06
η2 2.47081362E – 03
XIX 1.844226E – 01
XX – 1.1032E – 02

Local scale 1.00037732

Framingham
Latitude 52o 34' 26.8915"
Longitude 1o 20' 21.1080''E
ν 6.38847227E + 06
ρ 6.37266647E + 06
η2 2.48024893E – 03
XIX 1.851286E – 01
XX –1.0879E – 02

Local scale 1.00022970
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F from E, N

Caister water tower
Eastings 651 409.903
Northings 313 177.271
φ' 52o 42'57.2785"
ν 6.38852334E + 06
ρ 6.37281931E + 06
η2 2.46422052E – 03
XXI 1.228112E – 14
XXII 2.5385E – 29

Local scale 1.00037732

Framingham
Eastings 626 238.249
Northings 302 646.415
φ' 52o 37' 16.4305"
ν 6.38848924E + 06
ρ 6.37271726E + 06
η2 2.47492225E – 03
XXI 1.228138E – 14
XXII 2.5388E – 29

Local scale 1.00022969

Mid point Framingham to Caister water tower
Eastings 638 824.076
Northings 307 911.843
φ' 52o 40' 6.8552"
ν 6.38850630E + 06
ρ 6.37276830E + 06
η2 2.46957015E – 03
XXI 1.228125E – 14
XXII 2.5387E – 29

Local scale 1.00030156

9.7 The adjustment of directions on the
projection or (t – T) correction
The ‘(t – T) correction’ is the difference between the direction in nature
and that on the projection.

The straight line joining the two points in nature (which, neglecting
refraction, is practically identical with the geodesic on the ellipsoid)
will normally be a curve when plotted on the projection. The difference
between the initial direction of that curve and the direction of the
straight line joining the two points on the projection is the (t – T)
correction.

In the figure 1 below two plane triangles ABC are shown one on each
side of the central meridian. The curved lines represent the geodesics or
lines of sight. The curved geodesics are always concave towards the
central meridian. AX and AY represent the tangents to the curves at A.
The angles BAX and CAY represent the (t – T) corrections at A to the
lines AB and AC respectively. The sign of the correction for any given
case is immediately clear from the diagram.

A similar diagram should always be drawn (with the aid of the rule
italicised above) to help in applying the correction in the right sense.
This method is less liable to lead to mistakes in sign than is a rule of
thumb.
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The diagram may lead to confusion in the rare case of a line which
crosses the Central Meridian. The (t – T) correction is then bound to
be very small and would only be considered in first order work of a
very precise nature. In such cases a strict algebraic interpretation of the
formulae is probably the safest rule.

Since the projection is conformal (that is, directions at a point are
maintained relatively correct) it follows that the true bearing of B from
A is given by the angle at A between the meridian and the tangent AX
in the figure. But the grid bearing of B from A is the angle between
grid North and the line AB.

Therefore, if the (t  T) correction be taken into consideration,

True bearing A ➜ B = grid bearing A ➜ B + C – (t – T).

(t – T) from E, N

Framingham to Caister water tower
Eastings 626 238.249
Northings 302 646.415
Eastings 651 409.903
Northings 313 177.271
N

m
307 911.843

M 4.07911843E + 05
φ' 52o 40' 6.8552"
ν 6.38850630E + 06
ρ 6.37276830E + 06
XXIII 4.09374978E – 15
(t – T)a (rads) –3.0345E – 05
(t – T)b (rads) 3.1430E – 05

(t – T)a (sec) –6.26
(t – T)b (sec) 6.48

9.8 True azimuth from rectangular coordinates
The true azimuth is obtained by computing the grid bearing and
applying the convergence and the (t – T) correction. (Note that for
short lines not exceeding 10 km in length the (t – T) correction cannot
exceed 7" in the worst case on the limit of the projection. For minor
surveys therefore it may be neglected).

Figure 1
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The drawing of a rough diagram as shown below in figure 2, from
which the signs of C and (t – T) can be seen by inspection is strongly
recommended.

Station 1 Framingham E 626 238.249 N 302 646.415
Station 2 Caister water tower E 651 409.903 N 313 177.271

E2 – E1 + 25 171.654 N2 – N1 + 10 530.856

E2 – E1 = tangent of plane grid bearing 1 to 2 = +2.39027616
N2 – N1

Plane grid bearing (α1) = 67o 17' 50.759"

sin α1 = 0.92252080
cos α1 = 0.38594738

Plane grid distance =
E2 – E1 = 27 285.730 =

E2 – E1 = 27 285.730 (Check)
sin α1 cos α1

True azimuth1 = α1 + C1 – (t – T)"1

True azimuth2 = α1 + C2 – (t – T)"2 + 180o

True azimuth1 True azimuth2

α1 67o 17' 50".759 α1 67o 17' 50".759
+ C1 + 2

o
 39' 10".469 from previous + C2 + 2

o
 57' 26".556

– (t – T)"1 + 06".259 examples – (t – T)"2 – 06".483
+ 180

o
 00' 00".000

True True
azimuth1 = 69

o
 57' 07".487 azimuth2 = 250

o
 15' 10".832

For signs of C and (t – T) see figure 2 above.

Figure 2
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Table of local scale factors
(see paragraph 9.6)

National Grid easting (km) Scale factor F

400 400 0.99960
390 410 60
380 420 61
370 430 61
360 440 62

350 450 63
340 460 65
330 470 66
320 480 68
310 490 70

300 500 72
290 510 75
280 520 78
270 530 81
260 540 84

250 550 88
240 560 92
230 570 0.99996
220 580 1.00000
210 590 04

200 600 09
190 610 14
180 620 20
170 630 25
160 640 31

150 650 37
140 600 43
130 670 1.00050

Use of scale factor

s = S x F

Where s = distance in the projection
S = distance on the spheroid at mean sea level
F = Local scale factor from table.
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