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1. Introduction 

 
This summer school deals with satellite navigation systems and their use in science 
and application. Navigation is concerned with the guidance of vehicles along a 
chosen path from A to B. Precondition to any navigation is knowledge of position and 
change of position as a function of time. Thus, navigation requires position 
determination in real time. It has to combine time keeping and fast positioning. We 
completely exclude here inertial navigation, i.e. the determination of position changes 
- while moving - from sensors such as odometers, accelerometers and gyroscopes 
operating inside a vehicle. The motion of a body has to be determined relative to 
some reference objects. With inertial navigation methods excluded here, positioning 
requires direct visibility of these reference objects. Typical measurement elements 
are ranges, range rates, angles, directions or changes in direction. In some local 
applications terrestrial markers may serve as reference objects. More versatile 
reference objects in the past, because of their general visibility, were sun, moon and 
stars and are artificial satellites today. In principle, positions as a function of time can 
be deduced directly from the measured elements and relative to the reference 
objects without any use of a coordinate system. Coordinate systems are not an 
intrinsic part of positioning and navigation. They are introduced into positioning and 
navigation as a matter of convenience, elegance and for the purpose of creating 
order. To a large extent their choice is arbitrary and, again, in many ways a matter of 
convenience. The description of objects or events in space and time in a coordinate 
system requires four coordinates, three identifiing the position in space, the fourth 
providing time. In Newtonian mechanics the time coordinate is independent from the 
three space coordinates and "absolute". This is not the case when applying special 
and general relativity. Although part of the coordinate definition in space geodesy is 
done in the framework of the theory of relativity it is considered beyond the scope of 
this lecture. 
 
In the course of the centuries, the following hierarchy of three levels of coordinate 
systems - or more generally - reference systems turned out to be particularily 
meaningful: 
 
• Space-fixed or inertial systems, in which the positions of stars are fixed or almost 

fixed and in which the motion of artificial satellites can be formulated according to 
the Newtonian laws of mechanics. 

• Earth-fixed systems, in which all terrestrial points can be expressed conveniently 
as well as vehicles in motion on the earth's surface. 

• Local horizon systems, fixed to observatories or instruments and often oriented 
horizontally with one axis pointing towards north. 

 
These three levels of reference systems are complemented, when needed, by some 
specialized ones such as orbit or spacecraft systems or regional terrestrial systems.  
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Equally important, also time keeping requires some generally adopted reference for 
maintenance, comparison and transfer of time. 
 
 
2. Hierarchy of Reference Systems 

 
When talking about reference systems it is useful to distinguish between the three 
concepts coordinate system, reference system and reference frame.  
 
Coordinate systems are the central - mathematical - element of any geodetic 
reference system. The choice of a coordinate system in three dimensions requires 
the definition of its origin (three elements), the orientation of the axes (three 
elements), and the scale. It is convenient and common practice to choose 
orthonormal base vectors and the same scale along all three axes. It is again a 
matter of convenience to tie a system of curvi-linear coordinates, such as spherical, 
geographical or ellipsoidal coordinates to any such orthonormal system of base 
vectors. The transformation between coordinates given in two systems consists of a 
shift of origin (three degrees of freedom) and rotations of the base vectors (three 
degrees of freedom). We leave aside here the comparison of scale. By definition, 
time is dealt here as completely independent. 
 
A reference system consists of the adopted coordinate system and, in addition, of a 
set of constants, models and parameters, that are required in order to achieve a 
certain degree of generality or idealisation. This additional set could be necessary, 
for example, in order to deal with tectonic plate motion, tides and the earth's 
response to tides, it could define the constants of a reference ellipsoid or the 
parameters of a reference gravity field. Since positioning and navigation are global 
activities, nowadays, it is important that the same set definitions is used everywhere. 
Thus, internationally adopted conventions are necessary. The International Earth 
Rotation Service (IERS), a joint service of the International Association of Geodesy 
(IAG) and of the International Astronomical Union (IAU) prepares the definition of so-
called conventional reference systems and of their implemention, see e.g. 
(MCCARTHY, 1996). The conventional international celestial reference system (ICRS) 
is adopted by IAG and IAU, the conventional terrestrial reference system (CTRS) by 
IAG done. 
 
Finally, a reference frame contains all elements required for the materialization of a 
reference system in real world. In the case of space fixed or celestial frames it is 
essentially an adopted catalogue of celestial objects such as stars or quasars, in the 
case of a terrestrial frame it is the catalogue of coordinates of terrestrial points 
(stations, observatories) as well as of their velocities. The catalogues are chosen to 
be consistent with the conventions of the corresponding reference system. 
 
As already said, it makes sense to introduce a hierarchy of three levels of reference 
systems: space fixed systems, earth fixed systems and local or horizontal systems. 
They are discussed now in more detail. 
 
 
2.1 Space-fixed reference systems (or celestial reference systems (CRS)): 
 
They are an approximation of an inertial system. Their purpose is twofold. Celestial 
objects such as stars or quasars take a fixed position on the celestial sphere. After 
correction for proper motion their direction can be expressed by two (fixed) 
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coordinates (kinematic part of a CRS). The motion of satellites and of the sun, moon 
and planets can be described according to the laws of Newtonian mechanics (no 
apparent forces). This may be denoted the dynamic component of the definition of a 
CRS. 
 
Definition of the coordinate system: 
As origin either the barycentre of the solar system is chosen or the mass centre of 
the earth. For our further discussion we only consider the geocentric definition. This 
choice implies that the coordinate triad is accelerated. Its acceleration is mainly 
caused by the gravitational attraction of sun and moon on the earth. The system is 
not truely inertial. The base vectors are denoted here ei=1, i = 1,2,3 ("i " for inertial) 
with ei=1 and ei=2 defining the {x, y}-plane and ei=3 the z-axis. The {x, y}-plane of a 
CRS could either be chosen to coincide with the plane of the ecliptic, i.e. the orbit 
plane of the earth about the sun, or with the equator plane of the earth. Here the 
latter definition is adopted. The x-axis, i.e. base vector of ei=1, points in the direction 
of the vernal equinox. It is the line of intersection between ecliptic and equator plane. 
The z-axis, base vector ei=3, points into the direction of the mean rotation axis of the 
earth. The y-axis completes a right-handed system. In ei the direction to any 
object/event is expressed by the two angles right ascension α  (angle in the equator 
plane counted from ei=1) and declination δ  (elevation angle counted from the equator 
plane). Due to the torque excerted by sun, moon and planets on the oblate earth and 
with its equator not in coincidence with the ecliptic plane, the rotating earth 
undergoes a complicated gyroscopic motion in space. Its steady part is a precession, 
i.e. a constant rotation of the vernal equinox in the ecliptic plane, with a period of 
approximately 25800 years or 50."3 per year. Superimposed to this steady pre-
cession are shorter period nutations. They are periodic changes of the inclination 
angle of 23° 26' of the equator plane with respect to the ecliptic. The main period is 
thereby 18.6 years with an amplitude of 9."2. 
 
As a consequence of the slow rotational motion of the adopted triad ei in space, one 
has to distinguish the apparent or true system, i.e. the instantaneous orientation at a 
chosen epoch, from a mean system, which is corrected for the periodic contribution 
of the nutation. Finally, the definition of a conventional reference system, in which 
celestial objects can be catalogued, requires the definition of a reference epoch. 
Currently the adopted reference epoch is J2000.0, which is 12h January 1, 2000 
Greenwich time. 
In the past the realization of a CRS has been conducted solely by astronomical 
methods. In recent years very long baseline interferometry (VLBI) and the ESA-
satellite HIPPARCOS provided a completely new set of catalogue information, 
unprecedented in terms of the number of objects, their position accuracy and internal 
consistency. Some basic information about the realization of the international 
celestial reference frame (ICRF) is summarized in table 2.1. 
 
 
 
Table 2.1: International Celestial Reference System (ICRS) and Frame (ICRF) 
 
(according to IERS conventions) 
 
origin:  barycentre of solar system 

geocentric origin derived from planetary motion, lunar motion and  
from artificial satellites  
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orientation: in coincidence with ICRF at 1991.25  
parallel to axes of FK5 (  8mas) ±

  mean equator at J2000.0 
  x-axis: mean vernal equinox at J2000.0 
 
time:  barycentric dynamical time (TDB) 
 
directions: {α, δ} 
 
techniques: astronomy (FK5) 
  VLBI 
  HIPPARCOS satellite mission 
 
realization: 212 defining quasars (VLBI)  

608 quasar positions in total  
144 000 star positions of HIPPARCOS catalogue 
 

name:  International Celestial Reference System (ICRS) and Frame (ICRF) 
 
reference: (MCCARTHY, 1996) 
 
 
 
2.2 Earth-fixed reference systems (or terrestrial reference systems (TRS)): 
 
They serve the description of the position of points on the earth's surface or, in the 
case of navigation, that of the motion of a vehicle on the earth's surface or close to it. 
Also geophysical processes such as weather, temperature, magnetic or gravity field 
are expressed in earth fixed systems. Finally, all our maps are based upon an earth 
fixed reference system. During the past twenty years, due to the advance of space 
techniques, precisions in positioning and navigation became so incredibly high that 
the earth's surface cannot be considered anymore solid and fixed. Instead temporal 
changes due to surface motions such as tectonic plate motions and deformations 
due to tides or ocean and atmosphere loading have to be taken into account. This 
complicates the definition and realisation of an earth fixed reference system severly. 
On the other hand it implies that such a system can provide a framework for global 
geophysical monitoning and consequently play a prominent role in earth system 
studies. 
 
Definition of the coordinate system:  
The origin of the coordinate system is the geocentre. The geocentre is thereby 
defined as the centre of mass of the earth including oceans and atmosphere. The 
base vectors are denoted ee, e = 1,2,3 ("e" for earth-fixed). Again, the base vectors 
ee=1 and ee=2 define the {x, y}-plane, ee=3 defines the z-axis. The {x, y}-plane 
coincides with a conventional equatorial plane of the earth. The base vector ee=1 lies 
by definition in the Greenwich meridian plane. The base vector ee=3 corresponds to 
the mean position during 1900 to 1905 of the rotation axis of the earth. This terrestrial 
pole is denoted conventional terrestrial pole (CTP) or IERS reference pole (IRP). 
Finally, ee=2 completes the right-handed system. Its evolution in time will not change 
its orientation relative to the crust, i.e. it will have no residual global rotation with 
respect to the crust, (MCCARTHY, 1996). 
 
The coordinate triad ee is accompanied by a mean earth ellipsoid with 
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 semi-major axis  a = 6 378 137.0 m  and 
 flattening  f  = 1 / 298.257 222 101. 
 
It allows an easy conversion of cartesian into geographical coordinates. 
 
The realization of the International Terrestrial Reference System (ITRS) is denoted 
International Terrestrial Reference Frame (ITRF). It consists of an adopted global set 
of cartesian station coordinates and velocities. Almost annually a new ITRF is 
produced, based upon newest observations  and identified as ITRF.yy, where the 
numbers (yy) following the designation ITRF specify the last year whose data were 
used for the realization of the frame. Currently the 2000 version, i.e. ITRF.00 is in 
preparation. Transformation parameters between the annual realizations are 
published in the IERS conventions, (MCCARTHY, 1996). Station coordinates at an 
arbitrary epoch t are derived from  
 
  ( ) ( ) ( ) ( )∑+−⋅+=

i
ioo ttttt xvxx ∆

with to the reference epoch,  the station velocities and  coordinate corrections 
due to various time variable effects, such as those listed in table 2.2. 

v ix∆

 
 
Table 2.2: List of time variable effects, part of ITRS 
 
 
- tectonic plate motions (angular velocities of 16 plates, model NNR-NUVEL 1, no-

net rotation) 
- tides of the solid earth 
- loading effects due to ocean loading 
- atmospheric loading 
- rotational deformation due to polar motion 
- postglacial rebound 
- instrument effects (antenna deformation, motion of antenna phase centres etc.) 
 
 
There are several geodetic space techniques from which realizations of the earth 
fixed reference frame are derived by so-called analysis centres. In a second step and 
after a careful analysis of all individual solutions, one unique solution is computed 
taking into account the results of the various centres as well as the various 
techniques. Such combinations are based on the full variance-covariance error 
matrices of the individual solutions. 
 
Space techniques that are contributing to ITRS:  
 
- very long baseline interferometry (VLBI) 

(high precision and long term stability) 
 
- satellite laser ranging (SLR) 

(long term stability and geo-centricity) 
 
- lunar laser ranging (LLR) 

(geo-centricity, long term stability, relativistic effects) 
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- the French tracking system DORIS 
(excellent global station distribution) 

 
- Global Positioning System 

(densest global network, short term stability, high precision). 
 
We see that the various techniques are complementary to each other. Still, optimal 
combination of all stations and all techniques remains a major challenge. 
A summary of ITRS and ITRF is given in table 2.3. It should be added that there 
exists a further earth fixed reference system: the World Geodetic System 1984 
(WGS84). It is a system developed by the U.S. defence mapping agency, specifically 
for the operational use of the GPS; ITRS can be seen as a refinement of WGS84. 
 
 
Table 2.3: International Terrestrial Reference System (ITRS) and Frame (ITRF) 
 
(according to IERS conventions) 
 
origin:  mass centre of the earth (including oceans and atmosphere) 
 
scale:  metre 
 
orientation: in coincidence with BIH-System 1984 (  3 mas) ±
 
evolution: no net rotation (NNR) with respect to crust 
 
ellipsoid: Geodetic Reference System 1980 (GRS80) 
  a = 6 378 137.0 m 
  f = 1 / 298.257 222 101 
 
directions: {Φ, Λ}, {ϕ, λ}, { LB, } 
 
techniques: VLBI 
  SLR 
  LLR 
  GPS 
  DORIS 
 
realization: coordinates x (to) and velocities (tv o) at epoch to of a large number of 

instrument locations of geodetic observatories equipped with one up to 
six techniques in parallel  

 
notation: ITRF.yy, z. B. ITRF.94 
 
reference: (MCCARTHY, 1996) 
 
 
 
2.3 Local horizontal reference systems (or topocentric systems): This class of 
systems is associated with an instrument such as a GPS receiver, a VLBI telescope 
or a camera. They are therefore topocentric, located in the origin or reference point of 
the instrument and it is purpose of space positioning to determine the coordinates of 
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this reference point, either in ee or in ei. Local horizontal systems are introduced in 
order to express the fixed or time variable pointing direction of the instrument to a 
target point and in order to predict when and under what angles a target will rise or 
fall. The orientation of base vectors of the local system can either be defined by the 
local (level) horizontal plane, north direction and plumb line direction (zenith) or, in 
ellipsoidal or spherical approximation, by the corresponding ellipsoidal or spherical 
quantities. 
 
Definition of the coordinate system: 
The origin of the coordinate system is the instrument origin (topocentre). The base 
vectors are denoted el, l = 1,2,3 ("l" for local). Base vectors el=1 and el=2 define the {x, 
y}-plane, el=3 defines the z-axis. The {x, y}-plane coincides with the local horizon 
(level surface). It is often approximated by an ellipsoidal or spherical reference 
surface. The base vector el=1 points towards north. The z-axis points towards the 
zenith (or normal of the ellipsoid or sphere). Base vector el=2 completes the left-
handed orthonormal triad; it points towards east.  
 
The angle to an object in the horizontal plane counted from north (towards east) is 
called azimuth A, the angle to an object from the zenith is denoted zenith distance 
z, its complement to π , the elevation angle above the horizontal plane is called 
elevation angle b. Thus, when tracking a satellite at a station its changing direction 
in the horizontal system is expressed by the angles {A, z}. 
 
 
 

local-horizon 
(instrument) 

earth-fixed
(terrestrial) 

 
from geo-centre 
to  topo-centre 

+ 
change in 
orientation 

precession 
nutation 

------------------- 
length of day 
polar motion 

Rle 

Rei 

space-fixed 
(inertial) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Hierarchy of reference systems - from space-fixed via earth-fixed 
to local horizontal 
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2.4 Special coordinate systems: In practice many additional coordinate systems 
are applied. Only two examples are given here: 
 
- Satellite orbit system eo, o = 1, 2, 3 ("o" for orbit): 

It is a triad rigidly tied to the momentary orientation of the orbit plane of a satellite. 
The orthonormal base vectors are  
 
eo=1 pointing towards the satellite perigee (closest point), see figure 4.1 
eo=3 perpendicular to the orbit plane 
eo=2 completing a right handed system. 

 
- Osculating orbit system es, s = 1, 2, 3 ("s" for satellite): 

This triad is located at the centre of mass of the space craft with the following 
orthonormal base vectors: 

either 
es=1 along track, in the direction of the velocity vector of the satellite, 
es=2 perpendicular to the orbit plane (cross track), 
es=3 completing a right-handed system (approximately radial)  

or 
es=3 radial, from the earth's centre of mass, 
es=2 perpendicular to the orbit plane (cross track) 
es=1 completing a right handed system (approximately along track) 

 
 
3. Transformation between coordinate systems 

 
Each of the three hierarchy levels of reference systems, discussed in the previous 
chapter, takes an important role in positioning and navigation by space geodetic 
methods, the space-fixed, the earth-fixed as well as the local horizontal system. 
However, only if we know how to transform one into the other they become 
operational. Under the assumption of equal scale along each axis and in each of the 
coordinate systems considered here, transformation from one system into the other 
consists of a shift of origin from one system to the other system followed by a rotation 
between base vectors. (In reality it is all but trivial to warrant the same scale in all of 
our coordinate systems. After all each instrument carries its own scale and it is 
difficult to get all systems "calibrated".) 
 
Let us consider the following situation, displayed in figure 3.1. The geocentre O, a 
terrestrial point P and satellite position S form a basic triangle in three-dimensional 
space; introducing the geocentric position vectors  and  and the topocentric 
position vectors  it can be expressed as:  

Pr Sr

Sx
 

SPS xrr += .                    (3.1) 
 
All positioning and navigation by satellites and all orbit determination rests on this 
simple triangle condition between three fundamental vectors. However, behind this 
simplicity some complications are well hidden. For, although these three vectors are 
geometric objects invariant with respect to any chosen coordinate system, the com-
ponents forming these three vectors are not. Each of the three vectors is represented 
in its own coordinate system. 
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(1) The geocentric orbit, i.e. vector , is given in the space fixed system . Sr ie
(2) Terrestrial surface points, such as station or vehicle positions, i.e. vector r , are 
best represented in the earth fixed system . 

P

ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rP 

xS 

S 

P 

stations P in 
earth fixed system 

measurements in 
local horizon system

orbit  (satellite S) in 
space-fixed system 

mass 
centre 

rS 

Figure 3.1: Vector sum of geocentric point position vector, topocentric 
measurement vector and geocentric satellite orbit vector, each one expressed 
in a different reference system. 

 
Since we assumed that the origin of both, e  and e , is the geocentre, the two triads 
can be brought into coincidence by rotation only. Three independent elements are 
sufficient to perform this rotation. Thus, with the transformation  triad e  can be 
rotated into the orientation  and vice versa: 

i e

i
eR i

ee
 

i
i
ee R ee =    and   e .      (3.2 a, b) e

e
ii R e=

 
Here the summation convention over repeated indices is applied;  and  can be 
represented by (3x3)-matrices containing the nine inner products (cosines) between 
the two sets of orthonormal base vectors. For their matrix representations  and 

 it holds: 

i
eR

e
iR

eiR

ieR
 
 . T

ieieei RRR == −1

 
The most common representation of rotations is that in terms of Eulerian 
transformation angles, where e.g. ( )α1R  denotes a rotation about the 1-axis (x-axis) 
by the angle α  in counter-clockwise direction. 
 
The major contribution to  is the rotation of the earth about its spin axis with a 
period of 24

i
eR

h; superimposed are precession, nutation, tiny variations in the steady 
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angular velocity and polar motion. Only with  (or ) known,  and  can be 
transformed from e  to e  and back.  

i
eR

ee

e
iR

le

Sr

ee

Pr

l

i

e

e

e

B ϕ
Φ

( )ζ−
( (ψ∆

ie

( )⋅Θ

t +

−t

2181

3109

⋅

833 ⋅

⋅2181

2000

t +

/
2451545J

(3) Measurements, and therefore  too, are preferably represented in the local ho-
rizon system e  located at the instrument: 

Sx

l

l
l
SS x ex =  

with time variable components , l  = 1, 2, 3. l
Sx

 
The triads  and e  are connected to each other by le
 
    and  .                 (3.3 a, b) e

e
ll R ee = l

eR=
 
Since the y-axis of  (direction east) lies in a plane parallel to the equator, i.e. the {x, 
y}-plane of e , only two independent angles are needed to rotate  into e . These 
two angles are the astronomical latitude  and longitude  (or, as substitutes, the 
geographical latitude 

l

e

Φ Λ
 and longitude  or the spherical latitude L  and longitude 

λ ). The angles  and  define the plumb line direction at Λ P  in the coordinate 
system e . They can be regarded as fixed in time.  e

 
We take now a closer look into the transformations  and . i

eR
e
lR

Transformation between space-fixed and earth-fixed system: In principle, only 
three Euler angles would suffice to express Re

i. For phenomenological reasons it is 
however common practice to separate Re

i into four parts 
 

precession ( ) ( ) AAA RRzRP θ−= 323  
nutation ( ) ) εεε 131 RRRN −∆−−=  )
earth rotation  with  = Greenwich apparent sidereal time (GAST) 3R ( )Θ Θ
polar motion  ( ) ( )pp yRxRW −−= 12 . 

 
This means the transformation of the base vectors e of the space fixed system to the 
base vectors e  of the earth fixed system is composed of  

i

e

 
       e  i

ee R=
             (3.4) 
  = )( i

ePNW ⋅3R⋅  ie
 
The equatorial precession parameters are (compare figure 3.2): 
 
  32 017988."030188."0."2306 ttA +⋅⋅=ζ
 

 42665."0."2004 ⋅=Aθ 32 041."0 tt −⋅  
 

  32 018203."009468".1."2304 ttz A +⋅⋅=
 
where the time is given in Julian centuries referred to : ( )0.0.2000 =
 .  (0.36525)0.( JTt −= T  is Julian Date) 
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The nutation part is more complicated. Several rather complex nutation models 
exist, originally based on a model of a rigid earth, meanwhile taking its elasticity into 
account. Corrections to these models are derived from VLBI and for short periodic 
terms (< 20 days) improvements are expected from GPS. 
The mean obliquity of the ecliptic ε  is: 
 
  32 813001."059000."08150."46488."21'2623 ttt ⋅+⋅−⋅−°=ε
 
The correction angles ε∆  and ψ∆  are expressed as series, see (MCCARTHY, 1996) 
and compare figure 3.3. An approximation, accurate to about 11", is given in 
(SEIDELMANN, 1992): 
 
 ( ) ( dd ⋅°+°°−⋅°−°°−=∆ 97129.19.200sin0004.005295.00.125sin0048.0 )ψ  
 

 ( ) ( dd ⋅°+°°+⋅°−°°=∆ 97129.19.200cos0002.005295.00.125cos0026.0 )ε  
 
where  is the number of day from . d 0.2000J
 
 

 
Figure 3.2: The precession angles ζA, zA and θA  
(from: SEIDELMANN, 1992, fig. 3.21.2) 
 

 
 

 
Figure 3.3: The nutation angles εε ∆+ , ψ∆  and θA  
(from: SEIDELMANN, 1992, fig. 3.222.1) 
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The most important component of transformation  is . It also defines the 
interface between space-fixed and earth-fixed. The angle  is Greenwich Apparent 
(true) Sidereal Time (GAST) which is the hour angle expressed in units of time 
between the Greenwich meridian at epoch and vernal equinox . Consequently all 
deviations of the earth's spin rate from a constant angular motion are contained in 

. There is a long-term deceleration very likely caused by tidal friction. All additional 
deviations are of the order of magnitude of a few milliseconds per day. Among others 
these fluctuations are caused by the tides of sun and moon, by exchange of angular 
momentum between atmosphere, oceans and solid earth and by long periodic effects 
such as postglacial mass readjustment. They are denoted as changes in length of 
day (LOD). See also figure 3.4. 

i
eR ( )Θ3R

Θ

Θ

 
Polar motion is defined as the movements of the earth's instantaneous spin axis 
relative to ITRF, i.e. to e . It is split into a x- and y-component in a coordinate system 
fixed to the IERS reference pole (IRP) as a tangent plane. The x-axis points towards 
the Greenwich meridian, the y-axis towards the meridian 

e

°= 90λ . Polar motion is 
almost a circular motion superimposed by small fluctuations, compare figure 3.4. Its 
most prominent component is the Chandler period (free rotation of an elastic earth 
with a fluid core; the well-known Euler period would be the corresponding effect of 
the free gyroscopic motion of a solid earth). The exact mechanisms leading to the 
Chandler period are not yet completely understood. The Chandler motion is comple-
mented by annual variations, due to the interaction of the atmosphere with the solid 
earth. Typical amplitudes are about  or about 8 m on the earth's surface. Both, 
polar motion and changes in length of day cannot be represented very well by 
models. They are derived from the various geodetic space techniques and represent 
a contribution of space geodesy to earth sciences. 

3."0

 
 

 
  

Figure 3.4: Variations in length of day between 1993 and 1999 
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Figure 3.4: Secular polar wander between 1900 and 1992 and polar motion 
between 7 July 1990 and 2 May 1993 

 
 
Transformation between earth-fixed and local-horizontal: The shift of origin from 
the geocentre to the topocentre is expressed by the position vector r . The change in 
orientation between  and  is derived from 

P

ee le
 
  e

e
ll R ee =

     ( ) e

e

l

RRQ e






 Λ





 Φ−= 321 2
π         (3.5) 

 
Thereby it is  the transformation from a left-handed to a right-handed system, in 
matrix form 

1Q

 

 . 














−
=

100
010
001

1Q

 
The complete transformation takes the form 
 

















ΦΛΦΛΦ
ΛΛ−

ΦΛΦ−ΛΦ−
=

sinsincoscoscos
0cossin

cossinsincossin

leR       (3.6) 
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with astronomical latitude Φ  and astronomical longitude . In the case of ellipsoidal 
or spherical approximation {  are replaced by the corresponding geographical or 
spherical coordinates, {  and {

Λ
}

}
ΛΦ,

}LB, λϕ , , respectively. 
 
Transformation between cartesian and geographical coordinates: In practice, in 
earth-fixed system , instead of cartesian coordinates  often geographical 
coordinates are used.  

ee
e
Px

If we denote  by {  and geographical latitude, longitude and height above 
the reference ellipsoid by {  the following relations hold. 

e
Px }

}
ZYX ,,
LB, h,

Forward Computation from  to : { }hLB ,, { }ZYX ,,
 
  ( ) LBhNX coscos'+=
 
           (3.7 a - c) ( ) LBhNY sincos'+=
 
  ( ) BhNeNZ sin'' 2 +−=
 
with normal curvature 
 

 
Be

aN
22 sin1

'
−

=  

 

 2

22
2

a
bae −= ,   2

22
2'

b
bae −=  

 
with  and b  length of the semi-major and semi-minor axis of the reference ellipsoid. a
 
 
Backward Computation from { }  to { } : ZYX ,, hLB ,,
(Method by Bowring) 
 

XYL /tan =             (3.8 a - c) 
 

auxiliary quantities: 
 

22 YXp +=  
 

pb
Za=µtan  

 

µ
µ

32

32

cos
sin'tan
aep
eZB

−
+=  

 
BeaBZBph 22 sin1sincos −−+=  
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4. Time 
 
 
In the context of this lecture time is regarded as absolute and independent of space. 
In reality time keeping, and satellite measurements in general, are so accurate 
nowadays that adequate modelling requires the use of special and general theory of 
relativity for practical reason. 
 
Time keeping requires a periodic process, a counter (in order to count the number 
of periods) and an origin where the counting starts. In addition, in order to be able to 
keep the same time at different locations some means of transfer/transport of time 
has to be available. There exist a number of natural "clocks" that produce very stable 
periodic oscillations: the orbit of the earth about the sun, of the moon about the earth 
and earth rotation. Their fundamental periods, year, month and day, are closely 
related to natural processes such as seasons that affect our living conditions and 
these periods define the basic structure of our life. From these fundamental periods 
the basic long term counting structure has been deduced, our calendars (we use the 
Gregorian calendar, adopted in 1582). In scientific work a continuous counting is 
preferable to the complicated structure of counting with months or year of varying 
length. For this purpose the Julian date (JD) has been invented with 36525 days per 
century. 
 
The adopted reference date is 
 
 J2000.0 = 2000 Jan 1.5 = January 1, 2000 at 12h 
 
where it is 
 

JD 2451 545.0. 
 
For a long time the natural period day, and even more the revolution of the moon, 
were superior in terms of stability to any artificial clock. Only with the advent of quarz 
and atomic oscillators artificial clocks were created that meanwhile surpassed the 
precision and stability of natural clocks. Our current definition of the unit of second is 
based on the oscillation period of a caesium clock. In 1984 atomic time (Temps 
Atomique International = TAI) has been introduced as official, internationally adopted 
time. Its has a constant off-set of 32.s184 with respect to the terrestrial dynamic 
time (TDT). The latter is derived from models of planetary motion and based on the 
theory of relativity. TAI has a constant off-set of 19s with respect to GPS-time. 
 
Civilian time is related to the rhythm of day and night, i.e. to the rise and fall of the 
sun. Because of the complicated deviations of the apparent motion of the sun, some 
model or mean solar motion has been conceived. It refers to the Greenwich meridian 
and is denoted universal time (UT). From UT standard zonal times have been 
deduced; in our case MEZ. Earth rotation - and therefore UT - exhibits a drift and 
small irregular fluctuations (changes in LOD) with respect to TAI. In order to 
circumvent this, a coordinated universal time (UTC) has been conceived, which on 
the one hand is kept synchronous with respect to TAI and on the other hand, through 
regular corrections (leap seconds), is kept within small bounds to follow the actual 
angular rate of the earth. The actual and uncorrected universal time is denoted UT1. 
It represents the actual phase angle of the rotating earth. The difference UT1-UTC is 
provided in monthly tables (see (MCCARTHY, 1996)) and provided as coded message 
in broadcasted time signals. If the difference UT1-UTC exceeds the size of 0.9s a 
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leap second is introduced. UT0 completes the system of universal times. It contains 
all variations in rotation due to polar motion. 
 
Finally, sidereal time is the angle of a terrestrial meridian (rotating with the earth) 
with respect to vernal equinox. The most prominent types of sidereal time are 
 

Greenwich Mean Sidereal Time (GMST) Θ  
 
and 
 

Greenwich Apparent (or true) Sidereal Time (GAST) Θ . 
 
GMST is corrected for fluctuations caused by nutation. It is  
 
 n∆+Θ=Θ            (4.1) 
     Ω⋅+Ω⋅+⋅∆+Θ= 2sin000063."0sin00264."0cosεψ  
 
and Ω  the mean node of the moon. Greenwich Apparent Sidereal Time is needed for 
the transformation from earth-fixed to space-fixed. The complete chain of time 
transformations is summarized in figure 4.1. 
 
Since sidereal time is measured with respect to vernal equinox, i.e. the x-axis of ei, 
while universal time is a solar time and counted with respect to the apparent pass of 
the sun through the meridian at Greenwich the length of the year is different by one 
day: tropical year 
 
 in solar days:  365.24220 
 in sidereal days: 366.24220. 
 
This difference has to be accounted for when transforming UT1 to GMST. It holds 
 
          (4.2) ( ) hUTGMST 121 −Θ+= α
 
with the right ascension of the sun: 
 
 ( ) ( )362 102.6093104.0812866.864054841.2411012 ttt ssssh ⋅⋅−⋅+⋅++=Θ −α   (4.3) 
 
and 
 
  0.36525/)0.2000( JTt −=
 
with T  Julian Date at epoch and J2000.0 = JD2451545.0. 
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Figure 4.1: Transformation between time systems (after: MÜLLER, 1999) 
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Tutorial - Representation of Satellite Orbits in Various Coordinate Systems 
 
The purpose of this tutorial is to give an introduction into the representation of 
satellite orbits in various, often used coordinate systems. A collection of related 
formulas is given in table 5.1. 
We consider the most simple type of satellite orbit, a Kepler ellipse. Its shape is 
defined by  and b . The earth is assumed to be a perfect and homogeneous sphere 
with its centre in one of the focal points of the ellipse. In the orbit coordinate system 

 the position vector of the satellite takes the form (compare figure 5.1): 

a

oe
 

 
( )

oo

S

S

S Eea
eEa

r
r
















−

−
=
















=

0
sin1

cos

0
sin
cos

r 2ν
ν

        (5.1) 

 
Since  is perpendicular to the orbit plane the z-coordinate of  is zero. Both the 
true anomaly 

3=oe Sr
ν  and the eccentric anomaly E  are functions of time, as is the radial 

distance . Eq. (5.1) allows us to display the Kepler ellipse in the {x, y}-plane of e , 
i.e. to show all satellite positions as a function of time. 

sr o

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5.1: Orbital ellipse 

geocentre 

r 

  a ⋅ e 

E ν 

a satellite 

eo=1 
perigee

eo=3

eo=2 

 
 
In the space-fixed triad  the same position vector takes the form ie
 

  ,         (5.2) 

is

s

s

s

r
r
r
















=

δ
αδ
αδ

sin
sincos
coscos

r

 
with direction angles right ascension α  and declination δ .  
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Table 5.1: Collection of formulas 
 
 
ellipse: 
 
 semi-major axis a  
 semi-minor axis b  

 first eccentricity 2

22

a
ba −e =  

 second eccentricity 2

22

'
b
b−= ae  

 
position in orbital plane (compare figure 5.1): 
 
 orbit period  T  

 mean motion  3

2
a
GM

T
n == π   (mean angular velocity) 

 mean anomaly l =  ( )ottn −⋅
 eccentric anomaly eE −   ( l  counted from perigee) lE =sin

 true anomaly  
2

tan
1
1

2
tan E

e
e

−
+=ν   or 

  

    
eE
Ee

−
−=

cos
sin1tan

2

ν  

 ( )
νcos1

1 2

e
earS +

−=  

  
  ( )EearS cos1−=

 
gravitational constant ⋅ mass of the earth: GM = 398 600.5 km³/s² 
 
orbit elements of the two GPS-satellites shown in the figures (2 revolutions): 
 
  mhT 5811≅

  and  °=Ω 0 °60

 °= 0ω  

  °= 55i

 km 26560=a

  01.0=e
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Orbit and hierarchy of coordinate systems 
 
In order to be able to display the Kepler ellipse in  we have to know the 
transformation from the orbit system to the space-fixed system, . As long as the 
earth is a sphere, the orbit ellipse remains fixed in space, no precession of the orbital 
plane occurs. Thus only the three time invariant rotation angles from e  to  are 
needed. They are the ascending node , the inclination i  of the orbit plane with 
respect to the equator and the argument of perigee 

ie
o
iR

o ie
Ω

ω , compare figure 5.2: 
 
            (5.3) o

o
ii R ee =

         ( ) ( ) ( )( ) o
o
iRiRR eω−−Ω−= 313

 
or in matrix form 
 
















Ω−Ω+Ω−Ω+Ω

ΩΩ−Ω−Ω−Ω
=

iii
iii
iii

io

coscossinsinsin
sincoscoscoscossinsinsincoscoscossin

sinsincoscossinsincossincossincoscos

ωω
ωωωω
ωωωω

R      (5.4) 

 
  z
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vernal equinox 

ascending 
node 

 x 
Ω 

i

ω

     ν 
r 

satellite 

geocentre 

perigee 

ei=3 

ei=1 

ei=2 

y 

satellite orbit  
 Figure 5.2: Orbital orientation in a space-fixed coordinate system 
 
With  the orbit can now be displayed in ; a relation with right ascension and 
declination (

o
iR ie

α , δ ) is established. The result is shown in figure 5.3 for GPS-type 
satellite orbits. The orbit elements are given in table 5.1. 
 
It is more interesting to connect the orbit triad via e  with the earth-fixed triad e  and 
the local horizon system e . If all small effects, such as precession, nutation, 
changes in length of day, and polar motion are neglected, e.q. (3.4) becomes 

i e

l
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            (5.5) i
i
ee R ee =

−20000

0

20000

−10000
0

10000

−20000

0

20000

x [km]

space fixed geocentric

y [km]

z 
[k

m
]

Ω = 0° 
Ω = 60°

−20000
0

20000

−20000

0

20000

−20000

0

20000

x [km]

earth fixed geocentric

y [km]

z 
[k

m
]

Ω = 0° 
Ω = 60°

     =  ( )( ) i
i
eR eΘ3

 
with matrix representation 
 

          (5.6) 















ΘΘ−
ΘΘ

=
100
0cossin
0sincos

eiR

 
where Greenwich apparent sideral time Θ  can be replaced by 
 
 . ( )ottn −=Θ
 
Now we find for the components of r  in : s ee
 

( )
( )

e

S
e
i

i
S

e
S

e
S

e
S

S rRr
r
r
r
















−Θ−

−Θ
=

















=
=

=

=

δ
αδ

αδ

sin
sincos

coscos

3

2

1

r .       (5.7) 

 
The result is shown in figure 5.4. 
 

 
Figure 5.3: The orbits of two GPS satellites in a space-fixed geocentric 
coordinate system 
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Figure 5.4: The orbits of two satellites in an earth-fixed geocentric coordinate 
system 



Finally, the same orbit is brought into the local horizontal triad . Since we are only 
interested in the direction of the satellite, the shift of origin can be disregarded. 

le

In terms of the orientation angles in , azimuth and zenith distance, it takes the 
simple form: 

le

 

           (5.8) 

l

SS

z
Az
Az

r















=

cos
sinsin
cossin

r

 
and using , eq. (3.6), applied to (5.7) we arrive at e

iR
 

 .       (5.9) 

l

SS r
















+
−

−
=

τδϕδϕ
τδ

τδϕδϕ

coscoscossinsin
sincos

coscossinsincos
r

 
We replaced astronomical latitude and longitude, Φ  and Λ , by the spherical ones, ϕ  
and λ . The angle τ  is the so-called hour angle 
 
 αλτ −+Θ= .                 (5.10) 
 
Comparison of (5.8) and (5.9) yields  and  as a function of A z δ , ϕ  and τ : 
 

 
τ

τδ
sin

cossintancoscot Φ−Φ−=A , 

                    (5.11) 
 τδϕδϕ coscoscossinsincos +=z . 
 
In figure 5.5 azimuth and zenith distance are shown in stereographic projection, with 
the projection plane coinciding with the horizon and centered at station P . This type 
of plot is denoted sky plot or visibility plot. It provides a convenient picture of the 
rise of a satellite above the horizon and of its fall. It also shows under what elevation 
and azimuth a satellite passes a station. 
 
Figure 5.4, the orbit of a satellite in e , is not very instructive. Instead, one often 
computes from the cartesian coordinates, eq. (5.7), the ellipsoidal coordinates { }  
using eq. (3.8) or simple the spherical coordinates 

e

LB,
{ }λϕ ,

sr
. They can be shown as a 

so-called ground track plot, i.e. as a projection of  onto the sphere. Figure 5.6 
gives the ground track of the two GPS satellites. 
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Figure 5.5: Sky plot or visibility plot, centered at Alpbach ( '2447°=ϕ N, 

'5711°=λ E), with traces of two GPS satellites 
 
 
 

 
 
Figure 5.6: Ground tracks of two GPS satellites 
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Figure 5.7: Hierarchy of reference systems and the associated graphical re-
presentations 

 
5. Time 
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