
9 Statistical methods in
physical geodesy

9.1 Introduction

Some of the most important problems of gravimetric geodesy are formulated
and solved in terms of integrals extended over the whole earth. An example
is Stokes’ formula. Thus, in principle, we need the gravity g at every point
of the earth’s surface. As a matter of fact, even in the densest gravity net
we measure g only at relatively few points so that we must estimate g at
other points by interpolation. In large parts of the oceans we have made no
observations at all; these gaps must be filled by some kind of extrapolation.

Mathematically, there is no difference between interpolation and extrap-
olation; therefore they are denoted by the same term, prediction.

Prediction (i.e., interpolation or extrapolation) cannot give exact values;
hence, the problem is to estimate the errors that are to be expected in the
gravity g or in the gravity anomaly ∆g. As usual, gravity disturbances δg
are appropriately comprised whenever we speak of gravity anomalies.

Since ∆g is further used to compute other quantities, such as the geoidal
undulation N or the deflection components ξ and η, we must also investigate
the influence of the prediction errors of ∆g on N, ξ, η, etc. This is called
error propagation, which will play a basic role.

It is also important to know which prediction method gives highest ac-
curacy, either in ∆g or in derived quantities N, ξ, η, etc. To be able to find
these “best” prediction methods, it is necessary to have solved the previous
problem, to know the prediction error of ∆g and its influence on the derived
quantities.

Summarizing, we have the following problems:

1. estimation of interpolation and extrapolation errors of ∆g (or δg);

2. estimation of the effect of these errors on derived quantities (N, ξ, η,
etc.);

3. determination of the best prediction method.

Since we are interested in the average rather than the individual errors,
we are led to a statistical treatment. This will be the topic of the present
chapter.
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9.2 The covariance function

It is quite remarkable that all the problems mentioned above can be solved
by means of only one function of one variable, without any other information.
This is the covariance function of the gravity anomalies.

First we need a measure of the average size of the gravity anomalies ∆g.
If we form the average of ∆g over the whole earth, we get the value zero:

M{∆g} ≡ 1
4π

∫
σ

∫
∆g dσ = 0 . (9–1)

The symbol M stands for the average over the whole earth (over the unit
sphere); this average is equal to the integral over the unit sphere divided
by its area 4π. The integral is zero if there is no term of degree zero in the
expansion of the gravity anomalies ∆g into spherical harmonics, that is, if a
reference ellipsoid of the same mass as the earth and of the same potential
as the geoid is used. This will be assumed throughout this chapter.

Note that if this is not the case, that is, if M{∆g} = m �= 0, then we
may form new gravity anomalies ∆g∗ = ∆g −m by subtracting the average
value m. Then M{∆g∗} = 0 and all the following developments apply to the
“centered” anomalies ∆g∗.

Clearly, the quantity M{∆g}, which is zero, cannot be used to charac-
terize the average size of the gravity anomalies. Consider then the average
square of ∆g,

var{∆g} ≡ M{∆g2} =
1
4π

∫
σ

∫
∆g2 dσ . (9–2)

It is called the variance of the gravity anomalies. Its square root is the root
mean square (rms) anomaly:

rms{∆g} ≡
√

var{∆g} =
√

M{∆g2} . (9–3)

The rms anomaly is a very useful measure of the average size of the gravity
anomalies; it is usually given in the form

rms{∆g} = ± 35 mgal ; (9–4)

the sign ± expresses the ambiguity of the sign of the square root and sym-
bolizes that ∆g may be either positive or negative. The rms anomaly is very
intuitive; but the variance of ∆g is more convenient to handle mathemati-
cally and admits an important generalization.
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Instead of the average square of ∆g, consider the average product of
the gravity anomalies ∆g ∆g′ at each pair of points P and P ′ that are at a
constant distance s apart. This average product is called the covariance of
the gravity anomalies for the distance s and is defined by

covs{∆g} ≡ M{∆g ∆g′} . (9–5)

The average is to be extended over all pairs of points P and P ′ for which
PP ′ = s = constant.

The covariances characterize the statistical correlation of the gravity
anomalies ∆g and ∆g′, which is their tendency to have about the same
size and sign. If the covariance is zero, then the anomalies ∆g and ∆g′ are
uncorrelated or independent of one another (note that in the precise lan-
guage of mathematical statistics, zero correlation and independence are not
quite the same, but we may neglect the difference here!); in other words,
the size or sign of ∆g has no influence on the size or sign of ∆g′. Gravity
anomalies at points that are far apart may be considered uncorrelated or
independent because the local disturbances that cause ∆g have almost no
influence on ∆g′ and vice versa.

If we consider the covariance as a function of distance s = PP ′, then we
get the covariance function C(s) mentioned at the beginning:

C(s) ≡ covs{∆g} = M{∆g ∆g′} (PP ′ = s) . (9–6)

For s = 0, we have
C(0) = M{∆g2} = var{∆g} (9–7)

according to (9–2). The covariance for s = 0 is the variance.
A typical form of the function C(s) is shown in Fig. 9.1. For small dis-

tances s (1 km, say), ∆g′ is almost equal to ∆g, so that the covariance is
almost equal to the variance; in other words, there is a very strong corre-
lation. The covariance C(s) decreases with increasing s because then the

s

C s)(

Fig. 9.1. The covariance function
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anomalies ∆g and ∆g′ become more and more independent. For very large
distances, the covariance will be very small but not in general exactly zero
because the gravity anomalies are affected not only by local mass distur-
bances but also by regional factors. Therefore, we may expect an oscillation
of the covariance between small positive and negative values.

Note that positive covariances mean that ∆g and ∆g′ tend to have the
same size and the same sign; negative covariances mean that ∆g and ∆g′

tend to have the same size and opposite sign. The stronger this tendency,
the larger is C(s); the absolute value of C(s) can, however, never exceed the
variance C(0).

The practical determination of the covariance function C(s) is somewhat
problematic. If we were to determine it exactly, we should have to know grav-
ity at every point of the earth’s surface. This we obviously do not know; and
if we knew it, then the covariance function would have lost most of its signif-
icance because then we could solve our problems rigorously without needing
statistics. As a matter of fact, we can only estimate the covariance function
from samples distributed over the whole earth. But even this is not quite
possible at present because of the imperfect or completely missing gravity
data over the oceans. For a discussion of sampling and related problems see
Kaula (1963, 1966 b).

The first comprehensive estimate of the covariance function was made by
Kaula (1959). Some of his values are given in Table 9.1 for historical interest.
They refer to free-air anomalies. The argument is the spherical distance

ψ =
s

R
(9–8)

corresponding to a linear distance s measured on the earth’s surface; R is a
mean radius of the earth. The rms free-air anomaly is

rms{∆g} =
√

1201 = ± 35 mgal . (9–9)

We see that C(s) decreases with increasing s and that, for s/R > 30◦, very
small values oscillate between plus and minus.

For some purposes we need a local covariance function rather than a
global one; then the average M is extended over a limited area only, instead
of over the whole earth as above. Such a local covariance function is useful
for more detailed studies in a limited area – for instance, for interpolation
problems. As an example we mention that Hirvonen (1962), investigating the
local covariance function of the free-air anomalies in Ohio, found numerical
values that are well represented by an analytical expression of the form

C(s) =
C0

1 + (s/d)2
, (9–10)
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Table 9.1. Estimated values of the covariance
function for free-air anomalies [unit mgal2]

ψ C(ψ) ψ C(ψ) ψ C(ψ)
0.0◦ +1201 8◦ +124 27◦ +18
0.5◦ 751 9◦ 104 29◦ +6
1.0◦ 468 10◦ 82 31◦ +8
1.5◦ 356 11◦ 76 33◦ +5
2.0◦ 332 13◦ 54 35◦ −8
2.5◦ 306 15◦ 47 40◦ −12
3.0◦ 296 17◦ 45 50◦ −20
4.0◦ 272 19◦ 34 60◦ −30
5.0◦ 246 21◦ 35 90◦ −4
6.0◦ 214 23◦ 10 120◦ +12
7.0◦ 174 25◦ 20 150◦ −21

where

C0 = 337 mgal2 , d = 40 km . (9–11)

This function is valid for s < 100 km.
In the meantime it has been recognized that a proper determination of

global and local covariance functions is a central practical problem in this
context.

The Tscherning–Rapp covariance model and the COVAXN sub-
routine

The fundamental covariance model by Tscherning and Rapp (1974) and the
subroutine COVAXN (Tscherning 1976) are still very much up to date, as
the following quotation from Kühtreiber (2002 b) shows:

“The global covariance function of the gravity anomalies Cg(P,Q) given
by Tscherning and Rapp (1974, p. 29) is written as

Cg(P,Q) = A

∞∑
n=3

n − 1
(n − 2)(n + B)

sn+2Pn(cos ψ) , (9–12)

where Pn(cos ψ) denotes the Legendre polynomial of degree n; ψ is the spher-
ical distance between P and Q; and A, B and s are the model parameters.
A closed expression for (9–12) is available in (ibid., p. 45).
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The local covariance function of gravity anomalies C(P,Q) given by
Tscherning–Rapp can be defined as

C(P,Q) = A

∞∑
n=N+1

n − 1
(n − 2)(n + B)

sn+2Pn(cos ψ) . (9–13)

Modeling the covariance function means in practice fitting the empirically
determined covariance function (through its three essential parameters: the
variance C0, the correlation length ξ and the variance of the horizontal
gradient G0) to the covariance function model. Hence the four parameters
A, B, N and s are to be determined through this fitting procedure. A simple
fitting of the empirical covariance function was done using the COVAXN-
subroutine (Tscherning 1976).

The essential parameters of the empirical covariance parameters for 2489
gravity stations in Austria are 740.47 mgal2 for the variance C0 and 43.5 km
for the correlation length ψ1. The value of the variance for the horizontal
gradient G0 was roughly estimated as 100 E2 (note that E indicates the
Eötvös unit, where 1 E = 10−9 s−2).

With a fixed value B = 24, the following Tscherning–Rapp covariance
function model parameters were fitted: s = 0.997 065, A = 746.002mgal2

and N = 76. The parameters were used for the astrogeodetic, the gravimetric
as well as the combined geoid solution.” (End of quotation.)

The Tscherning–Rapp model can be summed to get closed expressions.
Its popularity is due to its comprehensiveness: there are expressions for co-
variances of various quantities derived by covariance propagation (Sect. 10.1),
and to its flexibility since it contains several parameters which can be given
various numerical values.

Remark. The spherical-harmonic expression of the covariance function
is considered in Sect. 9.3. The theory of global and local covariance func-
tions is described in great detail in Moritz (1980 a: Sects. 22 and 23). The
three essential parameters of a local covariance function (variance C0, corre-
lation length ξ, and curvature parameter G0) are also defined there. Funda-
mental numerical studies on local covariance functions have been made by
Kraiger (1987, 1988).

9.3 Expansion of the covariance function

in spherical harmonics

The more or less complicated integral formulas of physical geodesy frequently
take on a much simpler form if they are rewritten in terms of spherical
harmonics. A good example is Stokes’ formula (see Sect. 2.15).
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Unfortunately, this theoretical advantage is in most cases balanced by
the practical disadvantage that the relevant series converge very slowly. In
certain cases, however, the convergence is good. Then the use of spherical
harmonics is very convenient practically; we consider such a case in the next
section.

The spherical-harmonic expansion of the gravity anomalies ∆g may be
written in different ways, such as

∆g(ϑ, λ) =
∞∑

n=2

∆gn(ϑ, λ) , (9–14)

where ∆gn(ϑ, λ) is the Laplace surface harmonic of degree n; or, more ex-
plicitly,

∆g(ϑ, λ) =
∞∑

n=2

n∑
m=0

[
anmRnm(ϑ, λ) + bnmSnm(ϑ, λ)

]
, (9–15)

where
Rnm(ϑ, λ) = Pnm(cos ϑ) cos mλ ,

Snm(ϑ, λ) = Pnm(cos ϑ) sin mλ
(9–16)

are the conventional spherical harmonics; or in terms of fully normalized
harmonics (see Sect. 1.10):

∆g(ϑ, λ) =
∞∑

n=2

n∑
m=0

[
ānmR̄nm(ϑ, λ) + b̄nmS̄nm(ϑ, λ)

]
. (9–17)

Here ϑ is the polar distance (complement of geocentric latitude) and λ is the
longitude.

Let us now find the average products of two Laplace harmonics

∆gn(ϑ, λ) =
n∑

m=0

[
ānmR̄nm(ϑ, λ) + b̄nmS̄nm(ϑ, λ)

]
. (9–18)

These average products are

M{∆gn∆g′n} =
1
4π

∫ 2π

λ=0

∫ π

ϑ=0
∆gn(ϑ, λ)∆g′n(ϑ, λ) sin ϑdϑ dλ , (9–19)

since the averaging is extended over the whole earth, that is, over the whole
unit sphere. Take first n′ = n, which gives the average square of the Laplace
harmonic of degree n:

M{∆g2
n} =

1
4π

∫ 2π

λ=0

∫ π

ϑ=0

[
∆gn(ϑ, λ)

]2 sin ϑdϑ dλ . (9–20)
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Substituting (9–18) and taking into account the orthogonality relations (1–
83) and the normalization (1–91), we easily find

M{∆g2
n} =

n∑
m=0

(ā2
nm + b̄2

nm) . (9–21)

Consider now the average product (9–19) of two Laplace harmonics of differ-
ent degree, n′ �= n. Owing to the orthogonality of the spherical harmonics,
the integral in (9–19) is zero:

M{∆gn∆g′n} = 0 if n′ �= n . (9–22)

In statistical terms this means that two Laplace harmonics of different de-
grees are uncorrelated or, broadly speaking, statistically independent.

In a way similar to that used for the gravity anomalies, we may also
expand the covariance function C(s) into a series of spherical harmonics. Let
us take an arbitrary, but fixed, point P as the pole of this expansion. Thus
spherical polar coordinates ψ (angular distance from P ) and α (azimuth)
are introduced (Fig. 9.2). The angular distance ψ corresponds to the linear
distance s according to (9–8). If we expand the covariance function, with
argument ψ, into a series of spherical harmonics with respect to the pole P
and coordinates ψ and α, we have

C(ψ) =
∞∑

n=2

n∑
m=0

[
cnmRnm(ψ,α) + dnmSnm(ψ,α)

]
, (9–23)

P Ã

®

north pole

equator

P'

Ã=const.

Fig. 9.2. Spherical coordinates ψ, α
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which is of the same type as (9–15). But since C depends only on the distance
ψ and not on the azimuth α, the spherical harmonics cannot contain any
terms that explicitly depend on α. The only harmonics independent of α are
the zonal functions

Rn0(ψ,α) ≡ Pn(cos ψ) , (9–24)

so that we are left with

C(ψ) =
∞∑

n=2

cnPn(cos ψ) . (9–25)

The cn ≡ cn0 are the only coefficients that are not equal to zero. We also
use the equivalent expression in terms of fully normalized harmonics:

C(ψ) =
∞∑

n=2

c̄nP̄n(cos ψ) . (9–26)

The coefficients in these series, according to Sects. 1.9 and 1.10, are given
by

cn =
2n + 1

4π

∫ 2π

α=0

∫ π

ψ=0
C(ψ)Pn(cos ψ) sin ψ dψ dα

=
2n + 1

2

∫ π

ψ=0
C(ψ)Pn(cos ψ) sin ψ dψ

(9–27)

and
c̄n =

cn√
2n + 1

. (9–28)

We now determine the relation between the coefficients cn of C(ψ) in
(9–25) and the coefficients ānm and b̄nm of ∆g in (9–18). For this purpose
we need an expression for C(ψ) in terms of ∆g, which is easily obtained by
writing (9–27) more explicitly. Take the two points P (ϑ, λ) and P ′(ϑ′, λ′) of
Fig. 9.2. Their spherical distance ψ is given by

cos ψ = cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(λ′ − λ) . (9–29)

Here ψ and the azimuth α are the polar coordinates of P ′(ϑ′, λ′) with respect
to the pole P (ϑ, λ).

The symbol M in (9–6) denotes the average over the unit sphere. Two
steps are required to find it. First, we average over the spherical circle of
radius ψ (denoted in Fig. 9.2 by a broken line), keeping the pole P fixed and
letting P ′ move along the circle so that the distance PP ′ remains constant.
This gives

C∗ =
1
2π

∫ 2π

α=0
∆g(ϑ, λ)∆g(ϑ′, λ′) dα , (9–30)
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where C∗ still depends on the point P chosen as the pole ψ = 0. Second, we
average C∗ over the unit sphere:

1
4π

∫ 2π

λ=0

∫ π

ϑ=0
C∗ sinϑ dϑ dλ

=
1

8π2

∫ 2π

λ=0

∫ π

ϑ=0

∫ 2π

α=0
∆g(ϑ, λ)∆g(ϑ′, λ′) sin ϑ dϑ dλ dα .

(9–31)

This is equal to the covariance function C(ψ), the symbol M in (9–6) now
being written explicitly:

C(ψ) =
1

8π2

∫ 2π

λ=0

∫ π

ϑ=0

∫ 2π

α=0
∆g(ϑ, λ)∆g(ϑ′, λ′) sin ϑ dϑ dλ dα . (9–32)

The coordinates ϑ′, λ′ in this formula are understood to be related to ϑ, λ
by (9–29) with ψ = constant, but to be arbitrary otherwise; this expresses
the fact that in (9–6) the average is extended over all pairs of points P and
P ′ for which PP ′ = ψ = constant.

To compute the coefficients cn, substitute (9–32) into (9–27), obtaining

cn =
2n + 1

2

∫ π

ψ=0
C(ψ)Pn(cos ψ) sin ψ dψ

=
1
4π

2n + 1
4π

∫ 2π

λ=0

∫ π

ϑ=0

∫ 2π

α=0

∫ π

ψ=0
∆g(ϑ, λ)∆g(ϑ′, λ′) ·

·Pn(cos ψ) sin ψ dψ dα · sinϑ dϑ dλ .

(9–33)

Consider first the integration with respect to α and ψ. According to (1–89),
we have

2n + 1
4π

∫ 2π

α=0

∫ π

ψ=0
∆g(ϑ′, λ′)Pn(cos ψ) sin ψ dψ dα

=
2n + 1

4π

∫ 2π

λ′=0

∫ π

ϑ′=0
∆g(ϑ′, λ′)Pn(cos ψ) sin ϑ′ dϑ′ dλ′ = ∆gn(ϑ, λ) ,

(9–34)
the change of integration variables being evident. Hence (9–33) becomes

cn =
1
4π

∫ 2π

λ=0

∫ π

ϑ=0
∆g(ϑ, λ)∆gn(ϑ, λ) sin ϑ dϑ dλ . (9–35)

This may also be written

cn = M{∆g ∆gn} . (9–36)
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Into this we now insert (9–14), which we write

∆g(ϑ, λ) =
∞∑

n′=2

∆gn′(ϑ, λ) , (9–37)

denoting the summation index by n′ instead of n. We get

cn = M

{ ∞∑
n′=2

∆gn′ ∆gn

}
=

∞∑
n′=2

M{∆gn ∆gn′} . (9–38)

According to (9–22), only the term with n′ = n is different from zero so that
from (9–21) we finally obtain

cn = M{∆g2
n} =

n∑
m=0

(ā2
nm + b̄2

nm) . (9–39)

Hence, cn is the average square of the Laplace harmonic ∆gn(ϑ, λ) of degree
n, or its variance. For these reasons the cn are also called degree variances.
The “degree covariances” are zero because of (9–22).

Equation (9–39) relates the coefficients ānm and b̄nm of ∆g and cn of C(s)
in the simplest possible way. Note that ānm and b̄nm are coefficients of fully
normalized harmonics, whereas cn are coefficients of conventional harmonics.
As a matter of fact, we may also use the anm and bnm (conventional) or
the c̄n (fully normalized); but then (9–39) will obviously become slightly
more complicated. It should be mentioned that the mathematics behind the
statistical description of the gravity anomalies is the theory of stochastic
processes. The gravity anomaly field is treated as a stationary stochastic
process on a sphere; the spherical-harmonic expansions of this section are
nothing but the spectral analysis of that process. A comprehensive treatment
of this topic is found in Moritz (1980 a).

9.4 Interpolation and extrapolation of gravity

anomalies

As pointed out in Sect. 9.1, the purpose of prediction (interpolation and
extrapolation) is to supplement the gravity observations, which can be made
at only relatively few points, by estimating the values of gravity or of gravity
anomalies at all the other points P of the earth’s surface.

If P is surrounded by gravity stations, we must interpolate; if the gravity
stations are far away from P , we extrapolate. Evidently, there is no sharp
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distinction between these two kinds of prediction and the mathematical for-
mulation is the same in both cases.

In order to predict a gravity anomaly at P , we must have information
about the gravity anomaly function. The values observed at certain points
are the most important information. In addition, we need some information
on the form of the anomaly function. If the gravity measurements are very
dense, then the continuity or “smoothness” of the function is sufficient – for
instance, for linear interpolation. Otherwise we may try to use statistical
information on the general structure of the gravity anomalies. Here we must
consider two kinds of statistical correlation: the autocorrelation – the corre-
lation between each other – of gravity anomalies and the correlation of the
gravity anomalies with height.

Correlation with height will for the moment be disregarded; Sect. 9.7
will be devoted to this topic. The autocorrelation is characterized by the
covariance function considered in Sect. 9.2.

Mathematically, the purpose of prediction is to find a function of the
observed gravity anomalies ∆g1, ∆g2, . . . , ∆gn in such a way that the un-
known anomaly ∆gP at P is approximated by the function

∆gP
.= F (∆g1,∆g2, . . . ,∆gn) . (9–40)

Here ∆gi denotes the value of ∆g at a point i, not a spherical harmonic! In
practice, only linear functions of the ∆gi are used. If we denote the predicted
value of ∆gP by ∆̃gP , such a linear prediction has the form

∆̃gP = αP1 ∆g1 + αP2 ∆g2 + . . . + αPn ∆gn ≡
n∑

i=1

αPi ∆gi . (9–41)

The coefficients αPi depend only on the relative position of P and the grav-
ity stations 1, 2, . . . , n; they are independent of the ∆gi. Depending on the
way we choose these coefficients, we obtain different interpolation or extrap-
olation methods. Here are some examples.

Geometric interpolation
The “gravity anomaly surface”, as represented by a gravity anomaly map,
may be approximated by a polyhedron by dividing the area into triangles
whose corners are formed by the gravity stations and passing a plane through
the three corners of each triangle (Fig. 9.3). This is approximately what is
done in constructing the contour lines of a gravity anomaly map by means
of graphical interpolation.

Analytically, this interpolation may be formulated as follows. Let point
P be situated inside a triangle with corners 1, 2, 3 (Fig. 9.3). To each point
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P

1

2

3

Fig. 9.3. Geometric interpolation

we assign its value ∆g as its z-coordinate, so that the points 1, 2, and 3
have “spatial” coordinates (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3); x and y
are ordinary plane coordinates. The plane through 1, 2, 3 has the equation

z =
(x2 − x)(y3 − y2) − (y2 − y)(x3 − x2)

(x2 − x1)(y3 − y2) − (y2 − y1)(x3 − x2)
z1

+
(x3 − x)(y1 − y3) − (y3 − y)(x1 − x3)

(x3 − x2)(y1 − y3) − (y3 − y2)(x1 − x3)
z2

+
(x1 − x)(y2 − y1) − (y1 − y)(x2 − x1)

(x1 − x3)(y2 − y1) − (y1 − y3)(x2 − x1)
z3 .

(9–42)

If we replace z1, z2, z3 by ∆g1, ∆g2, ∆g3, then z is the interpolated value
∆̃gP at point P , which has the plane coordinates x, y. Thus,

∆̃gP = αP1 ∆g1 + αP2 ∆g2 + αP3 ∆g3 , (9–43)

where the αPi are the coefficients of zi in the preceding equation.

Representation

Often the measured anomaly of a gravity station 1 is made to represent the
whole neighborhood so that

∆̃gP ≡ ∆g1 (9–44)

as long as P lies within a certain neighborhood of point 1. Then

αP1 = 1 , αP2 = αP3 = . . . = αPn = 0 . (9–45)

This method is rather crude but simple and accurate enough for many pur-
poses.
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Zero anomaly
If there are no gravity measurements in a large area – for instance, on the
oceans –, then the estimate

∆̃gP ≡ 0 (9–46)

is used in this area. In this trivial case all αPi are zero.
If all known gravity stations are far away, and if we know of nothing

better, then this primitive extrapolation method is applied, although the
accuracy is poor. At best, this method may work with isostatic anomalies.

None of these three methods gives optimum accuracy. In the next section we
investigate the accuracy of the general prediction formula (9–41) and find
those coefficients αPi that yield the most accurate results.

9.5 Accuracy of prediction methods

In order to compare the various possible methods of prediction, to determine
their range of applicability, and to find the most accurate method, we must
evaluate their accuracy.

Consider the general case of Eq. (9–41). The correct gravity anomaly at
P is ∆gP , the predicted value is

∆̃gP =
n∑

i=1

αPi ∆gi . (9–47)

The difference is the error εP of prediction,

εP = ∆gP − ∆̃gP = ∆gP −
∑

i

αPi ∆gi . (9–48)

By squaring we find

ε2
P =

(
∆gP −

∑
i

αPi ∆gi

)(
∆gP −

∑
k

αPk ∆gk

)
= ∆g2

P − 2
∑

i

αPi ∆gP ∆gi +
∑

i

∑
k

αPi αPk ∆gi ∆gk .
(9–49)

Let us now form the average M of this formula over the area considered
(either a limited region or the whole earth). Then we have from (9–6),

M{∆gi ∆gk} = C(i k) ≡ Cik ,

M{∆gP ∆gi} = C(P i) ≡ CPi ,

M{∆g2
P } = C(0) ≡ C0 .

(9–50)
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These are particular values of the covariance function C(s), for s = i k,
s = Pi, and s = 0; for instance, i k is the distance between the gravity
stations i and k. The abbreviated notations Cik and CPi are self-explanatory.

We further set
M{ε2

P } = m2
P . (9–51)

Thus mP is the root mean square error of a predicted gravity anomaly at P ,
or briefly, the standard error of prediction (interpolation or extrapolation).

Taking all these relations into account, we find the average M of (9–49)
to be

m2
P = C0 − 2

n∑
i=1

αPi CPi +
n∑

i=1

n∑
k=1

αPi αPk Cik . (9–52)

This is the fundamental formula for the standard error of the general predic-
tion formula (9–41). For the special cases described in the preceding section,
the particular values of αPi are to be inserted.

Einstein’s summation convention
At least at this point the reader will be grateful to Albert Einstein for having
invented not only the theory of relativity – well, even the general theory of
relativity has been used in geodesy (Moritz and Hofmann-Wellenhof 1993),
but the reader of the present book will be saved from it – but also the very
practical summation convention which has eradicated myriads of unneces-
sary summation signs from the mathematical literature. This convention
simply says that, if an index occurs twice in a product, summation is auto-
matically implied. Using this convention, the preceding equation is simply
written

m2
P = C0 − 2 αPi CPi + αPi αPk Cik . (9–53)

In the future we shall take this equation for granted unless stated otherwise.
Such formulas are also handsome for programming (a loop).

Now back to reality in the form of examples.
As an example consider the case of representation, Eq. (9–44); all α are

zero except one. Here (9–53) yields

m2
P = C0 − 2CP1 + C0 = 2C0 − 2CP1 . (9–54)

For the case of zero anomaly, there is m2
p = C0, as should be expected.

Often we need not only the standard error mP of prediction but also the
correlation of the prediction errors εP and εQ at two different points P and
Q, expressed by the “error covariance” σPQ, which is defined by

σPQ = M{εP εQ} . (9–55)
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If the errors εP and εQ are uncorrelated, then the error covariance σPQ = 0.
From (9–48) we have generally

σPQ = M
{(

∆gP − αPi ∆gi

)(
∆gQ − αQk ∆gk

)}
= M

{
∆gP ∆gQ − αPi ∆gQ ∆gi − αQk ∆gP ∆gk + αPi αPk ∆gi ∆gk

}
(9–56)

and finally

σPQ = CPQ − αPi CQi − αQi CPi + αPi αQk Cik . (9–57)

The notations are self-explanatory; for instance, CPQ = C(PQ).

The error covariance function
The values of the error covariance σPQ, for different positions of the points
P and Q, form a continuous function of the coordinates of P and Q. This
function is called the error covariance function, or briefly, the error function,
and is denoted by σ(xP , yP , xQ, yQ). If P and Q are different, then we simply
have

σ(xP , yP , xQ, yQ) = σPQ ; (9–58)

if P and Q coincide, then (9–57) reduces to (9–53) so that

σ(xP , yP , xP , yP ) = m2
P (9–59)

is the square of the standard prediction error at P .
Thus the error covariances σPQ may be considered as special values of

the error covariance function, just as the covariances CPQ of the gravity
anomalies may be considered as special values of the covariance function
C(s). To repeat, the error function is the covariance function of the prediction
errors, defined as

M{εP εQ} , (9–60)

whereas C(s) is the covariance function of the gravity anomalies, defined as

M{∆gP ∆gQ} . (9–61)

The term “covariance function” in the narrower sense will be reserved for
C(s) – in contrast to least-squares adjustment, where “covariances” auto-
matically mean error covariances. Covariances are “isotropic”, which means
independent of directions; the error covariances are nonisotropic.

From (9–53) and (9–57) the error function can be expressed in terms of
the covariance function; we may write more explicitly

σ(xP , yP , xQ, yQ) = C(P Q) − αPi C(Qi) − αQi C(Pi) + αPi αQk C(i k) .

(9–62)
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Thus we recognize the basic role of the covariance function in accuracy stud-
ies. The error function, on the other hand, is fundamental for problems of
error propagation.

9.6 Least-squares prediction

The values of αPi for the most accurate prediction method are obtained by
minimizing the standard prediction error expressed by (9–53) as a function
of the α. The familiar necessary conditions for a minimum are

∂m2
P

∂αPi
≡ −2CPi + 2αPk Cik = 0 (i = 1, 2, . . . , n) (9–63)

or
Cik αPk = CPi . (9–64)

This is a system of n linear equations in the n unknowns αPk; the solution
is

αPk = C
(−1)
ik CPi , (9–65)

where C
(−1)
ik denote the elements of the inverse of the symmetric matrix

[Cik].
Substituting (9–65) into (9–41) gives

∆̃gP = αPk ∆gk = C
(−1)
ik CPi ∆gk . (9–66)

In matrix notation this is written

∆̃gP =
[
CP1, CP2, . . . , CPn

]
⎡⎢⎢⎢⎣

C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

∆g1

∆g2
...

∆gn

⎤⎥⎥⎥⎦ . (9–67)

We see that for optimal prediction we must know the statistical behavior of
the gravity anomalies through the covariance function C(s).

There is a close connection between this optimal prediction method
and the method of least-squares adjustment. Although they refer to some-
what different problems, both are designed to give most accurate results.
The linear equations (9–64) correspond to the “normal equations” of ad-
justment computations. Prediction by means of formula (9–67) is therefore
called “least-squares prediction”. A generalization to heterogeneous data is
“least-squares collocation” to be treated in Chap. 10. In its most general
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form, least-squares collocation also includes parameter estimation by least-
squares adjustment. This is an advanced subject treated in great detail in
Moritz (1980 a).

It is easy to determine the accuracy of least-squares prediction. Insert
the α of Eq. (9–65) into (9–53), after appropriate changes in the indices of
summation. This gives

m2
P = C0 − 2αPk CPk + αPk αP l Ckl

= C0 − 2C(−1)
ik CPiCPk + C

(−1)
ik CPiC

(−1)
jl CPjCkl .

(9–68)

For the reader to appreciate the Einstein summation convention, we give
this equation in its original form:

m2
P = C0 − 2

∑
k

αPk CPk +
∑

k

∑
l

αPk αP l Ckl

= C0 − 2
∑

i

∑
k

C
(−1)
ik CPiCPk +

∑
i

∑
j

∑
k

∑
l

C
(−1)
ik CPiC

(−1)
jl CPjCkl .

(9–69)
But now back to normal! We have

C
(−1)
jl Ckl = δjk =

{
1 if j = k
0 if j �= k .

(9–70)

The matrix [δkl] is the unit matrix. This formula states that the product of
a matrix and its inverse is the unit matrix. Thus, we further have

C
(−1)
ik C

(−1)
jl Ckl = C

(−1)
ik δjk = C

(−1)
ij (9–71)

because a matrix remains unchanged on multiplication by the unit matrix.
Hence, we get

m2
P = C0 − 2C(−1)

ik CPi CPk + C
(−1)
ij CPi CPj

= C0 − 2C(−1)
ik CPi CPk + C

(−1)
ik CPi CPk

= C0 − C
(−1)
ik CPi CPk .

(9–72)

Thus, the standard error of least-squares prediction is given by

m2
P = C0 − C

(−1)
ik CPi CPk

= C0 −
[
CP1, CP2, . . . , CPn

]
⎡⎢⎢⎢⎣

C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

CP1

CP2
...

CPn

⎤⎥⎥⎥⎦ .

(9–73)
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In the same way we find the error covariance in the points P and Q:

σPQ = CPQ − C
(−1)
ik CPi CQk

= CPQ − [
CP1, CP2, . . . , CPn

]
⎡⎢⎢⎢⎣

C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

CQ1

CQ2
...

CQn

⎤⎥⎥⎥⎦ .

(9–74)
These two formulas give the error covariance function for least-squares pre-
diction. Both formulas have a form similar to that of (9–67) and are equally
well suited for computations so that ∆̃g and its accuracy can be calculated
at the same time.

It is clear that, after appropriate slight changes, this theory applies au-
tomatically to gravity disturbances δg.

Practical considerations
Geometric interpolation (Sect. 9.4) is suited for the interpolation of point
anomalies in a dense gravity net, with station distances of 10 km or less. If
mean anomalies for blocks of 5′ × 5′ or larger are needed rather than point
anomalies, then some kind of representation, such as that considered in the
previous section, may be simpler and hardly less accurate.

Least-squares prediction is, by its very definition, more accurate than
either geometric interpolation or representation, but the improvement in ac-
curacy is not striking. The main advantage of least-squares prediction is
that it permits a systematic, purely numerical, digital processing of gravity
data; gravity anomalies are stored in data bases, and gravity anomaly maps,
if necessary, are generated automatically. The same formula applies to both
interpolation and extrapolation so that gaps in the gravity data make no dif-
ference in the method of computation, which becomes completely schematic
(Moritz 1963). For practical and computational details see Rapp (1964) and
many other papers published since.

For larger station distances, of 50 km or more, prediction of individual
point values becomes meaningless. In this case we must work with mean
anomalies of, say, 1◦ × 1◦ blocks.

9.7 Correlation with height

So far we have taken into account only the mutual correlation of the gravity
anomalies, their autocorrelation, disregarding the correlation with height,
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Fig. 9.4. Correlation of the free-air anomalies with height

which is important in many cases. Therefore our formulas were valid only
for gravity anomalies uncorrelated with height, such as isostatic or, to a
certain extent, Bouguer anomalies; or for free-air anomalies in moderately
flat areas. Free-air anomalies in mountains must be treated differently.

Figure 9.4 due to U.A. Uotila shows the correlation of free-air anomalies
with height. The gravity anomalies ∆g are plotted against the height h. If
there were an exact functional dependence between ∆g and h, then all points
would lie on a straight line (or, more generally, on a curve). In reality, there
is only an approximate functional relation, a general trend or tendency of
the free-air anomalies to increase linearly with height; exceptions, even large
ones, are possible. This shows very well the meaning of correlation.

We have characterized the mutual correlation of the gravity anomalies
by the “autocovariance function” (9–6),

C(s) = M{∆g ∆g′} , (9–75)

where s = PP ′. Similarly, we may form the “cross-covariance function”

B(s) = M{∆g ∆h′} = M{∆g′ ∆h} , (9–76)

expressing the correlation between gravity and height, and

A(s) = M{∆h∆h′} , (9–77)

which is the autocovariance function of the height differences

∆h = h − M{h} , (9–78)
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where the symbol M{h} denotes the mean height of the whole area consid-
ered.

If ∆g and ∆h are not correlated, then the function B(s) is identically
zero. If this is not the case, then we should also take the height into account
in our interpolation.

It is easy to extend the prediction formula (9–41) for this purpose, but
this has turned out to be of little practical importance.

Application to Bouguer anomalies
Of great practical importance, however, is the question whether it is possible
to render the free-air anomalies independent of height by adding a term that
is proportional to the height. In other words, when is the quantity

z = ∆g − b∆h , (9–79)

with a certain coefficient b, uncorrelated with height? In statistical termi-
nology, correlation with height is a trend, which may be capable of being
removed.

The trend z has the form of a Bouguer anomaly; for a real Bouguer
anomaly we have, according to Sect. 3.4,

b = 2π G� . (9–80)

For the density � = 2.67 g/cm3 we get

b = +0.112 mgal/m . (9–81)

Let us form the covariance function Z(s) between the “Bouguer anomaly” z
of (9–79) and height difference ∆h

Z(s) ≡ M{z ∆h′} = M{∆g ∆h′ − b∆h∆h′} = B(s) − bA(s) . (9–82)

If z is to be uncorrelated with h, then Z(s) must be identically zero. The
condition is

B(s) − bA(s) ≡ 0 , (9–83)

which must be satisfied for all s and a certain constant b at least approxi-
mately.

We see that the “Bouguer anomaly” z is uncorrelated with height if
the functions A(s) and B(s) are proportional for the area considered; the
constant b is then represented by

b =
B(s)
A(s)

. (9–84)
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It may be shown that this is equivalent to the condition that the points of
Fig. 9.4 lie approximately on a straight line. The coefficient b is then given
by

b = tan α (9–85)

as the inclination of the line towards the h-axis.
In practice these conditions are very often fulfilled to a good approx-

imation. Furthermore, by computing b from Eq. (9–84) or determining it
graphically by means of (9–85), we often get a value that is close to the
normal Bouguer gradient (9–81).

If we assume that b depends only on the rock density �, then we obtain a
means for determining the average density, which is often difficult to measure
directly. This is the “Nettleton method”, used in geophysical prospecting: the
coefficient b is found statistically by means of Eqs. (9–84) or (9–85), and
the rock density � is then computed from (9–80). Figure 9.5 illustrates the
principle of this method; see also Jung (1956: p. 600).

If the condition (9–83) is fulfilled, then we may consider the “Bouguer
anomaly” z as a gravity anomaly that is completely uncorrelated with height;
we can directly apply to it the whole theory of the preceding sections. But
even when this condition is not quite satisfied, Bouguer anomalies will in
general be far less correlated with height than free-air anomalies. The fact
that in (9–79) gravity is reduced to a mean height and not to sea level,
is quite irrelevant in this connection because this is only a question of an
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additive constant. More recent developments are discussed by Moritz (1990:
p. 244).

It is thus possible to consider the Bouguer reduction as a means of ob-
taining gravity anomalies that are less dependent on height and hence more
representative than free-air anomalies. More precisely, the Bouguer anoma-
lies take care of the dependence on the local irregularities of height. The
isostatic anomalies are, in addition, also largely independent of the regional
features of topography. See also Chaps. 3 and 8.




