
8 Modern views on the
determination of the figure of
the earth

8.1 Introduction

In the preceding chapters we have usually followed what might be called the
conservative approach to the problems of physical geodesy using classical
observations. The geodetic measurements – astronomical coordinates and
azimuths, horizontal angles, gravity observations, etc. – are reduced to the
geoid, and the “geodetic boundary-value problem” is solved for the geoid by
means of Stokes’ integral and similar formulas. The geoid then serves as a
basis for establishing the position of points of the earth’s surface.

The advantage of this approach is that the geoid is a level surface, capable
of a simple definition in terms of the physically meaningful and geodetically
important potential W . The geoid represents the most obvious mathematical
formulation of a horizontal surface at sea level. This is why the use of the
geoid simplifies geodetic problems and makes them accessible to geometrical
intuition.

The disadvantage is that the potential W inside the earth, and hence
the geoid W = constant, depends on the density � because of Poisson’s
Eq. (2–9),

∆W = −4π G� + 2ω2 . (8–1)

Therefore, in order to determine or to use the geoid, the density of the
masses at every point between the geoid and the ground must be known, at
least theoretically. This is clearly impossible, and therefore some assumptions
concerning the density must be made, which is unsatisfactory theoretically,
even though the practical influence of these assumptions is usually rather
small.

For this reason it is of basic importance that M.S. Molodensky in 1945 was
able to show that the physical surface of the earth can be determined from
geodetic measurements alone, without using the density of the earth’s crust.
This requires that the concept of the geoid be abandoned. The mathematical
formulation becomes more abstract and more difficult. Both the gravimetric
method and the astrogeodetic method can be modified for this purpose. The
gravity anomalies and the deflections of the vertical now refer to the ground,
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and no longer to sea level; the “height anomalies” at ground level take the
place of the geoidal undulations.

These developments have considerably broadened our insight into the
principles of physical geodesy and have also introduced powerful new meth-
ods for tackling classical problems. Hence their basic theoretical significance
is by no means lessened by the fact that many scientists prefer to retain the
geoid because of its conceptual and practical advantages.

In this chapter, we first give a concise survey of the conventional determi-
nation of the geoid by means of gravity reductions, in order to understand
better the modern ideas. After an exposition of Molodensky’s theory, we
show how the new methods may be applied to classical problems such as
gravity reduction or the determination of the geoid by gravimetric and as-
trogeodetic methods. It should be mentioned that the terms “modern” and
“conventional” merely serve as convenient labels; they do not imply any con-
notation of value or preferability.

Part I: Gravimetric methods

8.2 Gravity reductions and the geoid

The integrals of Stokes and of Vening Meinesz and similar formulas presup-
pose that the disturbing potential T is harmonic on the geoid, which implies
that there are no masses outside the geoid. This assumption – no masses
outside the bounding surface – is necessary if we wish to treat any problem
of physical geodesy as a boundary-value problem in the sense of potential
theory. The reason is that the boundary-value problems of potential theory
always involve harmonic functions, that is, solutions of Laplace’s equation

∆T = 0 . (8–2)

This is equivalent to ∆V = 0. Proof: T = W −U (U is the normal potential),
∆W = 2ω2 outside the earth (density zero, only rotation, ∆U = 2ω2 for
the same reason, hence ∆T = ∆W − ∆U = 2ω2 − 2ω2 = 0). Since then
∆W = 2ω2 rather than zero by Eq. (2–9), it is not quite correct to call the
external gravity potential W harmonic as well, but we may nevertheless do
so for simplicity. No misunderstanding is possible.

We know, for instance, that the determination of T or N from gravity
anomalies ∆g may be considered as a third boundary-value problem (see
Sect. 1.13).

Since there are masses outside the geoid, they must be moved inside the
geoid or completely removed before we can apply Stokes’ integral or related
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formulas. This is the purpose of the various gravity reductions. They were
considered extensively in Chap. 3; we therefore can limit ourselves to pointing
out those theoretical features that are relevant to our present problem.

If the external masses, the masses outside the geoid, are removed or
moved inside the geoid, then gravity changes. Furthermore, gravity is ob-
served at ground level but is needed at sea level. Thus, the reduction of
gravity involves the consideration of these two effects, in order to obtain
boundary values on the geoid.

This regularization of the geoid by removing the external masses unfortu-
nately also changes the level surfaces and hence, in general, the geoid. This is
the indirect effect; the changed geoid is called the cogeoid or the regularized
geoid.

The principle of this method may be described as follows (Jung 1956:
p. 578); see Fig. 8.1.

1. The masses outside the geoid are, by computation, either removed
entirely or else moved inside the geoid. The effect of this procedure on
the value of gravity g at the station P is considered.

2. The gravity station is moved from P down to the geoid, to the point
P0. Again, the corresponding effect on the gravity is considered.

3. The indirect effect, the distance δN = P0P
c, is obtained by dividing

the change in potential at the geoid, δW , by normal gravity (Bruns’
theorem):

δN =
δW

γ
. (8–3)

4. The gravity station is now moved from the geoidal point P0 to the
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cogeoid, to the point P c (hence the notation with upper index c). This
gives the boundary value of gravity at the cogeoid, gc.

5. The shape of the cogeoid is computed from the reduced gravity anoma-
lies

∆gc = gc − γ (8–4)

by Stokes’ formula, which gives N c = QP c.

6. Finally, the geoid is determined by considering the indirect effect. The
geoidal undulation N is thus obtained as

N = N c + δN . (8–5)

Remark. At first sight it may seem that the masses between the geoid
and the cogeoid should be removed if the cogeoid happens to be below the
geoid, because Stokes’ formula is applied to the cogeoid. However, this is
not necessary, and therefore we need not be concerned with a “secondary
indirect effect”. The argument is a little too technical to be presented here;
see Moritz (1965: p. 26).

In principle, every gravity reduction that gives boundary values at the
geoid is equally suited for the determination of the geoid, provided the in-
direct effect is properly taken into account. Thus, the selection of a good
reduction method should be made from other points of view, such as the
geophysical meaning of the reduced gravity anomalies, the simplicity of com-
putation, the feasibility of interpolation between the gravity stations, the
smallness or even absence of the indirect effect, etc. (see Sect. 3.7).

The Bouguer reduction corresponds to a complete removal of the ex-
ternal masses. In the isostatic reduction, these masses are shifted vertically
downward according to some theory of isostasy. In Helmert’s condensation
reduction, the external masses are compressed to form a surface layer on
the geoid. The Bouguer reduction and especially the isostatic reduction (in
modern terminology topographic-isostatic reduction) are used as auxiliary
quantities for computational purposes, especially to facilitate interpolation.

The free-air anomaly is nowadays used in three senses:

1. at ground level (on the physical surface of the earth) it is simply the
gravity anomaly in the sense of Molodensky (Sect. 8.4);

2. at sea level it may be identified with the analytical continuation of
the Molodensky anomaly from ground down to sea level. This will
be considered in detail in Sect. 8.6. A final review will be found in
Sect. 8.15.
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3. The free-air anomaly can be theoretically interpreted as an approxi-
mation of the classical condensation anomaly in the sense of Helmert
(Sect. 3.9). This is one of the interpretations of the frequent practice to
simply apply Stokes’ formula to the classical free-air anomaly, where
only the standard normal free-air reduction is applied to measured
gravity g, see Eq. (8–6) below.

This is pretty rigorously the gravity anomaly in the sense of Molo-
densky (item 1 above), so there is another interpretation of this fre-
quent practice: it is a (conscious or unconscious) use of Molodensky’s
method in the zero approximation (i.e., only Stokes’ formula without
Molodensky correction g1, see Sect. 8.6). Of course, this works only in
a reasonably flat terrain.
Important remark. Curiously enough, it helps if the terrain correction
(Sect. 3.4) is applied; this is explained in Moritz (1980 a: Sect. 48) as
some kind of Molodensky correction g1 and in Moritz (1990: p. 244)
by isostatic reduction.

Also the Poincaré–Prey reduction is quite different (Sect. 3.5). It gives
the actual gravity inside the earth. It does not give boundary values but is
used for orthometric heights (Chap. 4).

In all reduction methods it is necessary to know the density of the masses
above the geoid. In practice, this involves some kind of an assumption – for
instance, putting � = 2.67 g cm−3. A second assumption is usually made in
the free-air reduction, which is part of the reduction of gravity to the geoid:
the actual free-air gravity gradient is assumed to be equal to the normal
gradient

∂γ

∂h
.= −0.3086 mgal m−1 . (8–6)

These two assumptions falsify our results, at least theoretically.
The second assumption can be avoided by using the actual free-air gradi-

ent as computed by the methods of Sect. 2.20. The anomalies ∆g to be used
in formula (2–394) must be gravity anomalies reduced to the geoid: gravity
g after steps l and 2 of the above description, minus normal gravity γ on the
ellipsoid. This presupposes that in step 2 a preliminary free-air reduction
using the normal gradient has been applied first.

Deflections of the vertical
The indirect effect affects the deflection of the vertical as well as the geoidal
height. We have found

N = N c + δN , (8–7)
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where N c is the undulation of the cogeoid, the immediate result of Stokes’
formula, and δN is the indirect effect. By differentiating N in a horizontal
direction, we get the deflection component along this direction:

ε = −∂N

∂s
= −∂N c

∂s
− ∂(δN)

∂s
. (8–8)

This means that we must add to the immediate result of Vening Meinesz’
formula, −∂N c/∂s, a term representing the horizontal derivative of δN (see
also Sect. 3.7).

To repeat, the main purpose is to obtain a simple boundary surface.
The geoid approximated by an ellipsoid or even a sphere is a much easier
boundary surface than the physical surface of the earth, to which we turn
now.

8.3 Geodetic boundary-value problems

It is, however, quite easy to understand the general principles. In space we
have the well-known fact that the gravity vector g and the gravity potential
(geopotential) W are related by

g = grad W ≡
[
∂W

∂x
,

∂W

∂y
,

∂W

∂z

]
, (8–9)

which shows that the force g is the gradient vector of the potential.
Let S be the earth’s topographic surface and let W and g be the geopo-

tential and the gravity vector on this surface. Then there exists a relation

g = f(S,W ) , (8–10)

the gravity vector g on S is a function of the surface S and the geopotential
W on it. This can be seen in the following way. Let the surface S and the
geopotential W on S be given. The gravitational potential V is obtained
by subtracting the potential of the centrifugal force Φ, which is simple and
perfectly known (Sect. 2.1):

V = W − Φ . (8–11)

The potential V outside the earth is a solution of Laplace’s equation ∆V = 0
and consequently harmonic (Sect. 1.3). Thus, knowing V on S, we can ob-
tain V outside S by solving Dirichlet’s boundary-value problem, the first
boundary-value problem of potential theory, which is practically always
uniquely solvable (Sect. 1.12) at least if V is sufficiently smooth on S. After
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having found V as a function in space outside S, we obtain the gravitational
force grad V . Adding the well-known and simple vector of the centrifugal
force, we obtain the gravity vector g outside and, by continuity, on S.

This is precisely what (8–10) means. The modern general concept of a
function can be explained as a rule of computation, indicating that given S
and W on S, we can uniquely calculate g on S. Note that f is not a function
in the elementary sense but rather a “nonlinear operator”, but we disregard
this for the moment. Therefore we may formulate:

(1) Molodensky’s boundary-value problem is the task to determine S, the
earth’s surface, if g and W on it are given. Formally, we have to solve
(8–10) for S:

S = F1(g,W ) , (8–12)

that is, we get geometry from gravity.

(2) GPS boundary-value problem. Since we have GPS at our disposal, we
can consider S as known, or at least determinable by GPS. In this case,
the geometry S is known, and we can solve (8–10) for W :

W = F2(S,g) , (8–13)

that is, we get potential from gravity. As we shall see, this is far from
being trivial: we have now a method to replace leveling, a tedious
and time-consuming old-fashioned method, by GPS leveling, a fast and
modern technique (Sect. 4.6).

In spite of all similarities, we should bear in mind a fundamental differ-
ence: (8–13) solves a fixed-boundary problem (boundary S given), whereas
(8–12) solves a free-boundary problem: the boundary S is a priori unknown
(“free”). Fixed-boundary problems are usually simpler than free ones.

This is only the principle of both solutions. The formulation is quite
easy to understand. The direct implementation of these formulas is difficult,
however, because that would imply the solution of “hard inverse function
theorems” of nonlinear functional analysis. For numerical computations, we
know series solutions, in the form of “Molodensky series”, which are suffi-
cient for all present purposes and which can, furthermore, be derived in an
elementary fashion, without needing integral equations (Molodenski 1958;
Molodenskii et al. 1962; Moritz 1980 a: Sect. 45). Here we shall outline the
known elementary solution for Molodensky’s problem and immediately ex-
tend it to the GPS problem. Both problems will be solved by very similar
Molodensky series.
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The simplest possible example
Let the boundary surface S be a sphere of radius R. The earth is represented
by this sphere which is considered homogeneous and nonrotating. The po-
tential W is identical to the gravitational potential V , so that on the surface
S we have constant values

W =
GM

R
,

g =
GM

R2
.

(8–14)

Knowing W and g, we have

R =
W

g
, (8–15)

the radius of the sphere S. Thus, we have solved Molodensky’s problem in
this trivial but instructive example. We have indeed got geometry (i.e., R)
from physics (i.e., g and W )!

8.4 Molodensky’s approach and linearization

We have just seen that the reduction of gravity to sea level necessarily in-
volves assumptions concerning the density of the masses above the geoid.
This is equally true of other geodetic computations when performed in the
conventional way.

To see this, consider the problem of computing the ellipsoidal coordi-
nates ϕ, λ, h from the natural coordinates Φ,Λ,H, as described in Chap. 5.
The geometric ellipsoidal height h above the ellipsoid is obtained from the
orthometric height H above the geoid and the geoidal undulation N by

h = H + N . (8–16)

The determination of N was considered in Chap. 2 and elsewhere in this
book. To compute H from the results of leveling, we need the mean gravity
ḡ along the plumb line between the geoid and the ground (Sect. 4.3). Since
gravity g cannot be measured inside the earth, we compute it by Prey’s
reduction, for which we must know the density of the masses above the
geoid.

The ellipsoidal coordinates ϕ and λ are obtained from the astronomical
coordinates Φ and Λ and the deflection components ξ and η by

ϕ = Φ − ξ , λ = Λ − η sec ϕ . (8–17)

The coordinates Φ and Λ are measured on the ground; ξ and η can be
computed for the geoid by Vening Meinesz’ formula, the indirect effect being
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taken into account according to Sect. 8.2. To apply the above formulas, either
Φ and Λ must be reduced down to the geoid or ξ and η must be reduced up
to the ground. In both cases this involves the reduction for the curvature of
the plumb line (Sect. 5.15), which also depends on the mean value ḡ through
its horizontal derivatives. Hence Prey’s reduction enters here too.

Thus we see that in the conventional approach to the problems of physical
geodesy we must know the density of the outer masses or make assumptions
concerning it. To avoid this, Molodensky proposed a different approach in
1945.

Figure 8.2 shows the geometrical principles of this method, which is es-
sentially a linearization of Eq. (8–10). The ground point P (i.e., point on the
earth’s surface S) is again projected onto the ellipsoid according to Helmert.
However, the ellipsoidal height h is now determined by

h = H∗ + ζ , (8–18)

the normal height H∗ replacing the orthometric height H, and the height
anomaly ζ replacing the geoidal undulation N .

This will be clear if one considers the surface whose normal potential U at
every point Q is equal to the actual potential W at the corresponding point
P , so that UQ = WP , corresponding points P and Q being situated on the
same ellipsoidal normal. This surface is called the telluroid (Hirvonen 1960,
1961). The vertical distance from the ellipsoid to the telluroid is the normal
height H∗ (Sect. 4.4), whereas the ellipsoidal height h is the vertical distance
from the ellipsoid to the earth’s surface. Thus, the difference between these
two heights is the height anomaly

ζ = h − H∗ , (8–19)

closely corresponding to the geoidal undulation N = h − H, which is the
difference between the ellipsoidal and the orthometric height.

P

telluroid �

earth's
surface S

ellipsoid E

³

H* h

Q

Q0

Fig. 8.2. Telluroid, normal height H∗, and height anomaly ζ
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The normal height H∗, and hence the telluroid Σ, can be determined by
leveling combined with gravity measurements, according to Sect. 4.4. First
the geopotential number of P , C = W0 − WP , is computed by

C =
∫ P

0
g dn , (8–20)

where g is the measured gravity and dn is the leveling increment. The normal
height H∗ is then related to C by an analytical expression such as (4–63),

H∗ =
C

γQ0

[
1 + (1 + f + m − 2f sin2ϕ)

C

aγQ0

+
(

C

aγQ0

)2
]

, (8–21)

where γQ0 is the normal gravity at the ellipsoidal point Q0. Note that H∗ is
independent of the density.

The normal height H∗ of a ground point P is identical with the ellipsoidal
height h, the height above the ellipsoid, of the corresponding telluroid point
Q. If the geopotential function W were equal to the normal potential function
U at every point, then Q would coincide with P , the telluroid would coincide
with the physical surface of the earth, and the normal height of every point
would be equal to its ellipsoidal height. Actually, however, WP �= UP ; hence
the difference

ζP = hP − H∗
P = hP − hQ (8–22)

is not zero. This explains the term “height anomaly” for ζ.
The gravity anomaly is now defined as

∆g = gP − γQ ; (8–23)

it is the difference between the actual gravity as measured on the ground
and the normal gravity on the telluroid. The normal gravity on the telluroid,
which we shall briefly denote by γ, is computed from the normal gravity at
the ellipsoid, γQ0, by the normal free-air reduction, but now applied upward:

γ ≡ γQ = γQ0 +
∂γ

∂h
H∗ +

1
2!

∂2γ

∂h2
H∗2 + · · · . (8–24)

For this reason, the new gravity anomalies (8–23) are called free-air anoma-
lies. They are referred to ground level, whereas the conventional gravity
anomalies have been referred to sea level. Therefore, the new free-air anoma-
lies have nothing in common with a free-air reduction of actual gravity to
sea level, except the name. This distinction should be carefully kept in mind.

A direct formula for computing γ at Q is (2–215),

γ = γQ0

[
1 − 2(1 + f + m − 2f sin2ϕ)

H∗

a
+ 3

(
H∗

a

)2
]

, (8–25)
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where γQ0 is the corresponding value on the ellipsoid.
The height anomaly ζ may be considered as the distance between the

geopotential surface W = WP = constant and the corresponding spheropo-
tential surface U = WP = constant at the point P . In Sect. 2.14 (Fig. 2.15),
we have denoted this distance by NP and have found that Bruns’ formula
(2–237) also applies to this quantity. Hence, for ζ = NP we have

ζ =
T

γ
, (8–26)

where T = WP − UP is the disturbing potential at ground level, and γ the
normal gravity at the telluroid.

It may be expected that ζ is connected with the ground-level anomalies
∆g by an expression analogous to Stokes’ formula for the geoidal height N .
This is indeed true. However, the telluroid is not a level surface, and to every
point P on the earth’s surface corresponds in general a different geopotential
surface W = WP . Therefore, the relation between ∆g and ζ in the new theory
is considerably more complicated than for the geoid. In Molodensky’s original
formulation, the problem involves an integral equation, which may be solved
by an iteration, the first term of which is given by Stokes’ formula. We shall
use an equivalent but much simpler approach without integral equation.

Finally, we remark that we may also plot the height anomalies ζ above
the ellipsoid. In this way we get a surface that is identical with the geoid over
the oceans, because there ζ = N , and is very close to the geoid anywhere
else. This surface has been called the quasigeoid by Molodensky. However,
the quasigeoid is not a level surface and has no physical meaning whatever.
It must be considered as a concession to conventional conceptions that call
for a geoidlike surface. From this point of view, the normal height of a point
is its elevation above the quasigeoid, just as the orthometric height is its
elevation above the geoid.

Gravity disturbance

As usual, the gravity disturbance is defined by

δg = gP − γP . (8–27)

It is a typical new feature introduced into the practice of physial geodesy
by GPS, because GPS determines the ellipsoidal coordinates ϕ, λ, h directly
at the surface point P , so that now δg can be considered observational data
instead of ∆g.
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Linearization
The linearization applies equally well for the Molodensky problem and the
GPS problem. The geometry is familiar (Fig. 8.2).

We recall the surface Σ, the telluroid, which is defined by the condition

U(Q) = W (P ) . (8–28)

We note that (8–28) is the surface equivalent to the classical relation for sea
level (Fig. 8.3)

U(Q0) = W (P0) . (8–29)

Equation (8–28) would apply with

W (P0) = W0 = constant (8–30)

if S were an equipotential surface, the geoid, which is the case only over the
oceans with the usual simplifying assumption that the surface of the ocean
is an equipotential surface not changing with time (Fig. 8.3).

Molodensky’s theory does not use the geoid directly but the physical
earth’s surface. We repeat once more that this is Molodensky’s epochal idea
which radically changed the course of physical geodesy since 1945.

We shall, however, use the fictitious case of S being an equipotential sur-
face, but only as a first (or zero-order) assumption in a perturbation approach
for the real earth’s surface (Molodensky series). This first approximation is
the spherical case to be considered in the next section.

Now we consider the linearization in more detail. The ellipsoidal height
h is directly determined by GPS. It may be decomposed into

h = H∗ + ζ . (8–31)

Here, H∗ is the normal height and ζ is the height anomaly, whose definitions
are seen from Fig. 8.2. In the GPS case we do know the earth’s surface S
directly, but the telluroid Σ and the height anomalies ζ are still required for
formulating the boundary condition, just as the knowledge of the geoid does
not make superfluous the reference ellipsoid.

geoid

N

Q0
ellipsoid

P0

Fig. 8.3. Geoid and ellipsoid
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The definition of the gravity anomaly ∆g and the gravity disturbance δg
has, on the earth’s surface, the same form as in the classical case of geoid
and sea level:

∆g = gP − γQ = −∂T

∂h
+

1
γ

∂γ

∂h
T , (8–32)

δg = gP − γP = −∂T

∂h
. (8–33)

The gravity disturbance δg has become practically important only through
GPS, since h, the ellipsoidal height of P , can be measured using GPS and
hence γP , the normal gravity γ at P , can be determined.

As usual, Bruns’ formula applies at P0 (classical geoid height N) and P
(Molodensky height anomaly ζ) as well:

N =
T (P0)

γ
, (8–34)

ζ =
T (P )

γ
, (8–35)

with some approximate value for γ such as γ45◦ . Equation (8–32) can be
reformulated as the boundary conditions for the Molodensky problem

∂T

∂h
− 1

γ

∂γ

∂h
T + ∆g = 0 , (8–36)

cf. (2–251), and for the GPS problem, cf. (2–252),

∂T

∂h
+ δg = 0 . (8–37)

These two boundary conditions apply at the surface S (Molodensky) and at
sea level as well.

Finally we introduce the spherical approximation, disregarding the flat-
tening f in the equations (which are linear relations between small quanti-
ties).

Note: The spherical approximation is a formal operation (disregarding f
in small ellipsoidal quantities) and does not mean using a “reference sphere”
instead of a reference ellipsoid in any geometrical sense (Moritz 1980 a: p. 15).
This would imply geoidal heights on the order of 20 km!

Then (8–36) and (8–37) reduce to

∂T

∂r
+

2
r

T + ∆g = 0 , (8–38)

∂T

∂r
+ δg = 0 . (8–39)

These equations, for the Molodensky and the GPS problem, are valid both
at sea level (classical) and at S (Molodensky).
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8.5 The spherical case

As we have agreed, we work formally with a sphere (the reference ellipsoid
stays at its geometric place!). This means putting r = R = constant. Fur-
thermore, we assume (fictitiously!) that S is a level surface.

Expanding T and ∆g into a series of Laplace spherical harmonics, see
(2–322) and (2–320), we find

T (ϑ, λ) =
∞∑
2

Tn(ϑ, λ) , (8–40)

∆g(ϑ, λ) =
∞∑
2

∆gn(ϑ, λ) (8–41)

on the surface of the sphere, whence by (8–38) and (2–321) with r = R,

T = R
∞∑

n=2

∆gn

n − 1
. (8–42)

The summation starts conventionally with n = 2, rather than n = 0, for sev-
eral reasons, one of them being that n = 1 would lead to a zero denominator
in (8–42).

Using (2–325) and (2–326) leads to the well-known Stokes’ formula

T =
R

4π

∫
σ

∫
S(ψ)∆g dσ , (8–43)

where

S(ψ) =
∞∑

n=2

2n + 1
n − 1

Pn(cos ψ) , (8–44)

where P (cos ψ) are Legendre polynomials. Here ψ denotes the spherical dis-
tance from the point at which T is to be computed.

In exactly the same way, we obtain for the gravity disturbance with the
boundary condition (8–39), summarizing the derivation in Sect. 2.18,

δg(ϑ, λ) =
∞∑
0

δgn(ϑ, λ) , (8–45)

T (ϑ, λ) = R

∞∑
n=0

δgn

n + 1
, (8–46)
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and the formula of Neumann–Koch

T =
R

4π

∫
σ

∫
K(ψ) δg dσ , (8–47)

where

K(ψ) =
∞∑

n=0

2n + 1
n + 1

Pn(cos ψ) (8–48)

and, by summation of this series,

K(ψ) =
1

sin(ψ/2)
− ln

(
1 +

1
sin(ψ/2)

)
(8–49)

being the Neumann–Koch function.
So in the GPS boundary problem on the sphere, the solution (8–47)

is completely analogous to the formula of Stokes (8–43) for the classical
problem.

The fact that the GPS problem is conceptually simpler (fixed-boundary
surface) than Molodensky’s problem (free-boundary surface) is expressed by
the fact that Stokes’ function must start with n = 2, since n = 1 gives a zero
denominator, whereas Neumann–Koch’s function (8–48) is regular for all n.

In both cases, the height anomaly ζ (here the geoidal height) is given by
Bruns’ formula

ζ =
T

γ

.=
T

γ0
. (8–50)

In the spherical approximation, γ may be, in formulas of Bruns’ and Stokes’
type, replaced by our usual mean value γ0 = γ45◦ .

We will see that these spherical solutions form the base for an elemen-
tary solution of Molodensky’s problem and the GPS problem for the earth’s
surface. We only mention the well-known fact that, for the earth’s surface S,
these two problems are oblique-derivative problems, since the direction of the
plumb line does not coincide with the normal to the earth’s surface, at least
on land. Thus the GPS boundary problem for S is not a spherical Neumann
problem, which always involves the normal derivative!

8.6 Solution by analytical continuation

8.6.1 The idea

The idea is very simple (Fig. 8.4). Our observations ∆g or δg, given on the
earth’s surface S, are “reduced”, or rather “analytically continued” (upward
or downward, see below and Fig. 8.5), to a level surface (or normal level
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P

earth's surface S

ellipsoid

U U= P

h

point level

U U= 0

z

hP

�g

�g'

Fig. 8.4. Analytical continuation from the earth’s surface to point level

surface U = UP , which for our purpose is the same). In the spherical ap-
proximation, both surfaces U = UP and U = U0 are concentric spheres, but
only in the precise sense of the spherical approximation as explained above.

We also use the term “harmonic continuation” because the analytically
continued function satisfies Laplace’s equation. This will be explained in
detail later.

An expansion into a Taylor series gives immediately

∆g = ∆g∗ + z
∂∆g∗

∂z
+

1
2!

z2 ∂2∆g∗

∂z2
+

1
3!

z3 ∂3∆g∗

∂z3
+ · · ·

= ∆g∗ +
∞∑

n=1

1
n!

zn ∂n∆g∗

∂zn
,

(8–51)

where
z = h − hP (8–52)

is the elevation difference with respect to the computation point P . For
the present, we assume the series (8–51) to be convergent. Here ∆g∗ is the
gravity anomaly at point level (Fig. 8.4). The use of a Taylor series is typical
for analytical continuation. For instance, Taylor series are a standard tool
for analytical continuation of functions of a complex variable.

8.6.2 First-order solution

It is particularly easy to give a solution as a first approximation. With γ0

from (8–50) we have

ζ =
R

4π γ0

∫
σ

∫ (
∆g − ∂∆g

∂h
h

)
S(ψ) dσ +

∂ζ

∂h
h . (8–53)

This follows from the geometrical interpretation of this equation which is
evident from Fig. 8.5 a. We see that the free-air anomalies ∆g at ground
level are “reduced” downward to sea level to become

∆gharmonic = ∆g − ∂∆g

∂h
h (8–54)
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Fig. 8.5. Harmonic continuation to sea level (a), to an
arbitrary level (b), and to the level of point P (c)

(the superscript “harmonic” denotes harmonic continuation to sea level; see
Fig. 8.5 and the paragraph “A note on terminology” below); then Stokes’
integral gives height anomalies at sea level which are reduced upward to
ground level by adding the term ∂ζ

∂h h.

Harmonic continuation to point level
The elevation h in (8–53) is taken above sea level (see Fig. 8.5 a). If we
examine the arguments leading to this equation, we will find that the sea
level is not distinguished from any other level. If we reckon the elevation
above some other reference level, which has the elevation h0 above sea level,
we must replace h by h − h0 (see Fig. 8.5 b). Thus (8–53) is equivalent to

ζ =
R

4π γ0

∫
σ

∫ [
∆g − ∂∆g

∂h
(h − h0)

]
S(ψ) dσ +

∂ζ

∂h
(h − h0) . (8–55)
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In particular we may take as reference level the level of the point P itself,
so that

h0 = hP , (8–56)

where P is the point at which the height anomaly ζ is computed. If this
choice is made, the last term in the above expression will be zero, because
outside the integral h always means hP , so that h−h0 = hP −hP = 0. Thus
we have

ζ =
R

4π γ0

∫
σ

∫ [
∆g − ∂∆g

∂h
(h − hP )

]
S(ψ) dσ . (8–57)

This formula is particularly simple; geometrically it means that the free-
air anomalies are “reduced” (in the sense of “analytically or harmonically
continued”) from the ground to the level of the computation point P (see
Fig. 8.5 b). Thus, the reference level is different for different computation
points.

As we have already indicated at the beginning of Sect. 8.6.1, Fig. 8.5 c
shows that harmonic continuation by Eq. (8–57) is upward for surface points
below the level of P and downward for surface points above the level of P .

Important remark
Equation (8–57) is really a genuine spherical Stokes formula applied to a
“reference sphere”, namely, to the spherical “point level”! An immediate
consequence: this formula can be simply differentiated horizontally to give a
genuine Vening Meinesz formula in the sense of Sect. 2.19 for the deflections
of the vertical. This remark is relevant for Sect. 8.7.

Vertical derivative
The vertical derivative ∂/∂r can be expressed in terms of surface values by
the well-known spherical formula (Sect. 1.14)

∂f

∂r
= − 1

R
f +

R2

2π

∫
σ

∫
f − fQ

l30
dσ . (8–58)

Q is the surface point where ∂f/∂r is computed and to which f in the first
term on the right-hand side refers, σ denotes the unit sphere, and

l0 = 2R sin
ψ

2
. (8–59)

This gives ∂∆g/∂r if we put f = ∆g in (8–58). We may also introduce the
linear gradient operator L by

L(f) =
R2

2π

∫
σ

∫
f − fQ

l30
dσ . (8–60)
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(The first term on the right-hand side of (8–58) is much smaller and can be
omitted.)

The term ∂ζ/∂r no longer occurs in (8–57) as it did in (8–53) and (8–55),
and will not be needed.

Computational formulas; the Molodensky correction
Our computational formula is (8–57). We split it up as follows: The free-air
anomaly ∆g is continued (downward or upward) from ground level to the
level of point P , obtaining

∆g∗ = ∆g + g1 , (8–61)

where the Molodensky correction is

g1 = −∂∆g

∂h
(h − hP ) = −∂∆g

∂r
(h − hP ) (8–62)

(in spherical approximation) with

∂∆g

∂r
=

R2

2π

∫
σ

∫
∆g − ∆gQ

l30
dσ . (8–63)

Then we finally get
ζ = ζ0 + ζ1 , (8–64)

where
ζ0 =

R

4π γ0

∫
σ

∫
∆g S(ψ) dσ (8–65)

is the simple Stokes formula applied to ground-level free-air anomalies ∆g,
and the Molodenski correction for ζ is

ζ1 =
R

4π γ0

∫
σ

∫
g1 S(ψ) dσ . (8–66)

This is the first-order solution, or linear solution.

Important remark
Please note carefully that we are using “linear”, or “first-order”, in two very
different senses:

• general linearization, linear in quantities of the anomalous potential,
such as N or ζ, as introduced in Sect. 2.12 and Sect. 8.4 and implied
everywhere throughout the book, and
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• linear approximation in h used very generally in first-order “Moloden-
sky corrections” such as (8–62) or (8–66) but not in (8–67) or (8–68).

In fact, to a higher approximation

∆g∗ = ∆g + g1 + g2 + g3 + · · · (8–67)

and
ζ = ζ0 + ζ1 + ζ2 + ζ3 + · · · . (8–68)

Generalizing (8–66), we have

ζi =
R

4π γ0

∫
σ

∫
gi S(ψ) dσ , (8–69)

where i = 1, 2, 3, . . . . For the deflection of the vertical we have similar
expressions, see Sect. 8.7; compare also (8–75) and (8–76).

8.6.3 Higher-order solution

The following recursion formulas are somewhat advanced and may be omit-
ted. From Moritz (1980 a: Sect. 45) we may take the recursion formula for
the correction terms gn, which are evaluated recursively by

gn = −
n∑

r=1

zr Lr(gn−r) , (8–70)

starting from
g0 = ∆g . (8–71)

Here the operator Ln is also defined recursively:

Ln(∆g) = n−1L1[Ln−1(∆g)] (8–72)

starting with
L1 = L (8–73)

with the gradient operator L defined above, (8–60), and z given by (8–52).

8.6.4 Problems of analytical continuation

Analytical continuation comes from the theory of complex variables and
means extending the domain, on which the function is defined, by the use of
Taylor series. Complex functions always satisfy Laplace’s equations in two
dimensions and are therefore harmonic.
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Also in three dimensions, functions satisfying Laplace’s equation are
called harmonic, as we know well. Analytical continuation is again best de-
fined by Taylor series, and analytical continuation is frequently called har-
monic continuation (Kellogg 1929: Chap. X).

Above we have been misusing the all-round word “reduced” in the sense
of “analytical” or “harmonic” continuation and will continue to do so for
brevity. As we have seen in Sect. 8.2 and will see in Sect. 8.9, it is not a
gravity reduction in the standard sense of explicit mass removal. The Taylor
series whose first term is (8–54) is an analytical operation performed on the
external potential directly at ground level, preserving the Laplace equation
∆W = 0. (In fact, ∆W = 2ω2, but let us, as we did in (8–2), for a while for-
get earth rotation, which implies ω = 0 and W = V .) Thus, it is a harmonic
function and our “reduction” is really analytical continuation as a harmonic
function or briefly harmonic continuation. Harmonic continuation is the
key notion in modern physical geodesy, from Molodensky’s prob-
lem to least-squares collocation. Its full meaning will gradually emerge
in what follows, as a notion which is surprisingly simple and general. Sym-
bols like ∆gharmonic will relate to harmonic continuation. In what follows, we
shall sometimes continue to use “reduce downward” or “continue downward”
instead of “harmonically continue downward” and use “reduce upward” in
a similar sense. We also use “continue upward”. Only in doubt, the clumsy
expression “harmonically continue upward” should be employed. Also “ana-
lytical continuation” is used. It all means the same. In the present context,
confusion is hardly possible.

Hence we see why gravity anomalies ∆g at ground level may be used
for f in (8–58), whereas the equivalent expression (2–394) was originally
derived for gravity anomalies at sea level. Since ∆gharmonic and ∆g differ only
by terms of the order of h, the difference between using ∆gharmonic or ∆g
in (8–62) causes only an error of the order of h2, which is negligible in the
linear approximation.

Analytical continuation: historical remarks
The use of analytical continuation has an interesting history. It was first
considered as a possibility by Molodensky himself, already before 1945, but
he soon rejected this method! Molodensky was a profound mathematician,
with a high regard for mathematical rigor. He would not be satisfied with
intuitive heuristic approaches so common in mathematical physics, also in
the present book.

In fact, the analytical continuation of the external gravitational potential
into the interior of the earth’s masses is very likely to become singular at
some points. As a serious mathematician, Molodensky rejected the use of
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singular functions for regular purposes.
Still, analytical continuation continued to exert an irresistable fascina-

tion because its use is so easy. It was rediscovered around 1960 by A. Bjer-
hammar. At the General Assembly of the International Union of Geodesy
and Geophysics in Berkeley, California, in 1963, one of the authors (H.M.)
talked to Bjerhammer about these difficulties, but Bjerhammar refused to
take them seriously. After a long discussion he convinced H.M. that analyt-
ical continuation was rigorously possible for discrete boundary data (all our
terrestrial gravity measurements are discrete) and approximately possible
for continuous boundary data.

This admittedly intuitive thinking was made rigorous by the idea of
Krarup (1969) that Runge’s theorem, well known for approximation of ana-
lytical functions of a complex variable, should be applied to the problem of
analytical continuation of harmonic functions in space. Runge’s theorem, in
the form of Krarup, loosely speaking says that, even if the external geopoten-
tial cannot be regularly continued from the earth surface S into its interior,
it can be made continuable by an arbitrarily small change of the geopotential
at S. Another historical remark: the Krarup–Runge theorem for harmonic
functions in space goes back at least to Szegö and to Walsh (both around
1929), cf. Frank and Mises (1930: pp. 760–762). It is always dangerous to
talk about priorities! A detailed discussion will be found in Moritz (1980 a:
Sects. 6 to 8).

More on the validity of this method
Let us summarize. The presupposition of this method is that the earth’s
external gravitational potential can be continued, as a regular harmonic
function, analytically down to sea level. This is the case if and only if it
is possible to shift the masses outside the ellipsoid into its interior in such
a way that the potential outside the earth remains unchanged or, in other
words, if the analytical continuation of the disturbing potential T is a regular
function everywhere between the earth’s surface and the ellipsoid. Thus, the
question arises whether the external potential can be analytically continued
down to sea level.

Rigorously, as we have just remarked, the answer must be in the negative,
in view of the irregularities of topography (Molodenski et al. 1962: p. 120;
Moritz 1965: Sect. 6.4). This fact is also related to the divergence at the
earth’s surface of the spherical-harmonic expansion for the external potential
(Sect. 2.5).

However, by Krarup–Runge’s theorem, the analytical continuation of the
external potential down to sea level is possible with sufficient accuracy for
all practical purposes. Actually it is possible with any accuracy you wish; if
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you are not satisfied with 1 mgal, prescribe 10−3 mgal or 10−1000 mgal!
Bjerhammar has pointed out that the assumption of a complete contin-

uous gravity coverage at every point of the earth’s surface, from which the
above negative answer follows, is unrealistic because we can measure gravity
only at discrete points. If the purpose of physical geodesy is understood as
the determination of a gravity field that is compatible with the given discrete
observations, then it is always possible to find a potential that can be an-
alytically continued down to the ellipsoid. This is the theoretical basis for
least-squares collocation.

Here we need only one result: Do not worry about analytical contin-
uation! It is always possible with an arbitrarily small error being
not equal to 0 (though not for one being 0).

So, in the same year 1969, Marych and Moritz independently found an el-
ementary solution by analytical continuation in the form of an infinite series
denoted as “Molodensky series”. Details can be found in Moritz (1980 a):
The original form of Molodensky’s series obtained by solving an integral
equation is found in Sect. 45. Pellinen’s equivalence proof that the simple
“analytical continuation solution” and Molodensky’s integral equation solu-
tion are equivalent (that means, the series are termwise equal!) is found in
Sect. 46.

We remark that analytical continuation is a purely mathematical concept
independent of the density of the topographic masses. Thus, it is not an
“introduction of gravity reduction through the backdoor”, which would be
contrary to the spirit of Molodensky’s theory.

8.6.5 Another perspective

Consider Fig. 8.6. Let us assume that the analytical downward continuation
of ∆g to the sea level surface has been performed, obtaining ∆gharmonic. The
sea-level anomalies ∆gharmonic then generate, on the physical surface of the
earth, a field of gravity anomalies ∆g that is identical with the actual gravity
anomalies on the earth’s surface as obtained from observation. Therefore, the
gravity anomalies that they generate outside the earth must also be identical

P

ground

sea level

h
hP

�g

�gharmonic

Fig. 8.6. Free-air anomalies at ground level, ∆g, and at sea level, ∆gharmonic
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with the actual gravity anomalies outside the earth, since the function r ∆g
is harmonic according to Sect. 2.14.

(Remark: we are consistently using the notation ∆g for ground level,
∆gharmonic for sea level, and ∆g∗ for point level; see Fig. 8.5.)

It follows that the harmonic function T that is produced by ∆gharmonic

according to Pizzetti’s generalization (2–302) of Stokes’ formula

T (r, ϑ, λ) =
R

4π

∫
σ

∫
∆gharmonic S(r, ψ) dσ (8–74)

is identical with the actual disturbing potential of the earth outside and on
its surface.

Applications
Assume that we got in some way (e.g., by the Taylor series mentioned above
or by collocation to be treated in Chap. 10 or by a high-resolution gravita-
tional field from satellite observations) the downward continuation ∆gharmonic

to sea level. Then we can compute the external gravity field, its spherical
harmonics, etc., rigorously by means of the conventional formulas of Chaps. 2
and 6, provided we use ∆gharmonic rather than ∆g in the relevant formulas.
For instance, the coefficients of the spherical harmonics of the gravitational
potential may be obtained by expanding the function ∆gharmonic according to
Sect. 1.9 together with Sect. 1.6. If we wish to compute the height anomaly
ζ at a point P at ground level, we must remember that P lies above the el-
lipsoid, so that the formulas for the external gravity field are to be applied.
By Bruns’ formula ζ = T/γ0 (8–50), we get

ζ =
R

4π γ0

∫
σ

∫
∆gharmonic S(r, ψ) dσ , (8–75)

where r = R + h and h is the topographic height of P in some sense of
Chap. 4. (We do not need it very accurately, but it means that h is formally
added to the constant radius R of the mean terrestrial sphere, which has no
real-world geometric interpretation!) Cf. Eq. (6–57). The function S(r, ψ) is
expressed by (2–303), (6–22) or (6–35). Similarly, ξ and η, being deflections
of the vertical above sea level, must be computed by (6–41) and the second
and third equation of (6–30). This gives

ξ =
t

4π γ0

∫
σ

∫
∆gharmonic ∂S(r, ψ)

∂ψ
cos α dσ ,

η =
t

4π γ0

∫
σ

∫
∆gharmonic ∂S(r, ψ)

∂ψ
sin α dσ ,

(8–76)
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where ∂S(r, ψ)/∂ψ is expressed by the second equation of (6–32) or the
second equation of (6–36). The linear approximation of (8–74) is evidently
equivalent to (8–53).

This indirect procedure, downward continuation to sea level and again
upward continuation to ground level or above, has the advantage that only
the conventional spherical formulas are needed; yet at the same time the
irregularities of the earth’s topography are fully taken into account. The
downward continuation of ∆g need be performed only once; the resulting
anomalies ∆gharmonic may be stored and used for all further computations.

Just as ∆g is related to ∆gharmonic by analytical continuation, so are ζ and
Nharmonic, the height of a “harmonic geoid”. A final and hopefully instructive
and not too difficult review will be found in Sect. 8.15.

An elementary explanation from daily life
Generally, “analytical continuation” means continuation by the same math-
ematical formula: Taylor series, Laplace equation, or even an elementary
explicit equation.

Let us illustrate the meaning of analytical continuation by means of an
almost trivial example from everyday life (Fig. 8.7). A person is driving a
car along a road which at first is completely straight; at point B, however,
it suddenly turns into a circular curve. Thus, our person first drives along
the straight segment of the road. Unfortunately, he is tired and sleepy just
when the straight road suddenly turns into a circular curve. Thus, our sleepy
driver fails to turn the steering wheel and goes straight ahead, the car leaving
the road. Fortunately, the slope is mild, the driver immediately takes control
again and manages to bring the car to a stop at C ′ without major damages.
The driver (one of the authors of this book) has even found the experience
an excellent example to illustrate analytical continuation in his courses!

The gravitational potential corresponds to the road ABC, which, after
some idealization, can be considered “piecewise analytic”, consisting of the
straight line AB and the circular arc BC. The transition from the straight
line to the circle is continuous and differentiable at B, but the curvature

A
B

C'

C

Fig. 8.7. An illustration of analytical continuation
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changes discontinuously from 0 to 1/R, where R is the radius of the circular
arc. Therefore, the function “road” is continuous and continuously differ-
entiable but has a discontinuous second derivative at point B, just as the
function “gravitational potential” is everywhere continuous and continuously
differentiable but has discontinuous second derivatives at the earth surface
as we have seen in Sect. 1.2. The straight line has the equation y′′ = 0
(which is the “one-dimensional Laplace equation”!), corresponding to the
external potential satisfying ∆V = 0. Thus, neither the “function road” nor
the “function gravitational potential” may be considered an everywhere ana-
lytical function, but each may be said to consist of a “linear” or “harmonic”
piece (y′′ = 0 or ∆V = 0: Laplace, respectively) and a “nonlinear” piece
(y′′ �= 0 or ∆V = −4π G�: Poisson). For the road, the analytical continu-
ation is the straight line for which y′′ = 0 even beyond point B, the path
followed by the car without action of the sleepy driver towards C ′, and for
the potential it is a function satisfying ∆Vanalytical continuation = 0 even in the
interior of the earth.

8.7 Deflections of the vertical

The effect of Molodensky-type corrections is even much more important
on the deflections of the vertical ξ, η than on the height anomalies ζ. This
is shown by their order of magnitude in high mountains: the Molodensky
correction for the height anomaly might be of the order of 0.3 m, whereas
for vertical deflections they may be on the order of 0.3 arc seconds, which
corresponds to 10 m (1 arc second corresponds to 30 m in position). The
difference is more than one order of magnitude!

The consideration of a Molodensky type of correction to the deflec-
tions of the vertical is easiest by using analytical continuation to point level
(Sect. 8.6). Differentiating (8–57) in north-south and east-west direction, we
get the corresponding Vening Meinesz equations

ξ =
1

4π γ0

∫
σ

∫ [
∆g − ∂∆g

∂h
(h − hP )

]
dS

dψ
cos α dσ ,

η =
1

4π γ0

∫
σ

∫ [
∆g − ∂∆g

∂h
(h − hP )

]
dS

dψ
sin α dσ .

(8–77)

Its geometrical interpretation is analogous to that of (8–57). The gravity
anomalies ∆g are “reduced” to the level of point P so that we obtain

∆gharmonic = ∆g − ∂∆g

∂h
(h − hP ) . (8–78)
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Since these anomalies refer to a level surface, Vening Meinesz’ formula can
now be applied directly and gives (8–77).

Relation with the ellipsoidal geodetic coordinates
The deflection components ξ and η as given by the above expressions rep-
resent the deviation of the actual plumb line from the normal plumb line at
the ground point P . Therefore, they are defined by

ξ = Φ − ϕ∗ ,

η = (Λ − λ∗) cos ϕ .
(8–79)

The symbols Φ and Λ represent the astronomical coordinates of P referred to
the ground. The symbols ϕ∗ and λ∗ represent the “normal coordinates” of P ,
defining the direction of the normal plumb line at P ; they are not identical
with the ellipsoidal coordinates ϕ and λ of P , which are the coordinates of
the foot point Q0 of the straight perpendicular to the ellipsoid (Fig. 8.8).

P

Q0
ellipsoid

earth's

Q00

surface

parallel to
equator

' ''

'*

plumb line

ellipsoidal normal
normal

Fig. 8.8. Normal latitude ϕ∗ and ellipsoidal latitude ϕ

The normal coordinates of P , ϕ∗ and λ∗, differ from the normal coordi-
nates of Q00, ϕ′ and λ′, by the correction for the normal curvature of the
plumb line (see Sect. 5.15). Formula (5–147) gives

ϕ∗ = ϕ′ + f∗ h

R
sin 2ϕ ,

λ∗ = λ′ .
(8–80)

Because of the rotational symmetry, we have rigorously

λ′ = λ , (8–81)
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since Q0 and Q00 lie on the same ellipsoidal meridian. Furthermore, even
in extreme cases the distance between Q0 and Q00 can never exceed a few
centimeters. For this reason, we may also set

ϕ′ = ϕ (8–82)

without introducing a perceptible error. Hence, we can identify ϕ′ and λ′ with
ϕ and λ, which are the ellipsoidal coordinates of P according to Helmert’s
projection (Sect. 5.5). Therefore, we may replace the above equations for ϕ∗

and λ∗ by

ϕ∗ = ϕ + f∗ h

R
sin 2ϕ ,

λ∗ = λ .

(8–83)

Introducing the deflection components according to Helmert’s projection,
defined as

ξHelmert = Φ − ϕ ,

ηHelmert = (Λ − λ) cos ϕ ,
(8–84)

we see that they are related to ξ and η by the equations

ξHelmert = ξ + f∗ h

R
sin 2ϕ ,

ηHelmert = η .

(8–85)

Therefore, ξ and ξHelmert differ by the normal reduction for the curvature of
the plumb line,

−δϕnormal = f∗ h

R
sin 2ϕ . (8–86)

The deflection components ξHelmert and ηHelmert are used in astrogeodetic com-
putations; ξ and η are those obtained gravimetrically from formulas such as
(8–77) and (8–88) below.

These relations are mathematically quite analogous to the corresponding
equations (5–138) for the conventional method using the geoid, but now,
with the use of the normal curvature, the once formidable obstacle of the
correction for plumb-line curvature practically belongs to the past.

Remark on accuracy
With Molodensky’s theory, the accuracy problem mentioned at the end of
Sect. 2.21 even aggravates, because in a mountainous terrain it is almost
impossible to compute the Molodensky corrections with an accuracy of 0.03′′

(say), so that these observations cannot be directly used for precise horizontal
positions.
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Astronomical field observations for latitude, longitude, and azimuth have
an accuracy around 0.3′′, which is sufficient for classical trigonometric net
computation and astrogeodetic observation of the geoid (Sect. 5.14).

8.8 Gravity disturbances: the GPS case

The basic fact is that for gravity disturbances the derivation of “Molodensky
corrections” gn is identical to the ∆g case. The reason is that the gravity dis-
turbance δg has exactly the same analytical behavior as the gravity anomaly
∆g since r δg, as a function in space, is harmonic together with r ∆g. Thus,
the arguments are literally the same, only ∆g has to be replaced by δg, and
Stokes’ formula must be replaced by the Neumann–Koch formula (8–47) and
similarly for Vening Meinesz’ formula.

Therefore, we obtain

ζ =
R

4π γ0

∫
σ

∫
δg K(ψ) dσ +

∞∑
n=1

R

4π γ0

∫
σ

∫
gn K(ψ) dσ , (8–87)

ξ =
1

4π γ0

∫
σ

∫
δg

dK

dψ
cos α dσ +

∞∑
n=1

1
4π γ0

∫
σ

∫
gn

dK

dψ
cos α dσ ,

η =
1

4π γ0

∫
σ

∫
δg

dK

dψ
sin α dσ +

∞∑
n=1

1
4π γ0

∫
σ

∫
gn

dK

dψ
sinα dσ .

(8–88)

For the “Vening Meinesz GPS formula” (8–88), we find by differentiation of
(8–49):

dK

dψ
= −1

2
cos(ψ/2)
sin2(ψ/2)

1
1 + sin(ψ/2)

. (8–89)

The correction terms gn are evaluated recursively by

gn = −
n∑

r=1

zr Lr(gn−r) , (8–90)

but now we start from
g0 = δg . (8–91)

We only have to replace ∆g by δg and S(ψ) by K(ψ). The operators L
remain the same.

Let us summarize again our trick for solving the modern boundary-value
problems (Molodensky and Koch). It is difficult to directly work with the
complicated earth’s surface S. Therefore, by analytical continuation of ∆g or
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δg, respectively, we reduce these complicated problems to the corresponding
spherical problems, for which the solution is simple and well known.

The similarity of the Molodensky series for the Molodensky problem, on
the one hand, and for the GPS boundary problem, on the other hand, is very
clear because ∆g and δg have the same analytical and geometric structure.

At the same time, this similarity is very surprising since the two underly-
ing boundary problems are mathematically quite different, as we have seen
in Sect. 8.3 (compare Eqs. (8–12) and (8–13)). Nonetheless, (8–87) does give
the potential as (8–13) requires: by Bruns’ theorem, which is the omnipresent
link between geometry and physics, we have

T = γ ζ . (8–92)

Then
W = U + T (8–93)

is the geopotential required by (8–13), and

C = W0 − W (8–94)

is the geopotential number, the physical measure of height above sea level,
conventionally obtained by the cumbersome method of leveling, but now
computed in a direct way from gravity data. This is the physical, more
general, equivalent of the geometric determination of the normal height by
H∗ = h − ζ, according to Eq. (8–31).

It can be shown that, in the linear approximation, the Molodensky cor-
rection for the gravity disturbance has the same form as for the gravity
anomaly and can for each quantity be computed using either ∆g or δg.

The formulas for the Molodensky corrections and their numerical values
are the same to the linear approximation.

All this shows the power of Molodensky’s approach even in problems he
never treated himself.

8.9 Gravity reduction in the modern theory

In Sect. 8.2, we have considered gravity reductions from the point of view
of the determination of the geoid. It is quite remarkable that these reduc-
tions, such as the Bouguer or the isostatic reduction, can also be incorpo-
rated into the new method of direct determination of the earth’s physical
surface, although with essentially changed meaning (Pellinen 1962; Moritz
1965: Sect. 5.2).
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Let the masses outside the geoid be removed or moved inside the geoid, as
described in Sect. 8.2, and consider the effect of this procedure on quantities
referred to the ground.

We denote the changes in potential and in gravity by δW and δg; then
the new values at ground will be

W c = W − δW ,

gc = g − δg .
(8–95)

(It is clear that δg here is not the gravity disturbance!) The disturbing
potential T = W − U becomes

T c = T − δW . (8–96)

The physical surface S as such will remain unchanged, but the telluroid Σ will
change, because its points Q are defined by UQ = WP , and the potential W at
any surface point P will be affected by the mass displacements according to
(8–95). The distance Q Qc between the original telluroid Σ and the changed
telluroid Σc (Fig. 8.9) is given by

Q Qc =
δW

γ
(8–97)

according to Bruns’ theorem. This is identical with the variation of the height
anomaly ζ, so that

δζ = ζ − ζc =
δW

γ
. (8–98)

Normal gravity γ on the telluroid Σ becomes on the changed telluroid Σc

γc = γ +
∂γ

∂h
δζ = γ +

1
γ

∂γ

∂h
δW , (8–99)
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Fig. 8.9. Telluroid before and after gravity reduction, Σ and Σc
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so that the new gravity anomaly will be

∆gc = gc − γc = (g − δg) −
(

γ +
1
γ

∂γ

∂h
δW

)
(8–100)

or
∆gc = ∆g − δg − 1

γ

∂γ

∂h
δW . (8–101)

The reduced gravity anomaly ∆gc consists of the free-air anomaly (in
the Molodensky sense) ∆g and two reductions:

1. the direct effect, −δg, of the shift of the outer masses on g; and

2. the “indirect effect”,

−1
γ

∂γ

∂h
δW , (8–102)

of this shift on γ, because of the change of the telluroid to which γ
refers.

Let us repeat once more that all these anomalies ∆gc refer to the physical
surface of the earth, to “ground level”!

If the masses outside the geoid are completely removed, then ∆gc is
a Bouguer anomaly; if the outer masses are shifted vertically downward
according to some isostatic hypothesis, then ∆gc is an isostatic anomaly, etc.
In this way we may get a “ground equivalent” for each conventional gravity
reduction. The two are always related by analytical continuation. See below
for the isostatic anomalies; for analytical continuation see Sect. 8.6.

Now we may describe the determination of the height anomalies ζ in a
way that is similar to the corresponding procedure for the geoidal undula-
tions N of Sect. 8.2:

1. The masses outside the geoid are, by computation, removed entirely or
else moved inside the geoid; W and g change to W c and gc according
to (8–95).

2. The point at which normal gravity is computed is moved from the
ellipsoid upward to the telluroid point Q.

3. The indirect effect, the distance Q Qc = δζ, is computed by (8–98).
4. The point to which normal gravity refers is now moved from the point

Q of the telluroid Σ to the point Qc of the changed telluroid Σc, ac-
cording to (8–99).

5. The changed height anomalies ζc are computed from the “reduced”
gravity anomalies ∆gc (8–101) by any solution of Molodensky’s prob-
lem, such as Eq. (8–57) or (8–68).
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6. Finally, the original height anomalies ζ are obtained by considering the
indirect effect according to

ζ = ζc + δζ . (8–103)

The purpose of this somewhat complicated procedure is to make use of
the well-known advantages of Bouguer and isostatic anomalies. The Bouguer
anomalies, and even more so the isostatic anomalies, are smoother and more
representative than the free-air anomalies and can, therefore, be interpolated
more easily and more accurately.

The isostatic gravity anomalies ∆gc in the new sense are thus quite anal-
ogous to the conventional isostatic anomalies; accordingly for any other type
of gravity reduction. The difference is that now the isostatic anomalies, etc.,
refer to the physical surface of the earth as well as the free-air anomalies. If
the isostatic anomalies in this new sense are analytically continued from the
earth’s surface down to the geoid, then isostatic anomalies in the conven-
tional sense are obtained. Nowadays, in view of the “remove-restore princi-
ple”, one speaks usually of topographic-isostatic reduction while continuing
to speak of isostatic anomalies.

Hence, the isostatic anomalies according to the conventional definition
(at sea level) and those according to the new definition (at ground level) are
related through analytical continuation. This fact leads to two conclusions.
First, the difference between the isostatic anomalies according to these two
definitions will be small, because the distance along which this analytical
continuation is made is only the height above sea level and because the
isostatic reduction achieves a strong smoothing of the anomalous gravity
field. This difference is considerably smaller than the corresponding differ-
ence between free-air anomalies at ground level and at sea level. This fact
clearly provides a computational advantage if isostatic anomalies are used
in a formula such as (8–74).

Second, we obtain a relation between the conventional and the modern
use of gravity reduction if the method of downward continuation, as discussed
in the preceding section, is applied for obtaining the height anomalies. As we
have just seen, the gravity anomalies ∆gc∗ at sea level, obtained by downward
continuation of the isostatic ground-level anomalies ∆gc, are identical with
the isostatic anomalies in the conventional sense. Hence, we obtain on the
one hand the height anomalies by

ζ =
R

4π γ

∫
σ

∫
∆gc∗ S(R + h, ψ) dσ +

(
δW

γ

)
ground

(8–104)
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according to (8–75) and (8–103), and on the other hand the geoidal undula-
tions by

N =
R

4π γ0

∫
σ

∫
∆gc∗ S(ψ) dσ +

(
δW

γ

)
geoid

(8–105)

according to the ordinary Stokes formula applied to ∆gc∗ and (8–5). Since
the height anomalies refer to the elevation h, the function S(R+h, ψ) replaces
in (8–104) the original function of Stokes S(ψ) ≡ S(R,ψ), which occurs in
(8–105) because the geoidal undulation refers to zero elevation. We could
use γ0 in (8–104) as well. Summarizing, we have the following steps:

1. Computation of the free-air anomaly at ground level, ∆g, according to
(8–23).

2. Computation of the isostatic anomaly at ground level, ∆gc, according
to (8–101).

3. Downward continuation of ∆gc by (8–54), where ∆g and ∆gharmonic are
replaced by ∆gc and ∆gc∗. The resulting isostatic anomalies at sea
level, ∆gc∗, may now be used for two purposes: either for

4a. the determination of the physical surface of the earth according to
(8–104), or for

4b. the determination of the geoid according to (8–105).

An error in the assumed density of the masses below the earth’s surface
affects the geoidal undulations as determined from (8–105) but does not
influence the height anomalies resulting from (8–104). This is clear because
a wrong guess of the density means only that the masses above sea level are
not completely removed, which is no worse than not removing them at all
when using free-air anomalies.

This method is of particular interest for practical computations, as we
will see later. It has become popular by the name “remove-restore method”,
invented by K. Colic and others, see Sect. 11.1.

An almost final remark on free-air reduction
The apparently so simple topic of free-air reduction in reality is formidably
complex and complicated. Therefore, it is not possible to treat it in one
block. The problem is rather like a mountain which can only be investigated
by accessing it from various sides. An initial glance has been given as early
as in Chap. 3, and the reader is asked to return to the paragraph “The
many facets of free-air reduction” in Sect. 3.9. Now it is much easier to un-
derstand the remarks made there. What we now understand as harmonic
continuation offers a possibility to interpret free-air reduction as a mass-
transporting gravity reduction: the topographic masses are transported into
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the interior of the earth in such a way that the exterior potential remains
unchanged. This is not unlike the Rudzki reduction, where the geoid remains
unchanged. Whereas the Rudzki reduction is, however, “constructive” in the
sense that a way of performing it can be described, our present interpreta-
tion of free-air reduction as harmonic continuation is nonconstructive, it is
an “improperly posed” inverse problem; cf. Anger and Moritz (2003) and
www.inas.tugraz.at/forschung/InverseProblems/AngerMoritz.html, as well
as Fig. 8.10.

topographic masses

geoid

W W= 0

( = 0)�W

S

W

( = –4 )�W G¼ %
W

W W= 0
c( = 0)�Wc

Wc ( = 0)�Wc
Wc

cogeoid

S

W harmonic=W0

( = 0)�W
W ( = 0)�W harmonic

W harmonic

harmonic
geoid

S

(a)

(b) (c)

Fig. 8.10. (a) Geoid and topographic masses, (b) mass displacement in gravity
reduction, (c) “ill-defined” mass displacement in free-air reduction as harmonic
continuation

Important remark
The isostatic gravity anomalies and the topographic-isostatically reduced
deflections of the vertical (Sect. 8.14) are fundamental for least-squares col-
location in mountain areas (Sect. 11.2). Thus, the spatial approach due
to Molodensky is basic even for least-squares collocation!
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Exercise
Collecting all these remarks into a separately readable paper on the various
aspects of free-air reduction would be a nice task for a seminar work. The
present authors offer a prize of Euro 500, the “Molodensky Prize”, to the
first excellent review paper on this topic.

8.10 Determination of the geoid from ground-level
anomalies

We have seen that it is possible to determine the physical surface of the earth
by means of the height anomalies ζ, and the direction of the plumb line on
it by means of the deflection components ξ and η, from free-air anomalies
referred to the ground. If we plot the orthometric height H downward along
the plumb line, starting from the physical surface, then the locus of the
points so obtained will be the geoid (Fig. 8.11).

This geometrical idea may be formulated analytically in the following
way. Conventionally, the height h above the ellipsoid is given by

h = H + N ; (8–106)

according to the modern theory, by

h = H∗ + ζ . (8–107)

From these two equations we get

N − ζ = H∗ − H . (8–108)

P

earth's
surface
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Q0

geoid

ellipsoid
N

telluroid

Q
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Fig. 8.11. Geoid at a depth H below the earth’s surface
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This means that the difference between the geoidal undulation N and the
height anomaly ζ is equal to the difference between the normal height H∗ and
the orthometric height H. Since ζ is also the undulation of the quasigeoid,
this difference is also the distance between geoid and quasigeoid.

According to Sect. 4.5, the two heights are defined by

H =
C

ḡ
, H∗ =

C

γ̄
, (8–109)

where C is the geopotential number, ḡ is the mean gravity along the plumb
line between geoid and ground, and γ̄ is the mean normal gravity along the
normal plumb line between ellipsoid and telluroid. By eliminating C between
these two equations, we readily find

H∗ − H =
ḡ − γ̄

γ̄
H , (8–110)

which is also the distance between the geoid and the quasigeoid, see (8–108);
hence

N = ζ +
ḡ − γ̄

γ̄
H . (8–111)

The height anomaly ζ may be expressed, for instance, by Molodensky’s
formula (8–57). Then we obtain

N =
R

4π γ0

∫
σ

∫
∆g S(ψ) dσ +

R

4π γ0

∫
σ

∫
g1 S(ψ) dσ +

ḡ − γ̄

γ̄
H , (8–112)

where g1 is the term (8–62). Thus N is given by Stokes’ integral, applied to
free-air anomalies at ground level, and two small corrections, where

1. the term containing g1 represents the effect of topography;

2. the term containing ḡ − γ̄ represents the distance between the geoid
and the quasigeoid.

If we neglect these two corrections, then the geoidal undulations N are
given by Stokes’ integral using free-air anomalies. This was first noted by
Stokes in 1849. A new approach by Jeffreys (1931) by means of Green’s iden-
tities started several developments which culminated in the work of Molo-
densky and others.

The advantage of this method for the determination of N is that the
density of the masses above sea level enters only indirectly, as an effect
on the orthometric height H through the mean gravity ḡ, which must be
computed by a Prey reduction (Sect. 3.5). Hence, as far as errors in the
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density are concerned, the geoidal undulation N as obtained by this method
is as accurate as the orthometric height.

As a matter of fact, the gravity anomaly ∆g in this method refers to
ground level; it is the difference between gravity at ground and normal grav-
ity at the telluroid. Instead of using directly this free-air anomaly, we may
also use other gravity anomalies – for instance, the isostatic anomaly in the
sense of Sect. 8.9.

To repeat a simple but fundamental principle: ∆g, δg, ξ, η, ζ as obtained
by Molodensky’s theory primarily always refer to the physical earth’s sur-
face and not to sea level!

8.11 A first balance

The new methods described in this chapter are primarily intended for the
determination of the physical surface of the earth, but they are also well
suited for the determination of the geoid (Sect. 8.10). Their essential fea-
ture is that the gravity anomalies now refer to the ground, whether we deal
with free-air anomalies or with isostatic or other similarly reduced gravity
anomalies (Sect. 8.9).

The immediate result is the height anomaly ζ, the separation between
the geopotential and the corresponding spheropotential surface at ground
level. By plotting the height anomalies above the ellipsoid, we get the quasi-
geoid. This geoid-like surface has no physical significance, but it furnishes a
convenient visualization of the height anomalies. By plotting the orthometric
height from the earth’s surface vertically downward, we obtain the geoid.

It is instructive to compare the geoid and the quasigeoid. The geoidal
undulation N and ζ, the undulation of the quasigeoid, are related by (8–
111), or

N − ζ =
ḡ − γ̄

γ̄
H = H∗ − H . (8–113)

The term ḡ − γ̄ is approximately equal to the Bouguer anomaly; this may
be seen by using (4–32) for γ together with

γ̄
.= γ − 1

2
∂γ

∂h
H . (8–114)

The quantity γ̄ in the denominator can be replaced by our usual constant
γ0. Since the Bouguer anomaly is rather insensitive to local topographic
irregularities, the coefficient is locally constant so that there is approximately
a linear relation between ζ and the local irregularities of the height H. In
other words, the quasigeoid mirrors the topography (Fig. 8.12).
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Fig. 8.12. Quasigeoid

To get a quantitative estimate of the difference N − ζ, we again use the
fact that

ḡ − γ̄

γ̄

.=
∆gB

981 gal
.= 10−3∆gB , (8–115)

where ∆gB is the Bouguer anomaly in gal, so that

(ζ − N)[m]
.= −∆gB [gal] · H[km] . (8–116)

Since ∆gB is usually negative on the continents, the differences ζ − N are
usually positive there. In other words, the height anomaly ζ is in general
greater than the corresponding geoidal undulation N on land. We have ζ =
N on the oceans. If ∆gB = −100mgal = −0.1 gal and H = 1km, then

ζ − N = 0.1 m . (8–117)

Furthermore, the Bouguer anomaly depends on the mean elevation of the
terrain, decreasing approximately by 0.1 gal per 1 km average elevation. As-
suming as a rough estimate, which may be verified by inspecting maps of
Bouguer anomalies,

∆gB [gal] = −0.1Hav

[km] , (8–118)

we obtain
(ζ − N)[m]

.= +0.1Hav

[km] H[km] , (8–119)

where H is the height of the station and Hav is an average height of the
area considered. We see that the difference ζ − N increases faster than the
elevation, almost as the square of the elevation. As a matter of fact, this
formula is suited only to give an idea of the order of magnitude (see also
Sect. 11.3).

Since ζ − N = H − H∗, the approximate formulas given above may also
be used to estimate the differences between the orthometric height H and
the normal height H∗.

A theoretically important point is that the quasigeoid can be determined
without hypothetical assumptions concerning the density, but not so the
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geoid. The avoidance of such assumptions has been the guiding idea of Molo-
densky’s research. However, orthometric heights are but little affected by er-
rors in density. The error in H due to the imperfect knowledge of the density
hardly ever exceeds 1–2 decimeters even in extreme cases (Sect. 4.3). It is
presumably smaller than the inaccuracy of the corresponding ζ even with
very good gravity coverage, because of inevitable errors of interpolation, etc.
If, therefore, the method of Sect. 8.10 is used, the geoid can be determined
with virtually the same accuracy as the quasigeoid. Note that it is theoret-
ically even possible to eliminate completely the errors arising from the use
of the geoid (Moritz 1962, 1964). Thus, we may well retain the geoid with
its physical significance and its other advantages.

How much do Molodensky’s formulas differ from the corresponding equa-
tions of Stokes and Vening Meinesz? The deviation of ζ from the result of
the original Stokes formula is given by the equivalent expressions

ζ1 =
R

4π γ0

∫
σ

∫
g1 S(ψ) dσ or ζ1 = − R

4π γ0

∫
σ

∫
∂∆g

∂h
(h − hP )S(ψ) dσ

(8–120)
according to Eqs. (8–62) and (8–66). This correction may even be smaller
than the difference ζ − N (see Sect. 11.3).

It is appropriate again to point out that the deflection of the vertical
is relatively more affected by the Molodensky correction than is the height
anomaly. In extreme cases, this correction may attain values of a few seconds,
as studies of models by Molodensky (Molodenski et al. 1962: pp. 217–225)
indicate. This is considerable, since 1′′ in the deflection corresponds to 30 m
in position. Numerical estimates will be found in Chap. 11.

We may summarize the result of applying Stokes’ and Vening Meinesz’
formulas to free-air anomalies directly, without any corrections. Stokes’ for-
mula yields height anomalies ζ with high accuracy; for many practical pur-
poses, we may, in addition, identify these height anomalies with the corre-
sponding geoidal undulations N . Vening Meinesz’ formula gives deflections
of the vertical at ground level that are relatively less accurate but often
acceptable.

An advantage of the modern theory is its direct relation to the external
gravity field of the earth, which is particularly important nowadays for the
computation of the effect of gravitational disturbances on spacecraft trajec-
tories and satellite orbits. It is immediately clear that ground-level quan-
tities, such as free-air gravity anomalies, are better suited for this purpose
than the corresponding quantities referred to the geoid, which is separated
from the external field by the outer masses. For the computation of the ex-
ternal field and of spherical harmonics, the method described in Sect. 8.6.5
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is particularly appropriate (see also Sect. 6.5).
Practically it is usually adequate to consider only the linear approxima-

tion by using (8–57). In many cases it is even possible to neglect the correc-
tion −(∂∆g/∂h)h, identifying the sea-level free-air anomalies ∆gharmonic with
the corresponding ground-level anomalies ∆g. In agreement with Sect. 3.9,
these free-air anomalies ∆gharmonic = ∆g may also be considered approxima-
tions to condensation anomalies in the sense of Helmert. This approximation
is particularly sufficient for the external gravity field, spherical harmonics,
and geoidal undulations or height anomalies. For deflections of the vertical,
it is often necessary to use a more careful approach, such as the consideration
of the indirect effect with mass-transporting gravity reductions (Sect. 8.2)
or the modern methods of Sect. 8.9.

In high and steep mountains, the approach of Molodensky and others
through free-air anomalies encounters practical difficulties, such as unrelia-
bility of interpolation, large corrections, and other computational problems.
To avoid this, isostatic reduction in the modern sense shoud be used. Thus
the clash between “conventional” (geoid) and “modern” (Molodensky-type)
ideas gives way to an important synthesis. For another synthesis, see least-
squares collocation in Sects. 10.2 and 11.2.

For further study, especially of the historic aspects, the reader is referred
to the book by Molodenski et al. (1962) and the M.S. Molodensky Anniver-
sary Volume edited by Moritz and Yurkina (2000).

Part II: Astrogeodetic methods according to
Molodensky

8.12 Some background

The computation of a detailed geoid, or of a detailed gravity potential field,
in limited areas, especially in mountainous regions, has not been very much
in the focus of attention recently. There may be various reasons for this.

For decades now, global geoid determinations, either from satellite data
or from a combination of satellite and gravimetric data have been in the
center of interest (Lerch et al. 1979, Reigber et al. 1983, Rapp 1981). Even
(almost) purely gravimetric global and local geoids have been successfully
computed (March and Chang 1979), between the classic Heiskanen (1957)
and the modern local geoid (Kühtreiber 2002 b). An excellent recent reference
volume is that by Tsiavos (2002).

Over the oceans, the geoid is now known to an accuracy of perhaps a
few centimeters, due to satellite altimetry. Unfortunately, satellite altimetry
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does not work over land areas. The classical method for a detailed geoid
determination on the continents has been the gravimetric method, in spite
of the fact that it is severely handicapped by lack of an adequate gravity
coverage (or lack of information on such a coverage). Thus, we have the
paradoxical situation that on the oceans, long a stepchild of geodesy, the
geoid is now in general known much better than on the continents.

Still, the gravimetric method has continued to fascinate theoreticians
because it gives rise to very interesting and deep mathematical problems,
related to the geodetic boundary-value problem discussed above in this chap-
ter.

These enormous practical and theoretical developments concerning global
satellite and gravimetric gravity field determination have somewhat over-
shadowed the determination of detailed geoids in smaller areas, in partic-
ular, astrogeodetic geoids. Especially in mountainous regions, local geoid
determinations are difficult. The gravimetric method does not work very
well in high mountains. The astrogeodetic method, using astronomical ob-
servations of latitude and longitude, does work well there but is considered
time-consuming and somewhat old-fashioned, perhaps also because work-
ing during the night is not very popular nowadays. An appropriate use
of gravity and astrogeodetic data in high mountains must involve some
topographic-isostatic reduction. Furthermore, the theory behind the astro-
geodetic method is not nearly as attractively difficult as the theory of Molo-
densky’s problem. Last but not least, high-mountain areas are exceptional
and, apart from such countries as Switzerland and Austria, are frequently
regions of little economic interest. For these and similar reasons, the main-
stream of geodetic practice and theory has flown with grand indifference
around high mountains, ignoring such trivial obstacles.

Still, a country such as Switzerland has made a virtue out of necessity
and has traditionally been very active in local astrogeodetic geoid determi-
nation (Elmiger 1969, Gurtner 1978, Gurtner and Elmiger 1983). Austria
has followed up (Österreichische Kommission für die Internationale Erdmes-
sung 1983). It has been found that, even besides the problem of getting the
required observations, the underlying theory is not so trivial as one might
think and shows quite interesting features.

Concerning measurements, astronomical observations have again proved
very feasible in mountains; see the articles by Erker, Bretterbauer and Gerst-
bach, Lichtenegger and Chesi in Chap. 2 of Österreichische Kommission für
die Internationale Erdmessung (1983), followed by Sünkel et al. (1987). The
main advantages of astrogeodetic versus gravimetric data for local geoid
determination in mountainous regions may be summarized as follows:

1. It is sufficient to have astrogeodetic deflections of the vertical in the
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region of geoid determination; no data are needed outside that region
as they would be in the gravimetric method.

2. Errors in the topographic height have significantly less influence on
deflections than on gravity data. Thus, a relatively crude terrain model
will be sufficient for the use of astrogeodetic data.

As a matter of fact, the two types of data are not mutually exclusive;
an optimal geoid determination will combine astrogeodetic deflections of
the vertical, gravity anomalies, and possibly data of other type. A suitable
technique for this purpose is least-squares collocation to be discussed in
Chap. 10.

From the observational point of view it is interesting to note that inertial
surveying techniques will be able to furnish deflections of the vertical and
gravity anomalies rapidly and with sufficient accuracy for many purposes.

Let us finally try to give a list of various methods of geoid determination:

• conventional satellite techniques (Doppler, laser, etc.),
• satellite-to-satellite tracking,
• satellite gradiometry,
• satellite altimetry,
• gravimetry,
• astrogeodesy, and,
• most directly, GPS leveling (Sect. 4.6).

As a general rule, these methods are listed in such a way as to start with
the most global and end up with the most local method, that is, according
to decreasing globality or increasing locality. In general, going down the list
also corresponds to increasing resolution and accuracy.

Again it should be stressed that these methods complement each other
and should be combined for best results.

New satellite gravity missions have been discussed in Sect. 7.6.

Astrogeodetic method according to Molodensky
The remaining part of this chapter deals primarily with the lower end of the
list, providing a detailed theory of astrogeodetic local geoid determination
in areas with difficult topography. The role (and necessity) of topographic-
isostatic reduction is investigated in detail. The computations for Austria
give concrete numerical results for questions which have been much dis-
cussed theoretically, such as the difference between geoidal heights and height
anomalies according to Molodensky (quasigeoidal heights), or the numeri-
cal effect of analytical continuation from the earth’s surface to sea level
(Österreichische Kommission für die Internationale Erdmessung 1983).
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Fig. 8.13. The basic geometry

As a warm-up, let us return to basics and remember some main principles
of Molodensky’s geometry. Figure 8.13 illustrates the basic quantities. In
the classical theory, the geoid is defined by its deviation N from a reference
ellipsoid; N is the geoidal height. The geoid is a level surface W = W0 =
constant of the gravity potential W ; the ellipsoid is defined to be the level
surface U = U0 = constant of a normal gravity potential U ; the constants
W0 and U0 are usually assumed to be equal (Sect. 2.12).

For the modern theory according to Molodensky (Sect. 8.4), to each point
P of the earth’s surface we associate a point Q in such a way that Q lies on
the straight ellipsoidal normal through P and that

U(Q) = W (P ) . (8–121)

That is, Q is defined such that its normal potential U equals the actual
potential W of P .

This corresponds to the classical relation

U0 = U(Q0) = W (P0) = W0 (8–122)

mentioned above, by which U0 is taken to be equal to W0 (Fig. 8.13). By the
same correspondence, the height anomaly according to Molodensky,

ζ = Q P , (8–123)
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is the modern equivalent of the classical geoidal height,

N = Q0 P0 . (8–124)

Using the anomalous potential

T = W − U , (8–125)

we have according to Bruns’ theorem

ζ =
(

T

γ

)
Q

, N =
(

T

γ

)
Q0

, (8–126)

where γ denotes the ellipsoidal normal gravity.
The points P0 form the geoid, and the points Q0 constitute the ellipsoid,

both being level surfaces (of W and U , respectively). On the other hand, the
points P form the earth’s surface, and the set of points Q defines an auxiliary
surface, denoted as telluroid according to R.A. Hirvonen. As a matter of fact,
neither the earth’s surface nor the telluroid are level surfaces, which makes
matters more complicated than in the classical situation, where we deal with
level surfaces.

Following a suggestion of Molodensky, one could plot the height anoma-
lies ζ as vertical distances from the reference ellipsoid. Thus one obtains a
geoid-like surface, the quasigeoid, and ζ could be considered as quasigeoidal
heights. In contrast to the geoid, however, the quasigeoid is not a level surface
and does not admit of a natural physical interpretation. Therefore, working
with height anomalies ζ, it is best to consistently consider them quantities
referred to the earth’s surface (vertical distances between earth surface and
telluroid), rather than using the quasigeoidal concept. A summary will be
given in Sect. 8.15.

The classical gravity anomaly ∆g0 at sea level is defined as

∆g0 = g(P0) − γ(Q0) , (8–127)

where g denotes gravity and γ normal gravity. So far, g(P0) denotes the ac-
tual gravity on the geoid; we are not yet here considering mass-transporting
gravity reductions.

Analogously we have according to Molodensky:

∆g = g(P ) − γ(Q) . (8–128)

Generally we will, as far as feasible, use the subscript “0” to designate quan-
tities referred to sea level, to distinguish them from quantities referred to
the earth’s surface, which do not carry such a subscript. For instance, ∆g0
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refers to sea level and ∆g to the earth’s surface. With GPS we have gravity
disturbances

∆g = g(P ) − γ(P ) . (8–129)

Regarding plumb line definition, we must distinguish three lines (Fig. 8.13):

1. the straight ellipsoidal normal Q0 P ,
2. the actual plumb line P ′′

0 P ,
3. the normal plumb line P ′

0 P .

Geometrically, the ellipsoidal normal is defined as the straight line through
P perpendicular to the ellipsoid. The (actual) plumb line is defined by the
condition that, at each point of the line, the tangent coincides with the
gravity vector g at that point; the plumb line is very slightly curved, but its
curvature is irregular, being determined by the irregularities of topographic
masses. The normal plumb line, at each of its points, is tangent to the normal
gravity vector γ; it possesses a curvature that is even smaller and completely
regular.

The points P0, P ′
0, and P ′′

0 coincide within a few decimeters, and we will
not distinguish them in what follows. The reason is that the distance, in arc
seconds, between P0 and P ′′

0 is much smaller than the effect of plumb line
curvature (Sect. 5.15). The same applies for Q0, Q

′
0, and Q′′

0 .
The direction of the gravity vector g is the direction of (the tangent to)

the plumb line. It is determined by two angles, the astronomical latitude Φ
and the astronomical longitude Λ. Let Φ,Λ be referred to the earth’s surface
(to point P ) and Φ0,Λ0 to the geoid (strictly speaking, to point P ′′

0 ). The
differences

δϕ = Φ0 − Φ , δλ = Λ0 − Λ (8–130)

express the effect of plumb line curvature (Fig. 8.14). You may also wish to
refer back to Fig. 5.18. Hence, we have

Φ0 = Φ + δϕ , Λ0 = Λ + δλ . (8–131)

Knowing the plumb line curvature δΦ, δΛ, we could use these simple formulas
to compute the sea-level values Φ0,Λ0 from the observed surface values Φ,Λ.

In the same way as Φ,Λ are related to the actual plumb line, the ellip-
soidal latitude ϕ and the ellipsoidal longitude λ refer to the straight ellip-
soidal normal. The quantities

ξ = Φ − ϕ , η = (Λ − λ) cos ϕ (8–132)

are the components of the deflection of the vertical in a north-south and an
east-west direction. For an arbitrary azimuth α, the vertical deflection ε is
given by

ε = ξ cos α + η sinα . (8–133)
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Fig. 8.14. Curvature of the plumb line along a north-south profile

These quantities ξ, η, ε refer to the earth’s surface. Figure 8.13 shows ε.
Similarly, we have for the geoid

ξ0 = Φ0 − ϕ , η0 = (Λ0 − λ) cos ϕ , (8–134)

ε0 = ξ0 cos α + η0 sinα . (8–135)

See again Fig. 8.13 for ε0, noting that we do not distinguish the normals in
Q0 and Q′′

0 as we have mentioned above.
In addition, we need the normal direction of the plumb line at the surface

point P ; it is defined as the tangent to the normal plumb line at P ; the
corresponding latitude and longitude will be denoted by ϕ̄, λ̄. In this “local”
notation, there is no danger of confusion with the spherical coordinate ϕ̄
used in earlier chapters. Hence, we have

ϕ = ϕ̄ + δϕnormal , λ = λ̄ + δλnormal , (8–136)

where δϕ, δλ express the normal plumb line curvature. These equations are
the “normal equivalent” to (8–131): the “normal surface values” ϕ̄, λ̄ cor-
respond to the “actual surface values” Φ,Λ and the ellipsoidal values ϕ, λ
correspond to the geoidal values Φ0,Λ0. To make the analogy complete, we
should replace ϕ = ϕ(P0) by ϕ(P ′

0), but we have consistently neglected such
differences.

In contrast to the actual plumb line curvature, it is very easy to compute
the normal curvature of the plumb line: from (5–147) we have

δϕnormal = −0.17′′ h [km] sin 2ϕ , δλnormal = 0 , (8–137)

where h [km] denotes elevation in kilometers.
Since the ellipsoidal normal and hence ϕ, λ are geometrically defined, we

may call the quantities (8–132) “geometric deflections of the vertical” at the
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earth’s surface. On the other hand, the normal plumb line is physically (or
dynamically) defined by means of the external gravity field of an equipo-
tential ellipsoid. Hence also ϕ̄, λ̄ are dynamically defined. The quantities
obtained by replacing ϕ, λ by ϕ̄, λ̄ so that

ξ̄ = Φ − ϕ̄ , η̄ = (Λ − λ̄) cos ϕ , (8–138)

are called “dynamical deflections of the vertical” at the earth’s surface. By
(8–136) and (8–137) we have

ξ̄ = ξ + δϕnormal , η̄ = η , (8–139)

since δλnormal = 0. For an azimuth α we accordingly have

ε̄ = ξ̄ cos α + η̄ sinα . (8–140)

Compare ε and ε̄ in Fig. 8.13 and note that in this figure δ denotes the
curvature of the normal plumb line for the azimuth α given by the analogous
formula

δ = δϕnormal cos α + (δλnormal cos ϕ) sinα = δϕnormal cos α . (8–141)

8.13 Astronomical leveling revisited

From Fig. 8.15 we take the well-known differential relation

dN = −ε0 ds , (8–142)

where ε0 denotes the deflection of the vertical at the geoid. Integration be-
tween two points A and B yields the difference between their geoidal heights:

NB − NA = −
∫ B

A
ε0 ds , (8–143)

geoid

ellipsoid

dN"0

ds

ellipsoidal normalplumb line

"0

N

Fig. 8.15. Astronomical leveling according to Helmert



8.13 Astronomical leveling revisited 337

or, approximately,

NB − NA = −ε0A + ε0B

2
sAB , (8–144)

where sAB denotes the horizontal distance between A and B. The minus
sign is conventional. Cf. Sect. 5.14.

A corresponding relation to height anomalies according to Molodensky
is found as follows (Molodensky et al. 1962: p. 125):

dζ =
∂ζ

∂s
ds +

∂ζ

∂h
dh , (8–145)

notations following Fig. 8.16. Since the earth’s surface is not a level surface,
we also have a vertical part (∂ζ/∂h)h in addition to the usual horizontal
part (∂ζ/∂s) ds. The vertical part arises from change in height and is usually
smaller than the horizontal part.

In analogy to (8–142), the horizontal part is given by

∂ζ

∂s
= −ε̄ , (8–146)

where ε̄ denotes the dynamical deflection of the vertical at the earth’s surface;
cf. (8–140) and Fig. 8.13. For the vertical part we have from (8–126):

∂ζ

∂h
=

∂

∂h

(
T

γ

)
=

1
γ

(
∂T

∂h
− 1

γ

∂γ

∂h
T

)
(8–147)

or
∂ζ

∂h
= −∆g

γ
= −g − γ

γ
(8–148)

according to the fundamental equation of physical geodesy (8–36).
Hence (8–145) becomes

dζ = −ε̄ ds − g − γ

γ
dh . (8–149)

earth's surface

ds

P
"

dh

@³

@s
ds

U W= P

W W= P

Fig. 8.16. Astronomical leveling according to Molodensky
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Integrating this relation yields the difference of the height anomaly

ζB − ζA = −
∫ B

A
ε̄ ds −

∫ B

A

∆g

γ
dh ; (8–150)

the gravity anomaly ∆g refers to the earth’s surface according to (8–128).
The first term on the right-hand side represents the Helmert integral (8–143)
of the surface deflection ε̄, and the second term is Molodensky’s correction to
the Helmert integral, necessary to obtain height anomalies. This correction
depends on the gravity g at the earth’s surface.

8.14 Topographic-isostatic reduction of vertical
deflections

For the reasons mentioned at the end of the preceding section, it is nat-
ural to try and find a way which makes use of the clear advantages of the
topographic-isostatic reduction but avoids the problems inherent in a free-air
reduction from the surface point P to the geoidal point P0.

In Sect. 8.9, we have treated the reduction of gravity from the modern
point of view. The second formula of (8–95) is

gc = g − δg . (8–151)

Everything is referred to the ground point P , and δg = δgTI is the effect
of gravity reduction on g, also at P . In the topographic-isostatic reduction
which we use here exclusively, it is the gravitational attraction of the to-
pography minus the gravitational attraction of the compensating isostatic
masses, topography minus isostasy.

To get the topographic-isostatic gravity anomaly, we subtract normal
gravity γ, also referred to ground level, more precisely, to the corresponding
telluroid point Q. Thus,

∆gc = ∆g − δgTI. (8–152)

The explanation is trivial: you are standing at point P and watch how the
topography is removed to fill the isostatic mass deficits, but by a miracle
you are still hovering at P , now in “free air”.

Application to deflections of the vertical
The gravity anomaly is only one component of the anomalous gravity vector,
the other two being the vertical components ξ and η, both, of course, mul-
tiplied by γ to get the dimensions right. Thus, ξ and η can be isostatically
reduced in exactly the same way.
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For ξ and η, (8–152) becomes

ξc = ξ − ξTI + δϕnormal , ηc = η − ηTI . (8–153)

By means of (8–139) this may be written

ξc = ξ̄ − ξTI , ηc = η̄ − ηTI . (8–154)

The interpretation of (8–154), however, is clear, simple, and rigorous: from
the dynamic deflections of the vertical at P , which are the very quantities
ξ̄ and η̄, we subtract the effect of the topographic-isostatic masses, ξTI and
ηTI likewise at P . The vertical deflections so obtained, ξc and ηc, thus do
not really refer to the (co-)geoid; in reality, they refer to the earth’s surface!

But what, then, means the normal plumb line curvature δϕnormal in (8–
153)? Does it not mean a reduction from the earth’s surface to sea level? No,
in Eqs. (8–139) it only denotes the transformation between the geometrical
and the dynamical deflection of the vertical, both referred to the point P
of the earth’s surface. This is also clear from Fig. 8.13, which illustrates the
formula

ε̄ = ε + δ , (8–155)

extending (8–139) to an arbitrary azimuth, δ being defined by (8–141).
This interpretation of (8–153) or (8–154) as isostatically reduced deflec-

tions of the vertical at the earth’s surface is exact, whereas the interpretation
of (8–8) as deflections at the cogeoid was only approximate. This is the de-
sired rigorous interpretation of our isostatically reduced vertical deflections.

This interpretation exactly corresponds to the modern view of gravity
reduction according to the theory of Molodensky. According to this view,
the isostatically (or in some other way) reduced gravity anomalies continue
to refer to the earth’s surface. The classical gravity reduction (Sect. 8.2) had
comprised two procedures: mass transport and shift P → P0; the new view
of gravity reduction only considers the mass transport; the problematic shift
P → P0 is avoided.

Formally, a “normal free-air reduction”

F = −∂γ

∂h
h (8–156)

may be said to occur also in Molodensky’s theory: normal gravity γ in the
new definition (8–128) of the gravity anomaly, where it refers to the telluroid
point Q, is computed by

γ = γQ0 +
∂γ

∂h
h , (8–157)

with h = Q0 Q denoting the normal height of P . But instead of reducing
actual gravity g downward, from P to P0, now normal gravity is reduced
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upward from Q0 to Q. Whereas for the first process the use of the normal
gradient ∂γ/∂h is problematic, it is fully justified for the second process.

In a similar way, we might interpret δϕnormal as a reduction of ϕ for
normal curvature of the plumb line upwards, say, from P0 to P . This is
possible because in (8–136) ϕ could be said to refer to P ′

0 (because P0 and
P ′

0 practically coincide), and because ϕ̄ denotes the latitude of the tangent
to the normal plumb line at P . This interpretation is instructive because of
the analogy with gravity reduction, though regarding ϕ and ϕ̄ as ellipsoidal
and dynamic latitude of the same point P appears more natural. Refer again
to our key figure (Fig. 8.13).

As pointed out above, the present interpretation of ξc and ηc as isostati-
cally reduced deflections of the vertical at the earth’s surface is conceptually
rigorous and therefore also practically more accurate, but this decisive ad-
vantage implies a computational drawback if integration along a profile is
used: Since this integration must now be performed along the earth’s surface
and not along a level surface such as the geoid, computation will be more
complicated. Instead of the simple Helmert formula (8–143), we now must
use the Molodensky formula (8–150):

ζc
B − ζc

A = −
∫ B

A
εc ds −

∫ B

A

gc − γ

γ
dh (8–158)

with
εc = ξc cos α + ηc sin α , (8–159)

and ∆gc = gc−γ, where gc is the isostatically reduced surface value of gravity
(measured value g minus attraction of the topographic-isostatic masses).

From the isostatic height anomalies ξc obtained in this way, we then get
the actual height anomalies ζ by applying the indirect effect:

ζ = ζc + δζ (8–160)

with

δζ =
TTI

γ
. (8–161)

This is completely analogous to (8–5) and (8–3), but now TTI is the potential
of the topographic-isostatic masses at the surface point P . As a matter of
fact, normal gravity in (8–3) refers to the ellipsoid, and in (8–161) to the
telluroid, but the difference is generally small.

For higher mountains, the isostatic reduction procedure described in the
present section is preferable in practice to a direct application of Moloden-
sky’s formula (8–150) because the isostatically reduced vertical deflections
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are much smoother and easier to interpolate. It is, however, extremely la-
borious from a computational point of view since the integration must be
performed along the earth’s surface (or, what is practically the same, along
the telluroid).

We remark that the computational drawback of the present method,
the Molodensky integration along the earth’s surface, can be completely
avoided if we perform our computations in space: instead of integrating
along a surface, we perform collocation in space. This modern procedure,
to be described in the next chapter, permits a simple and computationally
convenient use of surface deflections and also their combination with gravi-
metric and other data. Still, the present developments are necessary for a
full understanding of the collocation approach.

Final remarks
In these last sections we tried to apply the same principle for topographic-
isostatic reduction (the “remove-restore method”) at point level to all terres-
trial data related to the gravity vector: gravity anomalies and disturbances
(Sect. 8.9) and deflections of the vertical (Sect. 8.14). This unified view of
isostatically reduced data thus makes them directly suitable for combined
solutions by least-squares collocation to be treated in Chap. 10.

8.15 The meaning of the geoid

We now review the geoid and some surfaces that might be able to replace it.
We will again confirm the unique role of the geoid as a standard surface of
physical geodesy.

The meaning of the geoid is very simple. It is defined in Sect. 2.2 as
one of the equipotential surfaces (level surfaces, surfaces of constant gravity
potential)

W (x, y, z) = constant. (8–162)

The constant is chosen so that, on the oceans, the geoid coincides with mean
sea level:

W (x, y, z) = W0. (8–163)

This is the usual classical equation of the geoid. So what is the problem?
Well, theory and practice are different, in geodesy as well as in daily life.
First, we must disregard small tidal effects (on the order of 50 cm). This is
done by applying a suitable tidal model and is not too problematic. In fact,
we have numerous geoids determined from satellite observations. Second,
they are usually expressed in terms of a series of spherical harmonics. If
taken at sea level, such a series may diverge (this is related to the difficulties
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of downward continuation, cf. Sect. 8.6). Such a possible divergence may
concern mathematicians, but it should not concern geodesists, for several
reasons:

1. Our spherical-harmonic expansions are not infinite series but finite
polynomials, by their very determination and computations. So diver-
gence problems do not exist; the question is only good approximation.

2. Such approximating polynomials of spherical harmonics always exist
for arbitrary accuracy requirements (Frank and Mises 1930: p. 760).
In geodesy we usually speak of Runge’s theorem. The whole subject is
thorougly discussed in Moritz (1980 a: Sects. 6 to 8).

3. If you use spatial collocation, the behavior (harmonic or not, conver-
gent or divergent, ...) of the solution is completely determined by the
covariance function used. One always uses “good” covariance functions,
which are harmonic and analytic down to a sphere completely inside
the earth.

So forget all about the convergence problem. It is practically solved. Further
discussions beyond the results obtained so far would have to be made at a
very high mathematical level. The question can be made as complicated as
desired; if looked at it from the right angle, it is simple.

Geoid and downward continuation
Therefore, and by the reasoning at the end of Sect. 10.1, the geoid computed
by (harmonic!) spherical-harmonic expressions and by collocation is not a
level surface of the actual geopotential W but a level surface of a harmonic
downward continuation of W , for the simple reason that the base functions
both of spherical harmonics and of collocation satisfy Laplace’s equation
(8–2). We may speak of a “harmonic geoid”. This again emphasizes the
importance of analytical continuation (Sect. 8.6). We have deliberately used
the indefinite article “a” in the italicized expression above, because harmonic
downward continuation is an inverse problem and thus has no unique solution
(see below).

The application of collocation to ξ, η, ∆g without gravity reduction gives
height anomalies ζ and undulations of the harmonic geoid, Nharmonic, by
simply varying the elevation parameter (h and zero, respectively) in the col-
location program. A completely analogous fact was remarked at the end of
the last section for the case of height anomalies ζc and cogeoidal heights
N c. In the case of Molodensky’s problem (without or with gravity reduc-
tion), we have seen a completely similar behavior with the application of the
generalized Stokes and Vening Meinesz formulas, (8–75) and (8–76).
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Geoid, harmonic geoids, and quasigeoid
The geoid in the usual sense of Eqs. (2–18) or (8–163) is defined purely by
nature and is independent of geodetic observations (except for the tidal cor-
rections). Its disadvantage is that it depends on the “topographic masses”
above the geoid whose density is unknown, at least in principle. This draw-
back seems to be theoretical rather than practical.

The harmonic geoids are equipotential surfaces of an analytical down-
ward continuation. We shall be careful to denote the harmonically continued
potential by W harmonic so that

W harmonic = W0 = constant (8–164)

denote harmonic geoid(s).
To repeat, analytical downward continuation based on discrete data at

the earth’s surface is an inverse problem (Sect. 1.13; for more informa-
tion see www.inas.tugraz.at/forschung/InverseProblems/AngerMoritz.html)
which has infinitely many possible solutions. For collocation, e.g., each solu-
tion corresponds to the choice of a different covariance function.

Thus, the “harmonic geoid” is not uniquely defined. It is a product not
only of nature but also of the computational method used. It cannot, there-
fore, replace the real geoid as a standard surface.

The “cogeoids” of the various gravity reductions (Sect. 8.2) are inter-
mediate computational concepts and should never be used in place of the
geoid. The topographic-isostatic height anomalies at point level, ζc, and the
heights of the topographic-isostatic cogeoid, N c, are related to each other by
analytical continuation. The same collocation formula applies if the height
anomaly f(P ) is computed at sea level with elevation parameter 0 to give
N c, or, if f(P ) is computed at point level with elevation parameter h, to
give ζc. (The elevation parameter h is a height above sea level in any of the
definitions of Chap. 4.) See item 5 at the end of Sect. 10.2.

For the limiting case of Fig. 8.5 c, take the question: “How is the undu-
lation Nharmonic of a ‘harmonic geoid’ related to the height anomaly ζ above
it on the ground and on the same vertical?” Answer: “By analytic continu-
ation!”

Another special question to which the answer is also easy: “Which gravity
reduction leaves the geoid unchanged?” Answer: “The Rudzki reduction”
(Sect. 3.8). So why not use it? It changes the external potential, which today
is of paramount importance.

“What is the difference between the Rudzki reduction and the harmonic
downward continuation?” Answer: “The Rudzki reduction leaves the geoid
unchanged but changes the external geopotential: there is W c = W = W0

only on the geoid, but W c �= W outside the earth, which is inadmissible.
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The harmonic continuation leaves the external geopotential unchanged but
changes the geoid: W harmonic = W outside the earth and on the earth’s sur-
face, but W harmonic �= W at sea level.

Height anomalies and quasigeoid
The height anomalies ζ refer to the physical earth’s surface. They find their
natural physical interpretation in Hirvonen’s telluroid. Molodensky proposed
to plot ζ above the reference ellipsoid and get the “quasigeoid”. Thus, ζ gives
the quasigeoid in exactly the same way as the geoidal height N gives the
geoid. However, this analogy is purely formal. There is no way to interpret
the quasigeoid as a surface of constant potential or find any other physical
interpretation for it. Again, it cannot replace the real geoid as a standard
surface.

Thus, in spite of all modern developments, the geoid retains its role as
a standard reference for physical geodesy. However, the reader must have
a clear view of all the concepts reviewed in this section, see Forsberg and
Tscherning (1997).

A final remark on the many facets of free-air reduction
Now, dear reader, having struggled through almost the whole book, you will
be able to understand the disjecta membra on free-air reduction strewn all
over it, such as Sects. 3.3, 3.9, 8.2, 8.6, 8.9, and the present section. Have a
couple of nice mountaineering tours!




