
7 Space methods

7.1 Introduction

The subject of this chapter is the use of satellite observations for determining
features of the gravity field and the figure of the earth. Only the barest
essentials can be presented within the scope of a chapter. The reader will
find more information in special textbooks such as Hofmann-Wellenhof et
al. (2001), Montenbruck and Gill (2001), and Seeber (2003).

Historical remarks
Immediately after the first launch of artifical satellites (Sputnik 1957, Ex-
plorer 1958), their use for geodetic purposes was initiated, and by now the
Global Positioning System (GPS) has become the most important method
for a fast and precise determination of geodetic positions (see Sect. 5.3).
Historically, the first observational methods were intended to determine the
spatial direction and the distance to the satellite. Most of these methods are
now obsolete, but some principles may be still useful.

Directions
They may be measured by photographing the satellite against the back-
ground of stars, or by means of radio waves transmitted from the satellite,
using the principle of interference. Photography can only achieve an accuracy
of about 0.2 arc seconds and is not used any more in its original sense. The
principle of the photographic method was as follows. On the photographic
plate, the image of the satellite is surrounded by images of stars. The direc-
tions to the surrounding stars are defined by their right ascensions α and
declinations δ, which are known from astronomy. Therefore, by interpolation
we find the right ascension and declination of the satellite representing the
desired direction. This technique is now obsolete.

Ranges
They are measured by radar or by laser. Radar is used for measuring ranges
to space probes orbiting in the solar system, which is important to space
sciences rather than to geodesy. Lunar Laser Ranging (LLR) and Satellite
Laser Ranging (SLR) are useful for determining the earth rotation param-
eters because of their high (subcentimeter) accuracy; however, their use is
restricted to a limited number of fundamental stations.
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Range rates

This measurement quantity is found by observing the Doppler effect with
radio waves transmitted from a satellite. It is still used within GPS and in
satellite-to-satellite tracking (SST).

Satellite altimetry

Here a short-wave electronic ray is sent, from a satellite flying over the
oceans, vertically down to the ocean surface, reflected there and received by
the satellite again. The measured travel time immediately gives the height
H of the satellite above the ocean surface. Knowing the orbital position of
the satellite with respect to the global reference system, we can compute the
satellite height h above the ellipsoid. Then the difference h−H is the geoidal
height N . This is the case if the sea surface is assumed to coincide with the
geoid. In reality, because of ocean currents, etc., both surfaces are separated
by the “sea surface topography”, which may reach the order of 1m and is
interesting to oceanography. It can be determined if an accurate ocean geoid
is known from the gravitational field.

The principles of these methods are illustrated in Fig. 7.1, where e indi-
cates the direction observation, s between tracking station and satellite refers
to the range measurement, and, accordingly, ds/dt corresponds to Doppler
observation, whereas ds/dt between the two satellites is obtained by SST;
finally, H is measured by satellite altimetry.
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Fig. 7.1. Principles of satellite techniques
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7.2 Satellite orbits

The first spectacular result from satellite observations, well advertised by
NASA around 1960, was the “discovery” that “the earth is not an ellipsoid
but rather shaped like a pear”. This pear shape is caused by the spherical
harmonic J3. Its effect, at the North and South Poles, is on the order of
30 m, by three orders of magnitude less than the ellipticity coming from J2,
whose linear effect a − b is about 20 km (!).

The first real result, also found around 1960, was a dramatic improvement
in the accuracy of the flattening f itself, which lead to a change from 1/297.3,
generally believed before, to 1/298.25, corresponding to a linear improvement
of the earth size of about 70 m!

The earth’s flattening causes the largest but not the only deviation of the
earth gravitational field from that of a homogeneous sphere. Generally, the
gravitational potential can be expanded into a series of spherical harmonics
according to Sect. 2.5, Eq. (2–78):
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(7–1)
Here the terms containing Jn are the zonal harmonics, and those containing
Snm and Cnm are the tesseral harmonics.

The former notations Jnm = −Cnm and Knm = −Snm are not used any
more for the tesseral harmonic coefficients; for the zonal harmonics, the use
of Jn has prevailed so far, but also Cn0 = −Jn is being used.

Considering the moon, the only term of appreciable influence is J2, which
represents the flattening. Artificial satellites are, compared to the moon,
much closer to the earth; typical heights above ground of a geodetically
used satellite range from some 300 km up to 20 000 km. Hence, they are
also influenced by harmonics other than J2 and can, therefore, be used to
determine harmonics of low degree. For this purpose, we must study the
effect of gravitational disturbances on the orbits of close satellites.

Before we can do this, we must briefly review the theory of an undisturbed
orbit, which means that the gravitational potential has the form

V =
GM

r
, (7–2)

all C ′s and S′s being zero. This represents the gravitational field of a point
mass or a homogeneous sphere. Then the motion of a satellite is described
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Fig. 7.2. Satellite orbit as projected onto a unit sphere

by Kepler’s three laws for planetary motion. Satellites with parabolic or
hyperbolic orbits are of no interest in this context.

According to Kepler’s first law, the orbit is an ellipse of which the center
of the earth occupies one focus. The position of the orbit in space is defined
by the six orbital elements:

a semimajor axis,
e eccentricity,
i inclination,
Ω right ascension of the node,
ω argument of perigee,
T time of perigee passage .

(7–3)

If a and b are the semiaxes of the orbital ellipse (there is no danger of
confusion with those of the terrestrial ellipsoid!), then the eccentricity is
defined by

e =
√

a2 − b2

a
. (7–4)

Figure 7.2 shows the projection of the orbit onto a geocentric unit sphere,
where P is the perigee, A the apogee, K is the ascending node, K ′ the
descending node, S is the instantaneous position of satellite. The line of
nodes is the intersection of the orbital plane with the plane of the equator;
it connects the ascending node K and the descending node K ′. The right
ascension of the node, Ω, is the angle between the line of nodes and the
direction to the vernal equinox. The symbol Ω is also called longitude of
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the node, but in conformity with astronomical terminology it is the right
ascension of the (ascending) node. The major axis of the orbit intersects the
orbital ellipse at the perigee P , the position where the satellite is closest to
the earth, and at the apogee A, where the satellite is farthest away. The
angle ω between the nodes and the major axis is the argument of perigee.

The angular distance of the satellite S from perigee is called true anomaly
and denoted by v; it is a function of time. Note that this strange name comes
from the history of astronomy; there is nothing anomalous with it!

The equation of the orbital ellipse may be written

r =
p

1 + e cos v
, (7–5)

where r is the distance of the satellite from the earth’s center of mass and

p =
b2

a
= a (1 − e2) (7–6)

is the length of the radius vector r for v = 90◦. The radius vector r and
the true anomaly v form a pair of polar coordinates in the orbital plane,
and (7–5) is the well-known polar equation of an ellipse. See Fig. 7.3 for an
illustration of these quantities, where F , the focal point, is the earth’s center
of mass.

According to Kepler’s second law, the area of the elliptical sector swept by
the radius vector r between any two positions of the satellite is proportional
to the time it takes the satellite to pass from one position to the other. In
other words, the time rate of change of the area swept by the radius vector
is constant. Since the element of area of a sector in polar coordinates r and
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Fig. 7.3. Orbital ellipse
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v is 1
2r2dv, this law may be formulated mathematically as

r2 dv

dt
=
√

GM a (1 − e2) , (7–7)

where the constant has already been given its proper value.
Kepler’s third law reads

n2a3 = GM , (7–8)

where the satellite mass has been neglected and where

n =
2π
P

(7–9)

is the “mean motion” (mean angular velocity) of the satellite, P being its
period.

So far we have assumed that all Jn, Cnm, and Snm in (7–1) are zero. This
is not true because of the irregularities of the earth’s gravitational field, even
though these coefficients are small. Therefore, the satellite is subject to small
perturbing forces. We may still consider the satellite orbit as an ellipse, but
then the parameters of this ellipse, the orbital elements, will no longer be
constant but will change slowly. At each instant, this osculating ellipse will
be slightly different. It is defined as follows. Imagine that at the instant
under consideration all perturbing forces suddenly vanish. Then the satellite
will continue its motion along an exact ellipse; this is the osculating ellipse.

If we resolve the total perturbing force into rectangular components S,
T , and W , where S is directed along the radius vector, W is normal to the
orbital plane, and T is normal to S and W – note that this notation follows
astronomical usage; there is no relation to the geodetic use of T and W for
potentials! –, then the time rate of change of the orbital parameters can be
expressed in terms of these components:
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(7–10)
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As usual, ȧ denotes da/dt, etc. The derivation of these equations may be
found in any textbook on celestial mechanics, e.g., Plummer (1918: p. 151),
Brouwer and Clemence (1961: p. 301), and Seeber (2003: Sect. 3.2.1.3), who
uses the symbols K1,K2,K3 instead of W,S,R.

7.3 Determination of zonal harmonics

The effect of the zonal harmonics on satellite orbits is much greater than that
of the tesseral harmonics. Only zonal harmonics (J2, J3, J4, . . .) will give
observable variations of the orbital elements themselves. The tesseral har-
monics cause oscillatory disturbances that rapidly change their sign, whereas
the effect of the zonal harmonics is cumulative. For this reason, we consider
first the effect of zonal harmonics, that is, the effect of those independent of
longitude λ. Hence we set

V =
GM

r
+ R , (7–11)

where the perturbing potential

R = −GM

ae

∞∑
n=2

(ae

r

)n+1
Jn Pn(cos ϑ) (7–12)

is a function of r and ϑ only. Note that the main difference between the
perturbing potential R of celestial mechanics and the disturbing potential
T of physical geodesy is that R, but not T , also incorporates the effect
of the flattening through J2. There are also other perturbing forces acting
on a satellite, such as the resistance of the atmosphere (atmospheric drag),
radiation pressure exerted by the sunlight, etc. These nongravitational per-
turbances must be taken into account separately and will not be considered
here.

Note that the equatorial radius of the earth (the semimajor axis of the
terrestrial ellipsoid) has been denoted by ae, in order to distinguish it from
a, which now denotes the semimajor axis of the orbital ellipse. This notation
will be used in what follows.

Since S is the component of the perturbing force along the radius vector,
we have

S =
∂R

∂r
. (7–13)

The components of the perturbing force along the meridian and the prime
vertical are

−1
r

∂R

∂ϑ
and

1
r sinϑ

∂R

∂λ
. (7–14)
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Fig. 7.4. Components of the perturbing force

The components T and W are obtained from them by a plane rotation
(Fig. 7.4):

T = −1
r

∂R

∂ϑ
cos α +

1
r sinϑ

∂R

∂λ
sinα ,

W = −1
r

∂R

∂ϑ
sin α − 1

r sinϑ

∂R

∂λ
cos α .

(7–15)

From the rectangular spherical triangle in Fig. 7.4 it follows that

cos α =
cos(ω + v) sin i

sin ϑ
, sinα =

cos i

sin ϑ
, (7–16)

so that finally

T = −cos(ω + v) sin i

r sin ϑ

∂R

∂ϑ
+

cos i

r sin2ϑ

∂R

∂λ
,

W = − cos i

r sin ϑ

∂R

∂ϑ
− cos(ω + v) sin i

r sin2ϑ

∂R

∂λ
.

(7–17)

We have included ∂R/∂λ because of the presence of longitude-dependent
tesseral harmonics in the general case (see Sect. 7.5). In our present case,
where R is given by (7–12), ∂R/∂λ is zero.

Now we must differentiate (7–12) with respect to r and ϑ, compute the
components S, T , W from Eqs. (7–13) and (7–17), and substitute them
into the system (7–10). In this way, we can express the rates of change
ȧ, ė, . . . of the orbital elements in terms of the coefficients J2, J3, J4, . . . . We
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cannot, however, observe these rates of change directly. Rather, we observe
the changes of the orbital elements after several revolutions. The changes
after one revolution, with period P , are

∆a =
∫ t0+P

t0

ȧ dt , ∆e =
∫ t0+P

t0

ė dt , ∆i =
∫ t0+P

t0

ı̇ dt , etc. (7–18)

The t0 is an arbitrary “epoch” (instant of time). In order to perform these
integrations, we must express ȧ, ė, . . . in terms of one independent variable.
For this independent variable, we may take the time t or the true anomaly
v. The second possibility will be adopted here.

The polar distance ϑ is expressed as a function of v through the relation

cos ϑ = sin(ω + v) sin i , (7–19)

which follows from the rectangular spherical triangle in Fig. 7.4. The radius
vector r is also a function of v according to (7–5). Finally, Kepler’s second
law (7–7) furnishes the relation between v and the time t:

dt

dv
=

r2√
GM a (1 − e2)

. (7–20)

Hence, we may change the integration variable from t to v, obtaining, for
instance,

∆a =
∫ t0+P

t0

ȧ dt =
∫ 2π

v=0

da

dv
dv , (7–21)

where

da

dv
=

da

dt

dt

dv
=

r2√
GM a (1 − e2)

ȧ . (7–22)

Analogous formulas result for the other orbital elements.

After performing all these operations, which are lengthy but not too
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difficult, we find

∆a = 0 ,

∆e = −1 − e2

e
tan i ∆i ,
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sin2i
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(7–23)

Terms of the order of e2J3 and e2J4, which are very small, have been ne-
glected in these equations. The proportionality of ∆e and ∆i is more or less
accidental: it applies only with respect to long-periodic disturbances; ė and
di/dt themselves are not proportional. The quantity p is defined by (7–6);
it is hardly necessary to repeat that a, p, e, etc., refer to the orbital ellipse
and not to the terrestrial ellipsoid, of which ae is the equatorial radius.

By integrating over one revolution, we have removed the short-periodic
terms of periods P, 2P, 3P, . . . , such as cos v, cos 2v, etc. What remains are
secular terms, which are constant for one revolution and increase steadily
with the number of revolutions, and the long-periodic terms, which change
very slowly with time in a periodic manner. The argument of perigee ω
increases slowly but steadily, so that the perigee of a satellite orbit also
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rotates around the earth, but much slower than the satellite itself; a typical
period of ω is two months. Therefore, terms containing cos ω, sin ω, or sin 2ω
are called long-periodic.

The first equation of (7–23) shows that the semimajor axis of the orbit
does not change secularly or long-periodically. The eccentricity and the in-
clination undergo long-period, but not secular, variations, whereas Ω and ω
change both secularly and long-periodically.

Equations (7–23) are linear in J2, J3, J4, . . . . For practical applications,
nonlinear terms containing J2

2 , J2J3, J2J4, etc., must also be taken into ac-
count, since J2

2 is of the order of J4. The derivation of these nonlinear terms
is much more difficult, and their expressions are different in the various or-
bital theories that have been proposed. For these reasons, such expressions
will not be given here.

Equations (7–23), supplemented by certain nonlinear terms, can be used
to determine coefficients J2, J3, J4, etc. Since the secular or long-periodic
variations ∆Ω, ∆ω, ∆e, ∆i are known from observation for a sufficient num-
ber of satellites, we obtain equations of the form

a2J2 + a3J3 + a4J4 + · · · + a22J
2
2 + a23J2J3 + · · · = A ,

b2J2 + b3J3 + b4J4 + · · · + b22J
2
2 + b23J2J3 + · · · = B ,

...
...

...
...

...
...

(7–24)

which can be solved for J2, J3, J4, . . . . Since there can be only a finite
number of these equations, we must neglect all Jn with n greater than a
certain number n0, which depends on the number of equations available, on
their degree of mutual independence, etc. This used to be a difficulty with
this method, but it has been overcome long ago by least-squares collocation
(Moritz 1980 a: Sect. 21). For details see Schwarz (1976).

From (7–23) it is seen that the coefficients of the Jn depend essentially
on the inclination i. It is, therefore, important to use satellites with a wide
variety of inclinations, in order to get equations with a high mutual inde-
pendence.

Now the question arises which orbital elements are to be used for deter-
mining the coefficients Jn. The semimajor axis a clearly cannot be used at
all. As for the other elements, we must distinguish between coefficients of
even and of odd degree n. The even coefficients J2, J4, . . . can be determined
well from the regression of the node, ∆Ω, and the rotation of perigee, ∆ω.
To see this, inspect (7–23). The even harmonics cause secular disturbances
of Ω and ω, which are much larger than the long-periodic effects of the odd
coefficients, since J3, J5, . . . are multiplied by the small eccentricity e.
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On the other hand, in ∆e and ∆i the odd coefficients J3, J5, . . . have
a much larger effect than the even coefficients, which here appear with the
small factor e. Therefore, the odd coefficients are determined from ∆e or ∆i,
or from the change of perigee distance r0 = FP (Fig. 7.3). Since r0 is the
radius vector for v = 0, we have from (7–5) and (7–6)

r0 =
p

1 + e
= a (1 − e) , (7–25)

so that
∆r0 = −a∆e (7–26)

because ∆a = 0. Thus, the variation of perigee distance is proportional to
the variation of eccentricity and may be used instead of ∆e.

Numerical values
Helmert (1884: p. 472) used the regression of the node of the moon’s orbit
to determine J2, which is the only coefficient to have an appreciable effect
on it. Note that for e

.= 0 and p
.= a 
 ae, the equation for ∆Ω in (7–23)

becomes

∆Ω = −3π
(ae

a

)2
J2 cos i . (7–27)

Helmert found
J2 = 1086.5 · 10−6 (7–28)

by averaging two widely different values. This corresponds to a flattening of

1/f = 297.8 ± 2.2 . (7–29)

This value is quite close to the recent results but has a much larger uncer-
tainty.

Reliable values by this method can only be obtained from close artificial
satellites. Currently accepted values are, for example,

J2 = 1082.6359 · 10−6 ,

J3 = −2.5324 · 10−6 ,

J4 = −1.6198 · 10−6 ,

(7–30)

whose standard errors are assumed to be better than ±0.01 ·10−6. The value
for J2 has been taken from the report of the IAG by Groten (2004), accessible
from www.gfy.ku.dk/∼iag/HB2004/part5/51-groten.pdf. J3 and J4 are from
the recent mission GRACE (see Sect. 7.5).
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The most significant geodetic result is the reliable determination of J2

and, therefore, of the flattening f , around 1/298.25. Already in 1964, the In-
ternational Astronomical Union (IAU) adopted the value 298.25 correspond-
ing to J2 = 1082.7 · 10−6 (see Sect. 2.11), followed by the IAG International
Geodetic Reference Systems 1967 and then 1980, which in the slightly dif-
ferent form of the World Geodetic System 1984 (WGS 84) is standard even
today (2005).

7.4 Rectangular coordinates of the satellite and

perturbations

We now describe how the rectangular coordinates of the satellite are com-
puted from the orbital elements. Then we will outline how they are affected
by the irregularities of the gravity field. These considerations are necessary
for the determination of tesseral harmonics from satellite observations.

We introduce an equatorial coordinate system X0Y 0Z0 that is at rest
with respect to the stars. The origin is at the earth’s center of mass. The
Z0-axis coincides with its axis of rotation; the X0Y 0-plane is the equatorial
plane. The X0-axis is the line of intersection of the equatorial plane and
the ecliptic (the plane of the earth’s orbit around the sun); according to
astronomical terminology, it points to the vernal equinox. This coordinate
system X0Y 0Z0 is fundamental in spherical astronomy. Note that the di-
rections of the coordinate axes so defined are not completely constant in
time. This fact requires certain refinements for which the reader is referred
to Moritz and Mueller (1987: Chap. 7). In the present context, we consider
the X0Y 0Z0-system as constant in time.

The relation between the rectangular coordinates of a satellite and the
elements of its osculating ellipse (Sect. 7.2) at a certain time is found as fol-
lows. Consider Fig. 7.3 and the coordinate system e1, e2 defining the orbital
plane. Assuming e3 orthogonal to this plane,

r

⎡⎢⎢⎣
cos v

sin v

0

⎤⎥⎥⎦ (7–31)

is the representation of the satellite in this system. This result may be trans-
formed into the equatorial system X0Y 0Z0 by a rotation matrix R and re-
sults in a vector denoted as X0 = [X0, Y 0, Z0]. The transformation is
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obtained by ⎡⎢⎢⎣
X0

Y 0

Z0

⎤⎥⎥⎦ = R r

⎡⎢⎢⎣
cos v

sin v

0

⎤⎥⎥⎦ , (7–32)

where the matrix R is composed of three successive rotation matrices (see
Figs. 7.2 and 7.3) and is given by

R = R3{−Ω}R1{−i}R3{−ω}

=

⎡⎢⎢⎢⎢⎢⎢⎣

cos Ω cos ω − cosΩ sin ω sin Ω sin i
− sin Ω sin ω cos i − sin Ω cos ω cos i

sin Ω cos ω − sinΩ sin ω − cos Ω sin i
+ cos Ω sin ω cos i + cos Ω cos ω cos i

sin ω sin i cos ω sin i cos i

⎤⎥⎥⎥⎥⎥⎥⎦ , (7–33)

see Hofmann-Wellenhof et al. (2001: p. 43). The column vectors of the or-
thonormal matrix R are the axes of the orbital coordinate system represented
in the equatorial system X0

i .
Substituting (7–33) into (7–32) and carrying out the multiplication (Mon-

tenbruck and Gill 2001: Eq. (2.51)) yields

X0 = r [cos Ω cos(ω + v) − sin Ω sin(ω + v) cos i] ,

Y 0 = r [sin Ω cos(ω + v) + cos Ω sin(ω + v) cos i] ,

Z0 = r sin(ω + v) sin i ,

(7–34)

where, according to (7–5),

r =
a (1 − e2)
1 + e cos v

. (7–35)

This expresses the rectangular coordinates of the satellite in terms of the
elements of its osculating orbit, the true anomaly v fixing its position as a
function of time.

Since the osculating ellipse does not remain constant, it is convenient
to use a fixed reference orbit – for instance, the osculating ellipse E0 at
a certain instant t0, having the elements a0, e0, i0, Ω0, ω0, T0. At a later
instant t, the orbital elements will have changed to a0 + ∆ta, e0 + ∆te, i0 +
∆ti, Ω0 + ∆tΩ, ω0 + ∆tω, T0 + ∆tT , which corresponds to an osculating
ellipse Et.
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The orbital elements in (7–34) refer to this instantaneous osculating el-
lipse, so that a = a0 + ∆ta, etc. Therefore, the coordinates X0, Y 0, Z0

depend on the time in two ways: explicitly, through the true anomaly v, and
implicitly, through the variable elements of the osculating orbit. We elimi-
nate the implicit dependence in the following way. We evaluate (7–34) using
the elements a0, etc., of the fixed reference ellipse. Then the coordinates so
obtained depend on the time only explicitly and correspond to a Keplerian
motion in space along a fixed ellipse. To convert them into true coordinates
X0, Y 0, Z0, they must be corrected by ∆tX

0, ∆tY
0, ∆tZ

0, for which the
linear terms of a Taylor expansion of (7–34) give

∆tX
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∂X0
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∆ti +

∂X0

∂Ω
∆tΩ +

∂X0

∂ω
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∂X0
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∂Y 0
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∂Y 0
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∂Y 0

∂ω
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∂Y 0
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∂Z0

∂a
∆ta

∂Z0
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∂Z0

∂i
∆ti +

∂Z0

∂Ω
∆tΩ +

∂Z0

∂ω
∆tω +

∂Z0

∂v
∆tv .

(7–36)
The partial derivatives are readily obtained by differentiating (7–34); note
that r is a function of a, e, and v.

In these equations, we have used the perturbation of the true anomaly,
∆tv, instead of the perturbation of perigee epoch, ∆tT .

Perturbations expressed in terms of Cnm and Snm

The perturbations of the orbital elements are found by integrating (7–10):

∆ta =
∫ t

t0

ȧ dt , ∆te =
∫ t

t0

ė dt , . . . . (7–37)

A similar expression can be written for ∆tv. The components S, T , W of the
perturbing force are expressed in terms of Jn, Cnm, and Snm using equations
(7–12), (7–13), and (7–17), where the perturbing potential

R = −GM

ae

∞∑
n=2

(ae

r

)n+1
[
JnPn(cos ϑ)

−
n∑

m=1

(Cnm cos mλ + Snm sinmλ) Pnm(cos ϑ)
] (7–38)
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now also contains the tesseral harmonics.
By performing the integrations in (7–37), we obtain equations of the form

∆ta =
∑
n,m

(
AnmCnm + ĀnmSnm

)
,

∆te =
∑
n,m

(
BnmCnm + B̄nmSnm

)
,

...
...

(7–39)

where the coefficients Anm, etc., are functions of the time t and are, as a
rule, periodic. Zonal and tesseral harmonics have been combined in (7–39)
by setting Jn = −Cn0 and admitting the value m = 0; this practice will be
continued in what follows.

The substitution of (7–39) into (7–36) gives the perturbation of the rect-
angular coordinates X0, Y 0, Z0 as functions of the harmonic coefficients
Cn0 = −Jn, Cnm, and Snm in the form

∆tX
0 =

∑
n,m

(
LnmCnm + L̄nmSnm

)
,

∆tY
0 =

∑
n,m

(
MnmCnm + M̄nmSnm

)
,

∆tZ
0 =

∑
n,m

(
NnmCnm + N̄nmSnm

)
,

(7–40)

where again Lnm, L̄nm, Mnm, etc., are functions of the time t.
These perturbations are added to the coordinates computed from (7–34)

using the orbital elements of the reference ellipse E0. In this way, we obtain
the rectangular coordinates of the satellite in the form

X0 = X0(t; a0, e0, i0,Ω0, ω0, T0; Cnm, Snm) ,

Y 0 = Y 0(t; a0, e0, i0,Ω0, ω0, T0; Cnm, Snm) ,

Z0 = Z0(t; a0, e0, i0,Ω0, ω0, T0; Cnm, Snm)

(7–41)

as explicit functions of the time t, containing as constant parameters the
orbital element of the reference ellipse E0 and the gravitational coefficients
Cnm and Snm. This is the advantage of (7–41) over the system (7–34), which
formally is much simpler but depends on the variable orbital parameters of
the osculating ellipse.

The actual expressions for (7–41) are very complicated. Therefore, we
have been satisfied with outlining the procedure, referring the reader for
details to the pioneering book by Kaula (1966 a) and to his papers given
there.
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7.5 Determination of tesseral harmonics and

station positions

Zonal harmonics give rise to secular and long-periodic perturbations of the
orbital elements a, e, etc. Therefore, their influence can be detected in
changes of orbital parameters obtained by integrating over many revolutions
of the satellite.

The perturbations due to tesseral harmonics have a much shorter period.
The longest period of a harmonic of the order m = 1 is one day, for m = 2 it
is only half a day, etc. Therefore, we must look for another method, which is
sensitive enough to detect even short-periodic effects and extracts as much
information as possible from the observations.

The observed elements are essentially spatial polar coordinates of the
satellite with respect to the observing station: the distance s and the direc-
tion as determined by two angles. Corresponding to our coordinate system
X0, Y 0, Z0 introduced in the preceding section, these two angles are the
right ascension α and the declination δ, whose definition may be seen in
Fig. 7.5. The angles α and δ are polar coordinates in three-dimensional space
and were obtained by photographing the satellite against the background of
stars, as outlined in Sect. 7.1. They are outdated nowadays but retained for
geometrical intuition and symmetry. Most important are distances s mea-
sured by GPS, radar, or laser. Note that the measurement of the range rate
ds/dt of the satellite by means of the Doppler effect is also important for the
determination of tesseral harmonics and station positions.

Denoting in the equatorial system X0Y 0Z0 the rectangular coordinates of
the terrestrial station P by X0

P , Y 0
P , Z0

P and of the satellite S by X0
S , Y 0

S , Z0
S ,

S

X 0

P
Y 0

Z 0
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Fig. 7.5. Direction to the satellite defined by right ascension α and
declination δ
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we find by inspecting Fig. 7.5

X0
S − X0

P = s cos δ cos α ,

Y 0
S − Y 0

P = s cos δ sin α ,

Z0
S − Z0

P = s sin δ ,

(7–42)

so that

α = tan−1 Y 0
S − Y 0

P

X0
S − X0

P

,

δ = tan−1 Z0
S − Z0

P√
(X0

S − X0
P )2 + (Y 0

S − Y 0
P )2

,

s =
√

(X0
S − X0

P )2 + (Y 0
S − Y 0

P )2 + (Z0
S − Z0

P )2 .

(7–43)

We now compute the rectangular coordinates X0
P , Y 0

P , Z0
P of the observ-

ing station P . The system X0Y 0Z0, being fixed with respect to the stars,
rotates with respect to the earth. The coordinates of P in this system are,
therefore, functions of time. Let XP , YP , ZP be the coordinates of P in the
usual geocentric coordinate system fixed with respect to the earth. In this
system, the Z-axis, coinciding with the Z0-axis, is the earth’s axis of rota-
tion; the X-axis lies in the mean meridian plane of Greenwich, corresponding
to the longitude λ = 0◦; and the Y -axis points to λ = 90◦ east. Figure 7.6
shows that

X0
P = XP cos θ0 − YP sin θ0 ,

Y 0
P = XP sin θ0 + YP cos θ0 ,

Z0
P = ZP .

(7–44)

The angle θ0 is called Greenwich sidereal time; its value is

θ0 = ω t , (7–45)

where ω is the angular velocity of the earth’s rotation. It is proportional
to the time t and, in appropriate units, measures it. Thus, absolute Green-
wich time is needed to convert the terrestrial coordinates XP , YP , ZP to the
celestial coordinates X0

P , Y 0
P , Z0

P that are required in (7–42) and (7–43).
As a final step, we substitute the station coordinates, as given by (7–44),

and the satellite coordinates, as symbolized by (7–41), into (7–43), obtaining
expressions of the form

α = α(XP , YP , ZP ; t; a0, e0, i0,Ω0, ω0, T0; Cnm, Snm) ,

δ = δ(XP , YP , ZP ; t; a0, e0, i0,Ω0, ω0, T0; Cnm, Snm) ,

s = s(XP , YP , ZP ; t; a0, e0, i0,Ω0, ω0, T0; Cnm, Snm) .

(7–46)
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Fig. 7.6. Geocentric coordinate systems X0Y 0Z0 (celestial) and
XY Z (terrestrial)

Besides depending on the station coordinates and the time, they also contain
the orbital and gravitational parameters.

Every observation furnishes an equation of type (7–46). Provided we have
a sufficient number of such observation equations, we can solve them for the
station coordinates XP , YP , ZP , for the orbital parameters a0, e0, etc., of the
reference ellipse, and for a certain number of gravitational parameters Cnm

and Snm. This is the principle of the orbital method. In practice, differential
formulas will be applied to determine corrections to assume approximate val-
ues by means of a least-squares adjustment. Therefore, the actual analytical
developments are from the outset directed toward obtaining differential for-
mulas corresponding to (7–46). The substitutions indicated above are, thus,
consistently performed in terms of the corresponding differential expressions.
In this way we are able to operate with linear equations and to employ that
efficient tool of linear analysis, matrix calculus. Simple though the princi-
ple of this procedure is, the details when written out are nevertheless so
complicated that the reader must again be referred to the literature, e.g.,
Kaula (1966 a), Montenbruck and Gill (2001). Computer formula manipula-
tion is also used.

Besides these analytical problems, which have been satisfactorily solved,
the geodetic application of (7–46) raises difficulties similar in principle to
those involved in the determination of zonal harmonics by means of (7–24),
but even more serious in practice. Strictly speaking, an infinite number of
unknowns, Cnm, Snm, etc., are to be determined from a finite number of
observations. In order to get a definite solution, it must be assumed that the
effect of higher-degree terms is negligibly small. But even then there are very
many unknowns: coordinates of the observing stations, parameters of the
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reference orbit, and gravitational parameters; in addition, other unknowns
must be included to take into account nongravitational forces acting on the
satellite, such as air drag. An appropriate computational tool is least-squares
collocation with parameters (Moritz 1980 a: Sect. 16).

To get a strong solution, observations should be evenly distributed both
in space (with respect to the inclination of the satellites used) and in time.

Present results

At present (2005), several determinations of tesseral harmonics up to the
degree 360 are available from a combination of satellite and terrestrial data.
Soon the degree 1800 will be achieved. These coefficients represent the large-
scale features of the disturbing potential T and, hence, of the geoid, since
the geoidal height is given by N = T/γ. There is a general agreement be-
tween the essential aspects of these determinations as expressed in geoidal
maps, although the details of these maps, and even more so the individual
coefficients, are rather different.

As an example we take the first nonzonal coefficients, C22 and S22, which,
according to Sect. 2.6, Eq. (2–95), express the inequality of the earth’s prin-
cipal equatorial moments of inertia or, somewhat loosely speaking, its triax-
iality. According to Groten (2004), we have C22 = (1574.5 ± 0.7) · 10−9 and
S22 = (−903.9 ± 0.7) · 10−9.

Concerning the order of magnitude, J2 is on the order of magnitude of
10−3, where all the other coefficients are of order 10−6. This is why the earth
can be approximated by an ellipsoid so well.

7.6 New satellite gravity missions

7.6.1 Motivation and introductory considerations

Accuracy requirements in geodesy, geophysics, and oceanography for detailed
gravity field information amount to 1 mgal for gravity anomalies. The related
accuracy for the geoid ranges from 1 to 2 cm. In the presatellite era, the
earth’s gravity field was known with high accuracy only in a few regions
of the world. Primarily, the available accurate gravity field information was
based on terrestrial and airborne measurements. This implied that in large
parts of the world there were virtually no gravity data available.

Why do we need the earth’s gravity field at all? Following Pail (2003),
first, the gravity field reflects the mass inhomogeneities in the earth’s interior
and on the earth’s surface. Second, it is fundamental for the determination
of the geoid (see Chap. 11) which, in its turn, may be regarded as a physical
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reference surface for a number of geodynamic processes (subject to conti-
nents, oceans, ice masses, atmosphere, etc.) and their interaction. The mass
inhomogeneities are a necessary prerequisite to understand convection mo-
tions in the earth’s mantle which are responsible for plate tectonics. Some
large and many small lithospheric plates with a thickness of some 100–200 km
move with a relative velocity of some centimeters per year. At the edges of
the plates, seismic zones and volcanoes are situated.

Many time-dependent earth-related processes can be regarded as changes
of the mass distribution and, thus, influence the gravity field, e.g., ocean cir-
culation, ice mass variations, sea level change, tides, volcanism, post-glacial
rebound. These variations may be categorized according to their periodicity.
Some of these effects are extremely long-periodic or secular, e.g., plate tec-
tonics with about 100 million years. In contrast, changes of the ice masses
may amount to some 10 years only; even immediate events like earthquakes
may occur.

These variations are referred to a global physical reference surface, the
geoid. Therefore, the more accurately we know the geoid, the better we
accurately understand the previously mentioned effects. Referring to various
disciplines, the earth’s gravity field is important for, e.g., geodesy, geophysics,
oceanography, and climatology.

Geodesy

As mentioned in Sect. 5.3, GPS has revolutionized geodesy in many respects.
Despite the tremendous importance of GPS, in Sect. 5.4 it was shown that
the user of GPS gets only geometric quantities: WGS 84 coordinates, i.e.,
geocentric rectangular coordinates X,Y,Z or, computed from them, ellip-
soidal coordinates ϕ, λ, h (see Sect. 5.6.1). Therefore, the height obtained by
GPS, i.e., the ellipsoidal height h, is purely geometric. To transform these
heights into orthometric heights H by H = h−N , the geoidal undulation N
is required. Using satellites to determine the earth’s gravity field, a globally
uniform height system will result.

Additionally, an accurate knowledge of the earth’s gravity field improves
the orbit determination of satellites.

Oceanography

The sea surface topography (SST), i.e., the difference between the geoid and
the mean sea surface, can be determined when combining satellite altimetry
data and the earth’s gravity field data. From Fig. 7.7 we obtain the relation

h = N + SST + ∆H + a , (7–47)
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Fig. 7.7. Satellite altimetry

where h is the ellipsoidal height of the altimeter satellite (based on orbit
computations), N is the geoidal height, SST is the sea surface topography
to be derived, ∆H is caused by the instantaneous tidal effect, and a is
the altimeter measurement. Note that (7–47) is a simplified representation,
since, e.g., usually SST is split into a dynamic and a constant part. Refer to
Seeber (2003: Sect. 9.3.1) for more details.

Knowing the sea surface topography, ocean currents and circulations may
be explained, which is highly interesting for our understanding of the global
energy transport. Ocean currents together with their time variations are an
important indicator for climatic changes.

This method suffers from different accuracy influences in the results:
when referring the mean sea surface to the ellipsoid, centimeter accuracy
could be achieved. Involving the gravity model and referring the sea surface
topography to the geoid as in Fig. 7.7, an improved geoid is required for a
consistent accuracy level.

Geophysics

As mentioned earlier, the earth’s gravity field reflects the mass inhomo-
geneities in the interior of the earth. Knowing gravity values on the earth’s
surface and, in addition, complementary data (e.g., magnetic and seismic
data), improved models for the structure and processes in the earth’s inte-
rior may be obtained. These processes may cause the movement of tectonic
plates which are responsible for earthquakes. Thus, we see that the gravity
field is the fundamental link in a chain of interactive processes. Using more
descriptive terms, an improved knowledge on the gravity field may yield
more accurate methods to predict earthquakes. This justifies any effort on
the determination of the earth’s gravity field.
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7.6.2 Measurement concepts

From the introduction above, the need for an accurate determination of the
earth’s gravity field becomes evident. Three different measurement concepts
evolved, leading to three different gravity field satellite missions:

• satellite-to-satellite (SST) tracking in high-low mode being realized by
the “Challenging Minisatellite Payload” (CHAMP) mission,

• satellite-to-satellite tracking in low-low mode being realized by the
“Gravity Recovery and Climate Experiment” (GRACE), and

• satellite gravity gradiometry, the objective of the “Gravity Field and
Steady State Ocean Circulation Explorer” (GOCE) mission.

Before giving some details on the objectives and payloads of the missions,
the different concepts are briefly described.

Satellite-to-satellite tracking in high-low mode
The principle is shown in Fig. 7.8. The orbit of the low earth orbit (LEO)
satellite is continuously determined by satellites of global systems such as
GPS, GLONASS or, in the future, Galileo. Note that the term “high-low
mode” is not really appropriate because the satellites of GPS, GLONASS,
and Galileo belong to the mean earth orbit (MEO) satellites and not to the
high earth orbit (HEO) satellites. However, we keep the notation as used in
Seeber (2003: Sect. 10.1). Apart from satellite-to-satellite tracking, the LEO
satellite uses an accelerometer. In principle, three-dimensional perturbing
accelerations caused by the earth’s gravity field are measured. These ac-
celerations correspond to first derivatives of the gravitational potential V .

3D accelerometer

GPS satellites

earth's surface

LEO satellite

Fig. 7.8. Satellite-to-satellite tracking in high-low mode
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The gravity field is derived by inverting (in the sense of inverse problems,
cf. the remark on inverse problems at the end of Sect. 1.13) the information
obtained from the satellite orbit

Satellite-to-satellite tracking in low-low mode
The principle is shown in Fig. 7.9. Two LEO satellites are placed in the same
orbit but separated by some hundreds of kilometers (about 220 km in the
case of GRACE). Ranges and range rates between the satellites are measured
to utmost accuracy. Individually, the orbit of each LEO satellite is affected
by perturbing accelerations which correspond to the first derivatives of the
gravitational potential. In combination, differences of accelerations result.
In addition, the position of the LEOs is determined by GPS satellites. This
means that inherently satellite-to-satellite tracking in high-low mode is also
implied. The effect of nongravitational forces on the satellite, e.g., due to air
drag, must either be compensated or measured by an accelerometer.

3D accelerometers

GPS satellites

earth's surface

LEO satellites

Fig. 7.9. Satellite-to-satellite tracking in low-low mode

Satellite gravity gradiometry
Compared to the just decribed low-low mode of satellite-to-satellite tracking
with a long baseline between the two LEOs, the baseline between the ac-
celerometer units tends to zero in case of satellite gravity gradiometry. This
is achieved by placing both units into a single satellite (Fig. 7.10). Therefore,
satellite gradiometry is the measurement of acceleration differences in three
spatial orthogonal directions between the test masses of the six accelerometer
units (two on each of the three axes) inside the satellite. In other words, the
measured signal is the difference in gravitational acceleration at the satellite,
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gradiometer
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earth's surface
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Fig. 7.10. Satellite gravity gradiometry with a three-axis gradiometer

where the gravitational signal arises from the attracting masses of the earth.
Thus, the measured signal corresponds to the gradients of the component
of the gravity acceleration, i.e., the second derivatives of the gravitational
potential. For instance, in obvious notation we read from Fig. 7.11

Vx2 − Vx1

∆z
=

∆Vx

∆z

.=
∂Vx

∂z
= Vxz . (7–48)

Summarizing the briefly described three methods, satellite-to-satellite track-
ing in high-low mode, satellite-to-satellite tracking in low-low mode, and
satellite gravity gradiometry, we may say that the basic observable is grav-
itational acceleration. Following Rummel et al. (2002), the case of satellite-
to-satellite tracking in high-low mode corresponds to a three-dimensional
position, velocity or acceleration determination of a LEO satellite. The three-
dimensional accelerometry corresponds to gravity acceleration. Mathemati-
cally, this is expressed by the first derivatives of the gravitational potential.

Considering the low-low mode, the principle corresponds to the line-of-

Vx1

Vx2

�z
x

z

Fig. 7.11. Measuring the second derivative Vxz
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sight measurement of the range, range rate or acceleration difference between
the two low-orbiting satellites. The intersatellite link corresponds to accel-
eration differences between the two LEO satellites. Mathematically, this is
expressed by the difference of first derivatives of the gravitational potential
over a long baseline (i.e., the distance between the two LEO satellites).

In the case of satellite gradiometry, three-dimensional acceleration dif-
ferences referring to the very short baseline realized by the gradiometer are
measured. The gradient of gravity components corresponds to the accelera-
tion gradient. Mathematically, this is expressed by the second derivatives of
the gravitational potential.

Another feature inherent to satellite gravity missions should be kept in
mind: the amplification of errors by the factor (r/R)n+1 when transferring
the measurement comprising the signal and noise from satellite altitude to
the earth’s surface. The factor (r/R)n+1 describes the field attenuation with
altitude. This error amplification effect is minimized by using an orbit as low
as possible and by not measuring the potential V itself or its gradient but
rather its second-order derivatives as in gravity gradiometry.

7.6.3 The CHAMP mission

The information on the challenging minisatellite payload (CHAMP) mission
has been extracted primarily from http://op.gfz-potsdam.de/champ.

The Geoforschungszentrum Potsdam initiated the CHAMP idea and has
the main responsibility. The primary CHAMP objectives are the following:

• mapping of the global gravity field, or, more specifically, to accurately
determine the long-wavelength features of the static earth gravity field
and its temporal variations (caused, e.g., by atmospheric mass redis-
tributions, ocean circulation, sea level changes resulting from polar ice
melting);

• mapping of the global magnetic field, or, more specifically, to accurately
determine the main and crustal magnetic field of the earth and its
space-time variations;

• profiling of the ionosphere and the troposphere, or, more specifically, to
derive from GPS signal refraction data information on the temperature,
water vapor, and electronic content of the atmosphere.

The CHAMP mission was launched on July 15, 2000 from the Russian Ple-
setsk cosmodrome. The main mission parameters of the respective satellite
are the following:

• almost circular (eccentricity e < 0.004) and near-polar (i = 87◦) orbit,
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• initial altitude of 454 km,
• designed lifetime of five years for the mission (but the life expectation

is much higher!),
• weight of 522 kg, length of 8.3 m (including a “boom” of 4m length),

width of 1.6 m, height of 0.75 m.

This initial altitude may be regarded as a compromise between gravity
and magnetic field measurements. Considering the gravity field, a lower al-
titude would be desirable. Primarily due to atmospheric drag, the altitude
will decrease to about 300 km and even less which is important because of an
increasing sensitivity with respect to gravity field coefficient determination.

The reason for the curious 4 m boom is that the magnetometry assembly
must be separated from the main body of the satellite (“magnetic cleanliness
reasons”, see http://op.gfz-potsdam.de/champ).

To achieve the mission goals, the following payload is on board of the
satellite:

• dual-frequency GPS receiver connected to a multiple antenna system
to determine the orbit of the CHAMP satellite using code and phase
pseudoranges;

• three-axis accelerometer to measure the nongravitational accelerations
acting on the spacecraft (air drag, solar radiation pressure, albedo,
etc.);

• laser retroreflector for backup tracking to measure two-way ranges be-
tween ground stations and the satellites with 1–2 cm accuracy; these
measurements support the precise orbit determination;

• fluxgate magnetometer to measure the vector components of the mag-
netic field of the earth (this instrument is supported by a scalar mag-
netometer to provide a calibration capability of the fluxgate magne-
tometer);

• equipment to determine the ion density and temperature, the drift
velocity, and the electric field;

• two advanced star trackers to provide high-precision attitude informa-
tion as required for the three-axis accelerometer, the digital ion drift
meter, but also for the attitude control of the satellite.

Typical other equipment required for a proper operation of the satellite
but with no specific relation to the scientific objectives of the mission is not
detailed here, such as the cold gas propulsion system, the thermal control
system, the power generation, the data handling, the telemetry, tracking and
command system. Furthermore, we do not list items of the control segment
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of the CHAMP mission, but refer the reader to the previously mentioned
homepage.

As explained before, the measuring principle for CHAMP is satellite-to-
satellite tracking in high-low mode. The gravity field of the earth perturbes
the CHAMP satellite orbit. These perturbing accelerations correspond to
first derivatives of the gravitational potential V . This implies that the gravity
field of the earth may be derived from observed gravitational satellite orbit
perturbations applying numerical orbit integration (Montenbruck and Gill
2001) or using the energy balance principle (Ilk 1999, Jekeli 1999, Sneeuw
et al. 2002).

For further reading see Reigber et al. (2003), Seeber (2003: Sect. 10.2.2).

7.6.4 The GRACE mission

The information on the gravity recovery and climate experiment (GRACE)
mission has been extracted primarily from http://op.gfz-potsdam.de/grace.

The GRACE mission is a joint project between the U.S. National Aero-
nautics and Space Administration (NASA) and the Deutsches Zentrum für
Luft- und Raumfahrt (DLR). The primary objectives of the mission are the
following:

• determination of the global high-resolution gravity field of the earth,

• temporal gravity variations.

In addition, another task is the determination of the total electron content
by GPS measurements to get knowledge on the refractivity in the ionosphere
and troposphere. The two satellites of this mission were launched simultane-
ously on March 17, 2002 from the Russian Plesetsk cosmodrome. The main
mission parameters of the two satellites are the following:

• almost circular (eccentricity e < 0.005) and near-polar (i = 89◦) orbit,

• initial altitude between 485 km and 500 km,

• the two satellites are some 220 km apart (this requires orbit maneuvers
every one or two months to maintain the separation between the two
spacecraft),

• design lifetime of the mission is five years (but extended operation is
envisaged),

• the weight of each satellite is about 480 kg and the length about 3 m.

As with CHAMP, also the altitude of the GRACE satellites will decrease
in the course of their lifetime primarily because of atmospheric drag. The
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amount of this decrease depends on the solar activity cycle and may accumu-
late in the mission lifetime to some 50 km on low activity, and up to 200 km
on high activity, see http://op.gfz-potsdam.de/grace.

The range between the two satellites must be determined extremely ac-
curately. Its range rate must be known to better than 1µm s−1, which is
achieved by intersatellite microwave measurements. The basic idea is that
variations in the gravity field cause variations in the range between the
two satellites; areas of stronger gravity will affect the lead satellite first and,
therefore, accelerate it away from the following satellite (Seeber 2003: p. 479).

GRACE will not only provide a static global gravity field but also its
temporal variations.

To achieve the mission goals, the following payload is on board of the
two satellites:

• The K-band ranging system is the key instrument of GRACE to mea-
sure the range changes between both satellites using dual-band mi-
crowave signals (i.e., two one-way ranges) with a precision of about
1µm s−1. The ranges are obtained at a sampling rate of 10 Hz.

• The GPS receiver serves for the precise orbit determination of the
GRACE spacecraft and provides data for atmospheric and ionospheric
profiling. To achieve this, satellite-to-satellite tracking between the
GRACE satellites and the GPS satellites is realized. A navigation solu-
tion comprising position, velocity, and a time mark is derived on board.
The navigation solution is required for the attitude control system. The
precise orbit based on code and carrier pseudoranges is determined on
ground.

• The attitude and orbit control system comprises a cold gas propulsion
system, three magnetic torque rods, star trackers, a three-axis inertial
reference unit to measure angular rates, and a three-axis magnetome-
ter.

• The accelerometer measures all nongravitational accelerations on the
GRACE spacecraft, e.g., due to air drag or solar radiation pressure.

• The laser retroreflector is a passive payload instrument used to reflect
short laser pulses transmitted by ground stations. The distance be-
tween a ground station and a GRACE satellite can be measured with
an accuracy of 1–2 cm. The laser retroreflector data are primarily used
together with the GPS receiver data for the precise orbit determina-
tion.

In 2004, the GRACE science team released to the public a first version
of a new earth gravity field model complete to degree and order 150. The
resulting improved geoid together with satellite altimetry will advance the
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knowledge on oceanographic, geodetic, and solid earth issues such as oceanic
heat flux, change of sea level, ocean currents, precise positioning, orbit de-
termination, and leveling.

The GRACE concept can be regarded as a one-dimensional gradiometer
with a very long baseline of 220 km (Seeber 2003: p. 480). In contrast to this
concept, GOCE uses very short baselines (50 cm) in three directions.

7.6.5 The GOCE mission

The main sources of this section are www.esa.int/export/esaLP/goce.html,
ESA (1999), Müller (2001), Drinkwater et al. (2003), and Pail (2003).

The gravity field and steady-state ocean circulation explorer (GOCE)
mission is a Core Mission of the ESA Living Planet Programme. The primary
objectives of the GOCE mission are to measure the earth’s stationary gravity
field and to model the geoid with extremely high accuracy. More specifically:

• to determine the gravity anomalies with an accuracy of 1 mgal,
• to determine the geoid with an accuracy of 1–2 cm,
• to achieve these results at a spatial resolution better than 100 km.

According to the above mission requirements, GOCE is intended for a
representation of the gravity potential by spherical harmonics complete at
least to degree and order 200 (corresponding to the spatial resolution of
100 km), but 250 is envisaged.

From the geodetic point of view, a global geoid of 1–2 cm accuracy and
a gravity field model accurate to 1mgal at about 100 km spatial resolution
may be used – among many other important applications – for the following
purposes:

• Control (or replacement) of traditional leveling by leveling with GPS.
In Sect. 4.6 we have learned the basic equation (4–72), H = h − N ,
relating the orthometric height H (above the geoid), the ellipsoidal
height h (above the ellipsoid), and the geoidal undulation N . With N
accurately known from GOCE and h measured by GPS (Sects. 5.5,
5.6.1), the orthometric height H is readily obtained.

• Worldwide unification of height systems so as to refer to one height
datum which allows for comparison of different sea levels (e.g., in the
North Sea and in the Mediterranean) and sea-level changes (which
may be caused by melting continental ice sheets). Remember that the
geoid is defined as an equipotential surface which follows a hypothetical
ocean surface at rest (in the absence of tides and currents and other
smaller influences). Consequently, a precise geoid is crucial in deriving
accurate measurements of ocean currents and sea-level changes.
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• Providing a significant improvement in satellite orbit determination
and prediction. This especially applies to low-orbiting satellites. The
highly accurate gravity field will enable a better separation of the per-
turbations caused by the static gravity field and other perturbing forces
(not only the nongravitational forces caused by air drag and solar ra-
diation pressure but also perturbations caused by the solid earth and
ocean tides).

The duration of the mission is scheduled with nominally 20 months,
including a 3-month commissioning and calibration phase and two measure-
ment phases, each lasting six months and separated by a long eclipse period.
The other main mission parameters are the following:

• due for launch in 2007 from Plesetsk in Russia,
• sun-synchronous orbit, inclination 96.5◦,
• measurement altitudes: approximately 250 km,
• single ground station in Kiruna, Sweden, to exchange data and com-

mands; the European Space Operations Center (ESOC) at Darmstadt
will be used for mission and satellite control.

The main payload components are the following:

• three-axis gravity gradiometer based on three pairs of electrostatic
servo-controlled accelerometers to measure gravity gradients in three
spatial orthogonal directions: the desired signal is the difference in
gravitational acceleration (between a pair of accelerometers separated
by 0.5 m) at the test mass location inside the spacecraft caused by
gravity anomalies from attracting masses of the earth;

• geodetic dual-frequency (to compensate for ionospheric delays) multi-
channel GPS receiver with codeless tracking capability to (1) determine
the orbit of the GOCE satellite and (2) derive gravity information from
this orbit (the first task is performed by satellite-to-satellite tracking
in the high-low mode: this provides knowledge of the precise position
of the [low] spacecraft relative to [high] reference satellites such as the
GPS satellites; the second task is solved by orbit perturbation analysis
yielding gravity information);

• laser retroreflector to enable tracking by ground-based laser stations;
• attitude control accomplished by actuators comprising an ion thruster

assembly, star trackers, a three-axis magnetic torquer, and some other
sensors;

• length of the satellite about 5 m, cross section of 1m2, weight about
1000 kg.
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Referring to the results, the main output of this mission will be the following:

• spherical-harmonic coefficients for the gravitational potential, see, e.g.,
(2–80),

• corresponding variance-covariance matrix.

Derived products from this main output are geoidal heights, gravity anoma-
lies, and also oceanographic data.

It is important to mention that the GPS orbit analysis of GOCE will
rather yield long-wavelength information of the gravity field, while the satel-
lite gravity gradiometry will yield the short-wavelength information.

GOCE is the first “drag-free” mission, which implies that the satellite
moves in free fall around the earth. Therefore, a drag compensation and
attitude control system is required to compensate for drag forces and torques.

This and more information may be found in Rebhahn et al. (2000),
Drinkwater et al. (2003), Pail (2003), www.esa.int/livingplanet/goce.

Measurements
The basic principle of gradiometry in GOCE is the measurement of accel-
eration differences for a very short baseline. Considering two accelerometers
separated by 50 cm on one axis, Müller (2001) and Pail (2003) write the two
observation equations as

a1 =
[
M + Ω̇ + ΩΩ

]
∆x + fng ,

a2 = −[M + Ω̇ + ΩΩ
]
∆x + fng ,

(7–49)

where a1 and a2 are the measured accelerations of the two accelerometers
on the axis, and M is the Marussi tensor,

M =
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, (7–50)

which comprises the second derivatives of the gravitational potential (our
target quantity!). Furthermore, the skewsymmetric matrix

Ω =

⎡⎣ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎤⎦ (7–51)



7.6 New satellite gravity missions 287

comprises the components of the angular velocity and is used to describe the
orientation of the gradiometer. Since Ω is skewsymmetric, the tensor ΩΩ
is symmetric. Finally, ∆x in (7–49) is the vector from the intersection of
the three coordinate axes to the respective accelerometer (where the same
length is assumed), and fng comprises all nongravitational effects (air drag,
solar radiation pressure, etc.).

Now we once add (“common mode”) and once subtract (“differential
mode”) the two accelerations in (7–49) and obtain

(a1 + a2)/2 = fng ,

(a1 − a2)/2 =
[
M + Ω̇ + ΩΩ

]
∆x ,

(7–52)

where we can extract the nongravitational effects fng in the common mode.
Introducing the quantity

Γ = M + Ω̇ + ΩΩ (7–53)

and assuming a known geometry of the gradiometer, i.e., ∆x may safely
assumed to be known, then the remaining task is to extract the gravity
gradient tensor M from Γ. This can be achieved by the two relations

(Γ − ΓT )/2 = Ω̇ ,

(Γ + ΓT )/2 = M + ΩΩ ,
(7–54)

where the superscript T denotes transposition. To verify these relations, a
little matrix calculus is needed. If, generally, K is a symmetric matrix, then
we have K = KT . If K is a skewsymmetric matrix, then we have K = −KT .

Referring now to (7–53), we know that M is symmetric, Ω̇ is skewsym-
metric, and ΩΩ is symmetric. Therefore, transposing (7–53) yields

ΓT = M− Ω̇ + ΩΩ . (7–55)

Using now (7–53) and (7–55), we get immediately

Γ − ΓT = 2Ω̇ (7–56)

and, finally,
(Γ − ΓT )/2 = Ω̇ , (7–57)

which completes our proof for the first relation of (7–54). To prove the second
relation of (7–54), we add Eqs. (7–53) and (7–55):

Γ + ΓT = 2M + 2ΩΩ (7–58)
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or
(Γ + ΓT )/2 = M + ΩΩ , (7–59)

which concludes our proof.
Since we have determined Ω̇ in (7–57), we can get Ω by integration:

Ω(t) = Ω(t0) +
∫ t

t0

Ω̇ dt , (7–60)

where the initial orientation Ω(t0) is obtained from the star trackers. Squar-
ing the result for Ω(t) yields ΩΩ, which is needed in (7–59) so that we
find

M = (Γ + ΓT )/2 − ΩΩ (7–61)

as final result for the desired Marussi tensor M. Many more details may be
found in Rummel (1986).




