
6 Gravity field outside
the earth

6.1 Introduction

The gravity field outside the earth is particularly important at satellite al-
titude; this will be treated mainly in Chap. 7. The considerations of the
present chapter are applicable to gravitational forces also at satellites (see
Sect. 7.2), but their main practical purpose is to compute test values for the
gravity vector, gravity disturbances, and gravity anomalies at flight eleva-
tions for comparison with airborne gravimetry for reference and calibration
purposes. Airborne gravimetry is much faster than both terrestrial and ship-
borne gravimetry, so it is of interest also for geophysical prospecting.

For computational reasons, it is again convenient to split the gravity
potential W and the gravity vector

g = grad W (6–1)

into a normal potential U and a normal gravity vector

γ = grad U , (6–2)

and the disturbing potential T = W −U and the gravity disturbance vector

δg = grad T = g − γ . (6–3)

The normal gravity field is usually taken to be the gravity field of a suit-
able equipotential ellipsoid. This permits closed formulas and offers other
advantages of mathematical simplicity (see Sect. 2.12).

Thus, U and γ are computed first, and W and g are then obtained by

W = U + T ,

g = γ + δg .
(6–4)

For some purposes, we need the vector of gravitation, grad V (pure at-
traction without centrifugal force), rather than the vector of gravity. The
gravitational vector is computed from the gravity vector by subtracting the
vector of centrifugal force:

grad V = g − grad Φ = g −
⎡⎣ω2x

ω2y
0

⎤⎦ , (6–5)
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where the notations of Sect. 2.1 are used. The rectangular coordinate system
x, y, z will be applied in this chapter in the usual sense: it is geocentric, the
x- and y-axes lying in the equatorial plane with Greenwich longitudes 0◦ and
90◦ East, respectively, and the z-axis being the rotation axis of the earth.

The sign of the components of g, γ, δg, etc., will always be chosen so
that they are positive in the direction of increasing coordinates.

6.2 Normal gravity vector

The gravity field of an equipotential ellipsoid is best expressed in terms of
ellipsoidal-harmonic coordinates u, β, λ, introduced in Sects. 1.15 and 2.7.
They are related to rectangular coordinates x, y, z by

x =
√

u2 + E2 cos β cos λ ,

y =
√

u2 + E2 cos β sin λ ,

z = u sinβ .

(6–6)

If x, y, z are given, then u, β, λ can be computed by closed formulas. First
we find

x2 + y2 = (u2 + E2) cos2β , z2 = u2 sin2β . (6–7)

Eliminating β between these two equations, we obtain a quadratic equation
for u2, whose solution is

u2 = (x2 + y2 + z2 − E2)

[
1
2

+
1
2

√
1 +

4E2z2

(x2 + y2 + z2 − E2)2

]
. (6–8)

Then β is given by

tan β =
z
√

u2 + E2

u
√

x2 + y2
, (6–9)

and for λ we simply have

tan λ =
y

x
. (6–10)

With known ellipsoidal-harmonic coordinates, the normal potential U is
given by (2–126):

U(u, β) =
GM

E
tan−1 E

u
+ 1

2 ω2a2 q

q0

(
sin2β − 1

3

)
+ 1

2 ω2(u2 + E2) cos2β .

(6–11)
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The components of γ along the coordinate lines are, by (2–131) and (2–132),

γu =
1
w

∂U

∂u
= − 1

w

[
GM

u2 + E2
+

ω2a2E

u2 + E2

q′

q0

(
1
2 sin2β − 1

6

)− ω2u cos2β

]
,

γβ =
1

w
√

u2 + E2

∂U

∂β
= − 1

w

[
− ω2a2

√
u2 + E2

q

q0
+ ω2

√
u2 + E2

]
sin β cos β ,

γλ =
1√

u2 + E2 cos β

∂U

∂λ
= 0 .

(6–12)
To get the components of γ in the xyz-system, we compute

∂U

∂u
=

∂U

∂x

∂x

∂u
+

∂U

∂y

∂y

∂u
+

∂U

∂z

∂z

∂u
, etc. (6–13)

The partial derivatives of x, y, z with respect to u, β, λ are obtained by
differentiating equations (6–6); we find

∂U

∂u
=

u√
u2 + E2

cos β cos λ
∂U

∂x
+

u√
u2 + E2

cos β sin λ
∂U

∂y
+ sin β

∂U

∂z
,

∂U

∂β
= −√

u2 + E2 sin β cos λ
∂U

∂x
−
√

u2 + E2 sin β sinλ
∂U

∂y
+ u cos β

∂U

∂z
,

∂U

∂λ
= −√

u2 + E2 cos β sin λ
∂U

∂x
+
√

u2 + E2 cos β cos λ
∂U

∂y
.

(6–14)
Introducing the components

γx =
∂U

∂x
, · · · ; γu =

1
w

∂U

∂u
, · · · , (6–15)

we obtain

γu =
u

w
√

u2 + E2
cos β cos λ γx +

u

w
√

u2 + E2
cos β sin λ γy +

1
w

sin β γz ,

γβ = − 1
w

sin β cos λ γx − 1
w

sinβ sin λ γy +
u

w
√

u2 + E2
cos β γz ,

γλ = − sin λ γx + cos λ γy .
(6–16)

These are the formulas of an orthogonal rectangular coordinate transforma-
tion. The inverse transformation is obtained by interchanging the rows and
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columns in the matrix of this equation system. Thus, we obtain

γx =
u

w
√

u2 + E2
cos β cos λ γu − 1

w
sin β cos λ γβ − sin λ γλ ,

γy =
u

w
√

u2 + E2
cos β sin λ γu − 1

w
sin β sin λ γβ + cos λ γλ ,

γz =
1
w

sin β γu +
u

w
√

u2 + E2
cos β γβ .

(6–17)

This follows from the definition of these coefficients as direction cosines.
Equations (6–17) may also be found by solving the linear Eqs. (6–16) with
respect to γx, γy, γz in some other way.

The formulas of the present section are completely rigorous. They can
easily be programmed. Here it would not be appropriate to use the spherical
approximation because they are relatively large quantities of the normal
ellipsoidal field.

6.3 Gravity disturbance vector from gravity

anomalies

In Sect. 1.4, we have introduced spherical coordinates: r (radius vector), ϑ
(polar distance), λ (geocentric longitude) (see Fig. 1.3). Now we use these
coordinates again but replace the polar distance ϑ by its complement, the
geocentric latitude ϕ̄ (Fig. 6.3). In analogy to (1–26), these spherical coor-

x

y

z

P

#

¸ r cos'

r

y

x

z
'

Fig. 6.1. Spherical coordinates r, ϕ̄ (or ϑ, respectively), λ and
rectangular coordinates x, y, z
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dinates are related to rectangular coordinates x, y, z by the equations

x = r cos ϕ̄ cos λ ,

y = r cos ϕ̄ sin λ ,

z = r sin ϕ̄

(6–18)

or inversely by

r =
√

x2 + y2 + z2 ,

ϕ̄ = tan−1 z√
x2 + y2

,

λ = tan−1 y

x
.

(6–19)

Now it is convenient to start with the components δgr, δgϕ̄, δgλ of the
gravity disturbance vector δg, Eq. (6–3), in the spherical coordinates r, ϕ̄, λ.
In analogy to (2–377), we have

δgr =
∂T

∂r
, δgϕ̄ =

1
r

∂T

∂ϕ̄
, δgλ =

1
r cos ϕ̄

∂T

∂λ
. (6–20)

Since we are dealing with the relatively small quantities of the disturbing
field, a spherical approximation may be sufficient (Sect. 2.13), as it was in
the case of Stokes’ formula.

The disturbing potential T may be expressed in terms of the free-air
anomalies at the earth’s surface by the formula of Pizzetti, Eqs. (2–302) and
(2–303),

TP = T (r, ϕ̄, λ) =
R

4π

∫
σ

∫
∆g S(r, ψ) dσ , (6–21)

where S(r, ψ) is the extended Stokes function,

S(r, ψ) =
2R
l

+
R

r
− 3

R l

r2
− R2

r2
cos ψ

(
5 + 3 ln

r − R cos ψ + l

2r

)
, (6–22)

and

l =
√

r2 + R2 − 2R r cos ψ . (6–23)

According to (6–20), we must differentiate (6–21) with respect to r, ϕ̄, and
λ. Here we note that the integral on the right-hand side of (6–21) depends
on r, ϕ̄, λ only through the function S(r, ψ). Thus, ∆g being constant with
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respect to the differentiation, we have

δgr =
R

4π

∫
σ

∫
∆g

∂S(r, ψ)
∂r

dσ ,

δgϕ̄ =
R

4π r

∫
σ

∫
∆g

∂S(r, ψ)
∂ϕ̄

dσ ,

δgλ =
R

4π r cos ϕ̄

∫
σ

∫
∆g

∂S(r, ψ)
∂λ

dσ .

(6–24)

The point P at which δg is to be computed has the coordinates ϕ̄, λ; let
the corresponding coordinates of the variable point P ′, to which ∆g and dσ
refer, be denoted by ϕ̄′, λ′. Then dσ will be expressed by

dσ = cos ϕ̄′ dϕ̄′ dλ′ (6–25)

and ψ, the angular distance between P and P ′, is represented via

cos ψ = sin ϕ̄ sin ϕ̄′ + cos ϕ̄ cos ϕ̄′ cos(λ′ − λ) . (6–26)

We have
∂S(r, ψ)

∂ϕ̄
=

∂S(r, ψ)
∂ψ

∂ψ

∂ϕ̄
,

∂S(r, ψ)
∂λ

=
∂S(r, ψ)

∂ψ

∂ψ

∂λ
. (6–27)

Now we recall the corresponding derivations in Sect. 2.19, leading to
Vening Meinesz’ formula. As a spherical approximation which is sufficient
for T , δg, etc., we may identify the geocentric latitude ϕ̄ with the ellipsoidal
latitude ϕ. Thus, Eqs. (6–27) and (2–380) are completely analogous, and
(2–383) may be borrowed from Sect. 2.19:

∂ψ

∂ϕ̄
= − cos α ,

∂ψ

∂λ
= − cos ϕ̄ sin α . (6–28)

The azimuth α is given by formula (2–388):

tan α =
cos ϕ̄′ sin(λ′ − λ)

cos ϕ̄ sin ϕ̄′ − sin ϕ̄ cos ϕ̄′ cos(λ′ − λ)
. (6–29)

By means of (6–27) and (6–28), Eqs. (6–24) become

δgr =
R

4π

∫
σ

∫
∆g

∂S(r, ψ)
∂r

dσ ,

δgϕ̄ = − R

4π r

∫
σ

∫
∆g

∂S(r, ψ)
∂ψ

cos α dσ ,

δgλ = − R

4π r

∫
σ

∫
∆g

∂S(r, ψ)
∂ψ

sin α dσ .

(6–30)
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Now we form the derivatives of the extended Stokes function (6–22) with
respect to r and ψ. By differentiating (6–23), we get

∂l

∂r
=

r − R cos ψ

l
,

∂l

∂ψ
=

R r

l
sin ψ . (6–31)

By means of these auxiliary relations, we find

∂S

∂r
= −R (r2 − R2)

r l3
− 4R

r l
− R

r2
+

6R l

r3

+
R2

r3
cos ψ

(
13 + 6 ln

r − R cos ψ + l

2r

)
,

∂S

∂ψ
= sin ψ

[
−2R2r

l3
− 6R2

r l
+

8R2

r2

+
3R2

r2

(
r − R cos ψ − l

l sin2ψ
+ ln

r − R cos ψ + l

2r

)]
.

(6–32)

Somewhat more convenient expressions are obtained by substituting

t =
R

r
, (6–33)

D =
l

r
=
√

1 − 2t cos ψ + t2 . (6–34)

Then the extended Stokes function (6–22) and its derivatives (6–32) become

S(r, ψ) = t

[
2
D

+ 1 − 3D − t cos ψ

(
5 + 3 ln

1 − t cos ψ + D

2

)]
, (6–35)

∂S(r, ψ)
∂r

= − t2

R

[
1 − t2

D3
+

4
D

+ 1 − 6D

− t cos ψ

(
13 + 6 ln

1 − t cos ψ + D

2

)]
,

∂S(r, ψ)
∂ψ

= −t2 sin ψ

[
2

D3
+

6
D

− 8

− 3
1 − t cos ψ − D

D sin2ψ
− 3 ln

1 − t cos ψ + D

2

]
.

(6–36)

These expressions are used in (6–21) and (6–30) to compute T and δg.
The separation NP of the geopotential surface through P, W = WP , and

the corresponding spheropotential surface U = WP is according to Bruns’
theorem given by

NP =
TP

γQ
; (6–37)
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see also Sect. 2.14 and Fig. 2.15.
The deflection of the vertical, which is the deviation of the actual plumb

line from the normal plumb line at P , is represented by its north-south and
east-west components,

ξP = −1
r

∂NP

∂ϕ̄
, ηP = − 1

r cos ϕ̄

∂NP

∂λ
; (6–38)

these equations correspond to (2–377). Since γ varies very little with latitude
and is independent of longitude, we have

∂NP

∂ϕ̄
=

∂

∂ϕ̄

(
TP

γQ

)
=

1
γQ

∂TP

∂ϕ̄
− TP

γ2
Q

∂γQ

∂ϕ̄

.=
1

γQ

∂TP

∂ϕ̄
(6–39)

and
∂NP

∂λ
=

1
γQ

∂TP

∂λ
. (6–40)

Substituting the results of (6–39) and (6–40) into (6–38) and comparing then
with (6–20) shows that

ξP = − 1
γQ

δgϕ̄ , ηP = − 1
γQ

δgλ . (6–41)

We see that NP , ξP , ηP are given by Eqs. (6–21) and (6–30), apart from
the factor ±1/γQ. Hence, these equations are the extensions of Stokes’ and
Vening Meinesz’ formulas for points outside the earth and reduce to these
formulas for r = R, t = 1.

Writing Eqs. (6–41) in the form

δgϕ̄ = −γ ξ , δgλ = −γ η , (6–42)

we see that the horizontal components of δg are directly related to the de-
flection of the vertical, which is the difference in direction of the vectors
g and γ. The radial component δgr, however, represents the difference in
magnitude of these vectors, since as a spherical approximation

−δgr = δg = gP − γP , (6–43)

which is the scalar gravity disturbance (see Sect. 2.12).
Note that here the gravity disturbance δg is the basic quantity to be

computed, rather than the gravity anomaly ∆g, because both g and γ refer
to the computation point P .
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Fig. 6.2. Plane approximation

6.4 Gravity disturbances by upward continuation

We apply Poisson’s integral formula (1–123) to the harmonic function T :

TP =
R (r2 − R2)

4π

∫
σ

∫
T

l3
dσ . (6–44)

In the neighborhood of P (Fig. 6.2), the sphere practically coincides with
its tangent plane at F . Since the value of the integrand is very small at
greater distances from P , we may extend the integration over the tangent
plane instead of over the sphere. Then, according to Fig. 6.2,

l =
√

s2 + H2 . (6–45)

We introduce a rectangular coordinate system x, y, z, the x-axis pointing
north and the y-axis pointing east in the tangent plane. Then we may also
write

l =
√

x2 + y2 + H2 , (6–46)
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the surface element becomes

R2 dσ
.= dx dy , (6–47)

and we further have

r = R + H ,

r2 − R2 = (r + R)(r − R) .= 2R H .
(6–48)

Thus, (6–44) becomes the plane formula

TP =
H

2π

∫ ∞

−∞

∫ ∞

−∞

T

l3
dx dy =

H

2π

∫ ∞

−∞

∫ ∞

−∞

T

(x2 + y2 + H2)3/2
dx dy .

(6–49)
This important formula is called the “upward continuation integral”. It per-
forms the computation of the value of the harmonic function T at a point
above the xy-plane from the values of T given on the plane, that is, the up-
ward continuation of a harmonic function. Both T and its partial derivatives,
∂T/∂x, ∂T/∂y, ∂T/∂z, are harmonic, because if

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 , (6–50)

then we also have

∂2

∂x2

(
∂T

∂x

)
+

∂2

∂y2

(
∂T

∂x

)
+

∂2

∂z2

(
∂T

∂x

)
=

∂

∂x

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
= 0 .

(6–51)
Thus, the upward continuation integral (6–49), which applies for any har-
monic function, may also be applied to ∂T/∂x, ∂T/∂y, and ∂T/∂z.

As T is the disturbing potential, its partial derivatives are the compo-
nents of the gravity disturbance:

∂T

∂x
= δgϕ̄ ,

∂T

∂y
= δgλ ,

∂T

∂z
= δgr . (6–52)

We are not writing δgx, δgy , δgz because we wish to reserve this notation
for the components in the geocentric global coordinate system, which should
not be confused with the local system introduced in this section. As usual,
r, ϕ̄, λ denote geocentric spherical coordinates (see Sect. 6.3) corresponding
to the spherical approximation.

Thus, we have in addition to (6–49)

δgr =
H

2π

∞∫
−∞

∫
δgr

l3
dx dy , (6–53)
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δgϕ̄ =
H

2π

∞∫
−∞

∫
δgϕ̄

l3
dx dy ,

δgλ =
H

2π

∞∫
−∞

∫
δgλ

l3
dx dy .

(6–54)

On the left-hand side of these equations, the components of δg refer to the
elevated point P ; in the integral on the right-hand side, they are taken at
sea level and are to be computed from the expressions

δgr = −δg = −
(

∆g +
2γ0

R
N

)
, (6–55)

δgϕ̄ = −γ0 ξ ,

δgλ = −γ0 η ,
(6–56)

which follow from (2–264) together with (6–42) and (6–43) applied to sea
level. The symbols R and γ0 denote, as usual, a mean earth radius and a
mean value of gravity on the earth’s surface.

Hence, we may compute T and δg by means of the upward continuation
integral if the geoidal undulations N and the deflection components ξ and η
at the earth’s surface are given.

The plane approximation is sufficient except for very high altitudes (e.g.,
> 250 km). Otherwise, we must use the spherical formula (6–44) for T . For
the radial component δgr, formula (6–44) may also be applied with T re-
placed by r δg, since r δg and r ∆g are harmonic as we know from Sect. 2.14.
The corresponding spherical formulas for the upward continuation of the hor-
izontal components δgϕ̄ and δgλ are not known. The reason why the same
formula, the upward continuation integral, applies for T and the components
of δg in the planar case only is that the derivatives of T are harmonic only
when referred to a Cartesian coordinate system.

6.5 Additional considerations

Reference surface
The preceding formulas for the disturbing potential T and the gravity dis-
turbance vector δg are rigorously valid if the reference surface is a sphere.
In practice, the gravity anomalies are referred to an ellipsoid. The above
formulas for T and δg are also valid for an ellipsoidal reference surface if a
relative error of the order of the flattening f

.= 0.3% is neglected, that is, as
a spherical approximation. The reader is reminded that this does not mean
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that the ellipsoid is replaced by a sphere in any geometrical sense; rather
it means that in the originally elliptical formulas the first and higher pow-
ers of the flattening are neglected, whereby they formally become spherical
formulas.

Since the gravity anomalies, etc., are referred to an ellipsoid, we must be
very careful in computing t, which enters into the formulas of Sect. 6.3. If
an exact sphere of radius R were used as a reference surface, then we should
have r = R + H, where H is the elevation of the computation point above
the sphere. Actually, we use a reference ellipsoid; then we again have

r = R + H , t =
R

R + H
, (6–57)

but H is now the elevation above the ellipsoid (or, to a sufficient accuracy,
above sea level), the constant R = 6371 km being the earth’s mean radius.
Thus, r as computed by (6–57) differs from the geocentric radius vector
r =

√
x2 + y2 + z2. We have already mentioned that we may replace the

geocentric latitude ϕ̄ by the ellipsoidal latitude ϕ, as far as T and δg are
concerned – for instance, by putting ϕ̄ = ϕ in (6–26) or (6–29).

Data
For all computations dealing with the external gravity field of the earth,
free-air gravity anomalies must be used for ∆g, since all other types of grav-
ity anomalies correspond to some removal or transport of masses whereby
the external field is changed. If, in addition to ∆g, deflections of the vertical
ξ, η (in the upward continuation) are used, then these quantities should be
computed from free-air anomalies. If, as usually done, the normal free-air
gradient ∂y/∂h

.= 0.3086 mgal/m is used for the free-air reduction, then the
free-air anomalies refer, strictly speaking, to the earth’s physical surface (to
ground level) rather than to the geoid (to sea level). The N values com-
puted from them by Stokes’ formula are height anomalies ζ, referring to the
ground, rather than heights of the actual geoid. However, this distinction is
insignificant and can be ignored in most cases, so that we may consider ∆g
as sea-level anomalies (see Sect. 8.6).

If we cannot neglect this distinction, aiming at highest accuracy in high
and steep mountains for low altitudes H, then we may proceed as follows. We
reduce the free-air anomaly ∆g from the ground point A to the corresponding
point A0 at sea level (Fig. 6.3):

∆gharmonic = ∆g − ∂∆g

∂h
h , (6–58)

and use the sea level anomaly ∆gharmonic so obtained. The vertical gradient
∂∆g/∂h may be computed by applying formula (2–394) using the ground-
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P
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F

W W= 0

sea level

A0P0

level of F

W W= 1

H1

h1

h

H

Fig. 6.3. Reduction to sea level and to the level of F

level anomalies ∆g. Or we may reduce to any other level surface W = W1,
for instance, to that passing through F (Fig. 6.3), using h1 instead of h in
(6–58). Then we should also use H1, rather than H, in (6–57). For large-
scale purposes, reduction to sea level appears to be preferable. Probably such
a reduction will attain a considerable amount only in exceptional cases so
that it can usually be neglected and H in the formulas of Sects. 6.3 and 6.4
may be taken as the height of P above sea level or above ground. See also
Sect. 8.6.

Computation of the gravity vector
After computing the components δgr, δgϕ̄, δgλ by numerical integration, we
may transform them into Cartesian coordinates δgx, δgy , δgz with respect
to the global coordinate system.

We may go via ellipsoidal-harmonic coordinates according to Sect. 6.2.
For the small quantities δgu, δgβ , δgλ, we may apply the spherical approxi-
mation, neglecting a relative error of the order of the flattening. If the flat-
tening is neglected, then the ellipsoidal-harmonic coordinates u, β, λ reduce
to the spherical coordinates r, ϕ̄, λ so that as a spherical approximation

δgu = δgr , δgβ = δgϕ̄ , (6–59)

δgλ being rigorously the same in both systems. Thus, δgr, δgϕ̄, δgλ may also
be considered as the components of δg in ellipsoidal-harmonic coordinates.

Then we have

gu = γu + δgr , gβ = γβ + δgϕ̄ , gλ = δgλ ; (6–60)

and gx, gy, gz are obtained by (6–17), the components of g replacing the cor-
responding components of γ. It is evident that the spherical approximation
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can only be used for δg so that γu and γβ must be computed by the rigorous
formulas (6–12).

The gravity potential W may be computed by the first equation of (6–
4); the gravitational potential V is obtained by subtracting the centrifugal
potential ω2(x2 + y2)/2; and the vector of gravitation is given by (6–5).

6.6 Gravity anomalies and disturbances compared

Suppose gravity g is to be computed at some point P outside the earth
(Fig. 6.4); we consider here only the magnitude of the gravity vector. This
is conveniently done by adding a correction to the normal gravity γ. From
Sect. 2.12 and later, we recall the two different kinds of such a correction,
g − γ:

1. the gravity disturbance δg, in which g and γ both refer to the same
point P ;

2. the gravity anomaly ∆g, in which g refers to P , but γ refers to the
corresponding point Q, which is situated on the plumb line of P and
whose normal potential U is the same as the actual potential W of P ,
that is, UQ = WP .

These two quantities are connected by

∆g = δg − 2γ0

R
NP ; (6–61)

this simple relation is sufficient for moderate altitudes.
The gravity disturbance is used when the spatial position of P is given,

that is, its geocentric rectangular coordinates x, y, z are measured. With
GPS measurements of the position of the aircraft, the use of gravity distur-
bances is natural.

The use of gravity anomalies ∆g had been traditional. This is the case, for
instance, in airborne gravity measurements, where the height of the aircraft
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Fig. 6.4. Gravity anomalies and disturbancies
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above ground is measured. This case seems rather to belong to the past. If
the case should arise, gravity anomalies ∆g can be upward continued just as
δg as described in Sect. 6.4.

Again, free-air anomalies referred to ground level or, more accurately,
to some level surface, are to be used. If the ground is elevated above sea
level but reasonably flat, it is somewhat better to regard H as elevation
above ground rather than above sea level, because the ground may then be
considered locally part of a level surface.

The inverse problem, the downward continuation of gravity anomalies or
rather gravity disturbances, occurs in the reduction of gravity measured on
board an aircraft. There is, of course, a relation to harmonic downward con-
tinuation in the solution of Molodensky’s problem as described in Sect. 8.6.

Upward and downward continuation are also tools of geophysical explo-
ration, but here the objective is quite different. Several methods have been
developed in this connection, some of which are also applicable for geodetic
purposes; see, e.g., Dobrin and Savit (1988) or Telfort et al. (1990).

Upward and downward continuation are related as direct and inverse
problems in the theory of inverse problems, see Anger et al. (1993) and also
www.inas.tugraz.at under forschung/InverseProblems/AngerMoritz.html,
where additional references can be found.




