
5 The geometry of the earth

5.1 Overview

This chapter consists of three parts.

Part I: Global reference systems after GPS
A fundamental task is to define a global reference system based on a reference
ellipsoid which is a good global representation of the earth and which should
ideally be characterized by the following properties: Its center coincides with
the geocenter (the earth’s center of mass), its z-axis represents a suitably
defined mean rotation axis of the earth, and the xz-plane is parallel to a
mean plane close to the Greenwich meridian. The reference ellipsoid itself is
defined to be an ellipsoid of revolution that globally approximates the geoid
best in some global sense.

Actually, such a geometric or physical definition cannot be absolutely ac-
curately and unambiguously realized; the final definition will always contain
an arbitrary conventional element.

To make things even more complicated, the earth is not a completely
rigid body. It can (again approximately!) be regarded as an elastic body
with a liquid core. It undergoes small more or less periodic changes. So it
must be referred to a mean ellipsoid that does not change with time.

All this will be taken for granted in the present introductory treatment.
We shall assume a well-defined geocentric reference ellipsoid with rigid di-
mensions, a fixed origin, and a time-invariant orientation – close to reality
but, in principle, conventionally adopted. For temporal changes in the earth’s
body and rotation, the reader may be referred to Moritz and Mueller (1987).

Before the advent of satellite geodesy, a geocentric reference system could
not be realized. Thus, we had to work with a local geodetic system displaced
with respect to the geocenter by an unknown amount on the order of up to
a few hundred meters. Therefore, we must take into account a translation
(parallel shift) of the local reference ellipsoid with respect to a geocentric
system. This implies three translation parameters.

Note that “local” here is used in the sense of “regional”, i.e., for a country,
territory, or region, in contrast to “global”.

Usually, the orientation of a local reference system is accurately known
since the direction of the xyz-axes was accessible by astronomical measure-
ments quite accurately at least for the last two centuries. Thus, the orienta-
tion of a local geodetic datum is known to the order of 0.1′′ (arc seconds).
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Today, we can readily determine the deviation of a local system or local
datum from a global reference system. We have the deviation of

• size and shape of the reference ellipsoid (a, f),
• translation (x0, y0, z0), and
• orientation (three very small Euler angles ε1, ε2, ε3).

Since GPS is very well established (cf. Hofmann-Wellenhof et al. 2001),
we assume a general knowledge for granted and recapitulate in this book
only some basic facts.

Part II: Three-dimensional geodesy: a transition
This part considers how the concepts of geodesy in the modern sense of Molo-
densky, Marussi, and Hotine would look shortly before the advent of satel-
lites, but already including electronically measured spatial distances (trilat-
eration). We work with local Cartesian coordinates rotated in a known way
by the astronomically measurable quantities Φ,Λ, A (astronomical latitude,
longitude, azimuth), considered as Eulerian angles of rotation of the local
with respect to the global axes. However, we have no means to determine
the geocenter. So the situation is somewhat more complicated but still geo-
metrically well defined and transparent. “Local” here means “strictly local”,
varying from point to point together with their plumb lines defined by (Φ,Λ).

The main problem with this approach is the impossibility of measuring
precise zenith angles because of atmospheric refraction. We may say that
the vertical dimension is much worse defined than the horizontal dimension.

Finally, we shall consider how terrestrial and GPS data can be combined.

Part III: Local geodetic datum
The way out of the dilemma of the worse vertical dimension is a complete
separation of horizontal and vertical and determining the latter by the dif-
ferential method of astrogeodetic geoid determination. This was a “2+1-
dimensional” rather than a three-dimensional approach, logically more com-
plicated but practically more accurate. In fact, the former (and present)
astrogeodetic methods can be understood much better by deriving them
from the global situation. Thus, today with GPS we are in a much better
position practically as well as theoretically: the classical local datums can be
understood best by their relation with the global geometry. “Local geodetic
system” or “local geodetic datum” is again meant in the sense of “regional”,
e.g., the North-American Datum or the European Datum.

GPS permits to separate the geometry from the gravity field, which con-
tinues to be a challenge for physical geodesy to be solved by a combination
of terrestrial and satellite data.
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Part I: Global reference systems after GPS

5.2 Introduction

Geodesy, as the theory of size and shape of the earth, is not a purely geo-
metrical science since the earth’s gravity field, a physical entity, is involved
in many geodetic measurements, especially terrestrial ones.

The gravimetric methods are usually considered to constitute physical
geodesy in the narrower sense. The measurements of triangulation, leveling,
and geodetic astronomy, all make essential use of the plumb line, which,
being the direction of the gravity vector, is no less physically defined by
nature than its magnitude, that is, the gravity g. All determinations of the
geoid by various methods and its use as well as the use of deflections of the
vertical belong to physical geodesy, quite as well as the gravimetric methods.

Even in the age of GPS, we have many previous geodetic data which
continue to be useful and have to be understood in order to be optimally
combined with the new satellite data. In precise operations of engineering
geodesy such as tunnel surveying, the plumb line and deflections of the ver-
tical must be taken into account.

For an optimal understanding and use of local (or rather regional) geo-
detic datums, we must know their relation to a global geodetic system as
used in GPS. Therefore, it is appropriate to start with global geometry in a
rather elementary way.

A few introductory ideas may help in comprehending this subject. To
fix the position of a point in space, we need three coordinates. We can use,
and have used, a rectangular Cartesian coordinate system. This is the basic
geometric coordinate system. It may be easily converted computationally to
ellipsoidal coordinates ϕ, λ, h referred to any given reference ellipsoid.

For many special purposes, however, it is preferable to take what we have
called the natural coordinates: Φ (astronomical latitude), Λ (astronomical
longitude), and H (orthometric height), which directly refer to the gravity
field of the earth (Sect. 2.4). The height H may be obtained by geometric
leveling, combined with gravity measurements, and Φ and Λ are determined
by astronomical measurements.

As long as the geoid can be identified with an ellipsoid, the use of these
coordinates for computations is very simple. Since this identification is suf-
ficient only for results of rather low accuracy, the deviations of the geoid
from an ellipsoid must be taken into account. As we have seen, the geoid has
rather disagreeable mathematical properties. It is a complicated surface with
discontinuities of curvature. Thus, it is not suitable as a surface on which to
perform mathematical computations directly, as on the ellipsoid.
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To repeat, the ellipsoidal coordinates ϕ, λ, h are defined such as to refer
to the ellipsoid exactly as the natural coordinates refer to the geoid, hence
their names.

Since the deviations of the geoid from the ellipsoid are small and com-
putable, it is convenient to add small reductions to the original coordinates
Φ,Λ,H, so as to get values which refer to an ellipsoid. In this way we shall
find in Sect. 5.12:

ϕ = Φ − ξ ,

λ = Λ − η sec ϕ ,

h = H + N ;

(5–1)

ϕ and λ are the ellipsoidal coordinates on the ellipsoid, sometimes also called
geodetic latitude and geodetic longitude to distinguish them from the astro-
nomical latitude Φ and the astronomical longitude Λ. Astronomical and el-
lipsoidal coordinates differ by the deflection of the vertical (components ξ
and η). The quantity h is the geometric height above the ellipsoid; it differs
from the orthometric height H above the geoid by the geoidal undulation N .

Geodetic measurements (angles, distances) are treated similarly. The
principle of triangulation is well known: historically, distances were obtained
indirectly by measuring the angles in a suitable network of triangles; only
one baseline was necessary in principle to furnish the scale of the network.
Triangulation was indispensable in former times, because angles could be
measured much more easily than long distances.

Nowadays, however, long distances can be measured directly just as eas-
ily as angles by means of electronic instruments, so that triangulation, using
angular measurements, is often replaced or supplemented by trilateration,
using distance measurements. The computation of triangulations and trilat-
erations on the ellipsoid is easy. It is, therefore, convenient to reduce the
measured angles, baselines, and long distances to the ellipsoid, in much the
same way as the astronomical coordinates are treated. Then the ellipsoidal
coordinates ϕ, λ obtained (1) by reducing the astronomical coordinates and
(2) by computing triangulations or trilaterations on the ellipsoid can be
compared; they should be identical for the same point.

Today, of course, GPS is the best method for determining ϕ, λ, and h
directly.

5.3 The Global Positioning System

The following sections on the Global Positioning System (GPS) are extracted
from Hofmann-Wellenhof et al. (2003: Sect. 9.3) which in return is based on
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Hofmann-Wellenhof et al. (2001: Chap. 2). For details supplementing the
compact description here, the reader is referred to these books.

5.3.1 Basic concept

GPS is the responsibility of the Joint Program Office (JPO), a component
of the Space and Missile Center at El Segundo, California. In 1973, the JPO
was directed by the U.S. Department of Defense (DOD) to establish, develop,
test, acquire, and deploy a spaceborne positioning system. The present nav-
igation system with timing and ranging is the result of this initial directive.
GPS was conceived as a ranging system from known positions of satellites
in space to unknown positions on land, at sea, in air, and in space. The
original objectives of GPS were the instantaneous determination of position
and velocity on a continuous basis, and the precise coordination of time (i.e.,
time transfer).

Based on code or carrier phase measurements, GPS uses pseudoranges
derived from the broadcast satellite signal.

Using the code measurements, the pseudorange is derived from measuring
the travel time of the coded signal and multiplying it by its velocity. Since
the clocks of the receiver and the satellite are never perfectly synchronized, a
clock error must be taken into account. Consequently, each equation of this
type comprises four unknowns: the three point coordinates contained in the
true range and the clock error. Thus, four satellites are necessary to solve
for the four unknowns. Indeed, the GPS concept assumes that – without
obstruction – four or more satellites are in view at any location on or near
the earth 24 hours a day.

Using carrier phase measurements, ambiguities must be taken into ac-
count as additional unknowns. For more details see Hofmann-Wellenhof et
al. (2001: Sect. 6.1.2).

5.3.2 System architecture

Space segment

Constellation
The GPS satellites have nearly circular orbits with an altitude of about
20200 km above the earth, i.e., they are mean earth orbit (MEO) satellites,
yielding a period of nominally 12 sidereal hours. The nominal constellation
consists of 24 operational satellites deployed in six evenly spaced planes (A
to F) with an inclination of 55◦ against the equator and with four satel-
lites per plane. Furthermore, active spare satellites for replenishment may
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be operational. See http://tycho.usno.navy.mil/gpscurr.html for the current
status.

With the nominal constellation, the space segment provides global cover-
age with four to eight simultaneously observable satellites above 15◦ elevation
angle at any time of day. If the elevation mask is reduced to 10◦, occasionally
up to 10 satellites will be visible; and if the elevation mask is further reduced
to 5◦, occasionally 12 satellites will be visible.

Satellites categories
Essentially, the GPS satellites provide a platform for radio transceivers,
atomic clocks, computers, and various ancillary equipment. The electronic
equipment of each satellite allows the user to measure a pseudorange to the
satellite, and each satellite broadcasts a message which allows the user to
determine the spatial position of the satellite for arbitrary instants. The aux-
iliary equipment of each satellite, among others, consists of solar panels for
power supply and a propulsion system for orbit and stability control.

There are several classes or types of GPS satellites. These are the Block I,
Block II, Block IIA, Block IIR, Block IIR-M, and the future Block IIF and
Block III satellites. An up-to-date description is difficult because new nota-
tions are introduced in a rather arbitrary way; an example is the recently
introduced notation Block IIR-M.

Eleven Block I satellites were launched in the period between 1978 to
1985. Today, none of them is in operation anymore.

The essential difference between Block I and Block II satellites is related
to U.S. national security. Block I satellite signals were fully available to
civilian users. Starting with Block II, satellite signals may be restricted for
civilian use. The Block II satellites are equipped with mutual communication
capability. Some of them carry retroreflectors and can be tracked by laser
ranging.

The Block IIR satellites (“R” denotes replenishment or replacement)
have a design life of 10 years. They are equipped with improved facilities for
communication and intersatellite tracking. Block IIR-M satellites incorpo-
rate two new military signals and a second civil signal. The first Block IIR-M
was launched on September 25, 2005.

Currently (April 2006), the first launch of a Block IIF satellite (“F”
denotes follow on) is scheduled for 2008 (instead of the previously projected
dates mid of 2006 and 2007). These satellites will broadcast a third civil
signal on L5 (see Sect 5.3.5).

Presently, the DOD undertakes studies for the next generation of GPS
satellites, called Block III satellites. Preliminary dates (likely to change) are
2011/12 for first launches and on-orbit tests (Civil GPS Service Interface
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Committee 2002). These satellites will be characterized by an assured and
improved level of integrity without the need of augmentation.

Satellite signal
The key to the accuracy of the system is the fact that all signal compo-
nents are precisely controlled by atomic clocks. These highly accurate fre-
quency standards of GPS satellites produce the fundamental frequency of
10.23 MHz. Coherently derived from this frequency are (presently) two sig-
nals in the L-band, the L1 and the L2 carrier waves generated by multiplying
the fundamental frequency by 154 and 120, respectively, yielding

L1 = 1575.42 MHz ,

L2 = 1227.60 MHz .

These dual frequencies are essential for eliminating the major source of error,
i.e., the ionospheric refraction.

The pseudoranges that are derived from measured travel times of the
signal from each satellite to the receiver use two pseudorandom noise (PRN)
codes that are modulated onto the two carriers.

The C/A-code (coarse/acquisition-code) is available for civilian use. Each
C/A-code is a unique sequence of 1023 bits, called chips, which is repeated
each millisecond. The duration of each C/A-code chip is about 1µs. Equiv-
alently, the chip length – denoted also as wavelength or chip width (Misra
and Enge 2001: Sect. 2.3.1) – is about 300 m. The C/A-code is presently
modulated upon L1 only and is purposely omitted from L2. This omission
allows the JPO to control the information broadcast by the satellite and,
thus, denies full system accuracy to nonmilitary users.

The P-code (precision-code) has been reserved for U.S. military and other
authorized users. This is achieved by using the W-code to encrypt the P-
code to the Y-code (anti-spoofing). The P-code has an effective chip length
of about 30 m. The P-code is modulated on both carriers L1 and L2.

In addition to the PRN codes, a data message is modulated onto the
carriers consisting of status information, satellite clock bias, and satellite
ephemerides. The orbit data are given as Kepler-like elements and are de-
noted as broadcast ephemerides. The full set of elements is given in, e.g.,
Montenbruck and Gill (2001: Sect. A.2.2). It is worth noting that the present
signal structure will be improved in the near future (see Sect. 5.3.5).

Control segment
The operational control system (OCS) consists of a master control station,
monitor stations, and ground control stations. The main tasks of the OCS
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are tracking of the satellites for the orbit and clock determination and predic-
tion, time synchronization of the satellites, and upload of the data message
to the satellites.

Master control station
The master control station is located at the Consolidated Space Opera-
tions Center (CSOC) at Shriver Air Force Base, Colorado Springs, Colorado.
CSOC collects the tracking data from the monitor stations and calculates
the satellite orbit and clock parameters by a Kalman estimator. These re-
sults are then passed to one of the three ground control stations for eventual
upload to the satellites. The satellite control and system operation is also
the responsibility of the master control station.

Monitor stations
There are five monitor stations located at Hawaii, Colorado Springs, As-
cension Island in the South Atlantic Ocean, Diego Garcia in the Indian
Ocean, and Kwajalein in the North Pacific Ocean. Each of these stations
is equipped with a precise atomic time standard and receivers which con-
tinuously measure pseudoranges to all satellites in view. Pseudoranges are
measured every 1.5 seconds and, using ionospheric and meteorological data,
they are smoothed to produce 15-minute interval data which are transmitted
to the master control station.

Ground control stations
These stations collocated with the monitor stations at Ascension, Diego Gar-
cia, and Kwajalein are the communication links to the satellites and mainly
consist of the ground antennas. The satellite ephemerides and clock informa-
tion, calculated at the master control station and received via communication
links, are uploaded to each GPS satellite via S-band radio links.

User segment
The diversity of the military and civilian users is matched by the type of
receivers available today.

On the basis of the type of observables (i.e., code pseudoranges or phase
pseudoranges) and of the availability of codes (i.e., C/A-code, P-code, or
Y-code), GPS receivers can be classified. For the majority of navigation ap-
plications, C/A-code pseudorange receivers will suffice. With this type of
receiver, only code pseudoranges using the C/A-code on L1 are measured.
Typical devices output the three-dimensional position either in latitude, lon-
gitude, and height or in some map projection systems, e.g., universal trans-
verse Mercator (UTM) coordinates and height.
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5.3.3 Satellite signal and observables

Components of the signal
The official description of the GPS signal is given in the GPS Interface
Control Document ICD-GPS-200, available at www.navcen.uscg.gov. Details
may also be found in Spilker (1996).

The (current) components of the signal are summarized in Table 5.1.
Note that the nominal fundamental frequency f0 is intentionally reduced by
about 0.005 Hz to compensate for relativistic effects.

The navigation message essentially contains information about the satel-
lite health status, the satellite clock, the orbit, and various correction data.

The parameters in the block of orbit information are the reference epoch,
six parameters to describe a Kepler ellipse at the reference epoch, three
secular correction terms and six periodic correction terms.

Observables
In concept, the GPS observables are ranges which are deduced from mea-
sured time or phase differences based on a comparison between received
signals and receiver-generated signals. As mentioned earlier, the ranges are
biased by satellite and receiver clock errors and, consequently, they are de-
noted as pseudoranges. Essentially, pseudoranges differ from distances by an
unknown additive constant.

Apart from the satellite and the receiver clock bias, further error sources
can be classified into three groups, i.e., satellite-related errors (e.g., orbital
errors), signal propagation medium-related errors (e.g., ionospheric and tro-
pospheric refraction), and receiver-related errors (e.g., antenna phase center
variation, multipath), but are omitted in the subsequent simplified models.
Extended models are given in Hofmann-Wellenhof et al. (2003: Sect. 10.2.2).

Table 5.1. Components of the satellite signal

Component Frequency or code Wavelength
chipping rate [MHz]

Fundamental frequency f0 = 10.23
Carrier L1 154 f0 = 1575.42 19.0 cm
Carrier L2 120 f0 = 1227.60 24.4 cm
P-code f0 = 10.23
C/A-code f0/10 = 1.023
Navigation message f0/204 600 = 50 · 10−6
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Code pseudoranges
The measured time difference ∆t is affected by the satellite clock error δS

and the receiver clock error δ. The error δS of the satellite clock can be
modeled by a polynomial with the coefficients being transmitted in the nav-
igation message. Assuming the δS correction is applied, the time interval ∆t
multiplied by the speed of light c yields the code pseudorange R and, hence,

R = c∆t . (5–2)

Assuming a common time reference for satellite and receiver, e.g., GPS time,
the term ∆t may be decomposed into the run time ∆t(GPS) and the receiver
clock errors δ leading to

R = c∆t(GPS) + c δ = � + c δ , (5–3)

where � is the geometric range between the satellite and the receiver. The
receiver module responsible for code pseudorange measurements is denoted
as delay lock loop (DLL). Details on the DLL functionality are given in Misra
and Enge (2001: Sect. 9.5).

Phase pseudoranges
Assuming again that the satellite clock error correction is applied, the phase
pseudorange Φ is modeled by

λΦ = � + c δ + λN , (5–4)

where the carrier wavelength λ has been introduced. The range � represents
the distance between the satellite at emission epoch t and the receiver at
reception epoch t+∆t. Phase measurements are ambiguous, since the initial
integer number N of cycles between satellite and receiver is unknown. As
long as the tracking of a satellite is not interrupted, the ambiguity remains
constant within the tracking loop of the receiver. The responsible receiver
hardware is denoted as phase lock loop (PLL). Compared to (5–3), the phase
pseudorange differs from the code pseudorange only by the phase ambiguity
term λN . Dividing the above equation by λ scales the phase to cycles.

As mentioned previously, the majority of navigation applications does not
need carrier phase measurements. Only for increased accuracy requirements
(e.g., relative positioning; see below), phase measurements become relevant.

Doppler data
Some of the first solution models proposed for GPS were to use the Doppler
observable. Considering Eq. (5–4), the equation for the observed Doppler
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shift scaled to range rate is given by

D = λ Φ̇ = �̇ + c δ̇ , (5–5)

where the derivatives with respect to time are indicated by a dot. The raw
Doppler shift is less accurate than integrated Doppler.

The Doppler shift is measured in the carrier tracking loop of a GPS re-
ceiver (Misra and Enge 2001: Sect. 9.6). Assuming a known satellite velocity,
the Doppler shift can be used to estimate the velocity of the user.

5.3.4 System capabilities and accuracies

Two operational capabilities are distinguished: firstly, the initial operational
capability (IOC) and, secondly, the full operational capability (FOC).

IOC was attained in July 1993, when 24 (Block I/II/IIA) GPS satellites
were operating and were available for navigation. Officially, IOC was declared
by the DOD on December 8, 1993.

FOC was achieved when 24 Block II/IIA satellites were operational in
their assigned orbits and the constellation was tested for operational military
performance. Even though 24 Block II and Block IIA satellites were available
since March 1994, FOC was not declared before July 17, 1995 which indicates
an extensive testing phase.

The selection of the GPS observation technique depends upon the par-
ticular requirements of the project; especially the desired accuracy plays a
dominant role.

Point positioning
When using a single receiver, usually point positioning with code pseudo-
ranges is performed. The concept of point positioning is simple (Fig. 5.2).
Without clock errors, trilateration in space (i.e., using three ranges) solves
the task to determine the point coordinates. Using pseudoranges, four ob-
servations are necessary to account for the three coordinate components and
the receiver clock error. For point positioning, GPS provides two levels of
service: the standard positioning service (SPS) with access for civilian users
and the precise positioning service (PPS) with access for authorized users.

SPS performance standards are based on signal-in-space performance.
Contributions of ionosphere, troposphere, receiver, multipath, topography, or
interference are not included. Furthermore, SPS is provided on the L1 signal
only; the L2 signal is not part of the SPS (Department of Defense 2001).
The global average positioning domain accuracy amounts to 13 m horizontal
error (95% probability level) and 22 m vertical error (95% probability level).
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The PPS has access to both codes and provides accuracies down to the
meter level.

Differential GPS
Selective availability (SA), the deliberate degradation of the point position-
ing accuracy by “dithering” (i.e., distorting on purpose) the satellite clock
(called δ-process) and manipulating the ephemerides (called ε-process), has
led to the development of differential GPS (DGPS). Only the basic idea is
explained here.

DGPS is based on the use of two (or more) receivers, where one (station-
ary) reference or base receiver is located at a known point and the position
of the (mostly moving) remote receiver is to be determined. Using code pseu-
doranges, at least four common satellites must be tracked simultaneously at
both sites. The known position of the reference receiver is used to calculate
corrections to the observed pseudoranges. These corrections are then trans-
mitted via telemetry (i.e., controlled radio link) to the roving receiver and
allow the computation of the rover position with far more accuracy than for
the single-point positioning mode.

Using DGPS based on C/A-code pseudoranges, real-time accuracies at
the 1–5 m level can be routinely achieved. Phase-smoothed code ranges yield
the submeter level (Lachapelle et al. 1992). Even higher accuracies can be
reached by the use of carrier phases (precise DGPS). For ranges up to some
20 km, accuracies at the subdecimeter level can be obtained in real time (De-
Loach and Remondi 1991). To achieve this accuracy, the ambiguities must
be resolved “on the fly” and, therefore, (generally) dual-frequency receivers
are required. Furthermore, five satellites per epoch are required.

After the deactivation of SA in May 2000, DGPS must be seen from a
different viewpoint. The increased point positioning accuracy achieved with
a single receiver may suffice for some kinds of applications.

Relative positioning

At present, highest accuracies are achieved in the relative-positioning mode
with observed carrier phases. Relative positioning is associated with base-
lines, i.e., the three-dimensional vector between a known reference station
and the location to be determined. Processing a baseline requires that the
phases are simultaneously observed at both baseline endpoints (Fig. 5.1).
Originally, relative positioning was only possible by postprocessing data.
Today, (near) real-time data transfer over short baselines is routinely possi-
ble, which enables real-time computation of baseline vectors and has led to
the real-time kinematic (RTK) technique.
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reference station

unknown station

satellite

baseline vector

Fig. 5.1. Concept of relative positioning

Static relative positioning

The reference station and the unknown station are static, i.e., no motion
occurs between the two points of the baseline. When highest accuracy is an
issue, then this is the preferred method. Fully depending on the application
and on the length of the baseline, the observation time may amount from
several tens of minutes to many hours. Referring to navigation, where usually
motion is involved, static relative positioning is of minor importance. The
reader is referred to Hofmann-Wellenhof et al. (2001: Sect. 7.1.2) for details.

Kinematic relative positioning

The kinematic method is very productive because the greatest number of
points can be determined in the least time.

The drawback is that after initialization a continuous lock on at least
four satellites must be maintained.

The semikinematic or stop-and-go technique is characterized by alterna-
tively stopping and moving one receiver to determine the positions of fixed
points along the trajectory. The most important feature of this method is the
increase in accuracy when several measurement epochs at the stop locations
are accumulated and averaged. This technique is often referred to simply as
kinematic method. Relative positional accuracies at the centimeter level can
be achieved for baselines up to some 20 km.

The kinematic technique requires the resolution of the phase ambiguities
by initialization which can be performed by static or kinematic techniques.
Currently available commercial software (for dual-frequency receivers) only
requires 1–2 minutes of observation for baselines up to 20 km to resolve the
ambiguities kinematically (“on the fly”).
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5.3.5 GPS modernization concept

In January 1999, the USA announced the GPS modernization concept, a
$400 million initiative. The key feature is the implementation of a new signal
structure in future satellites.

Future GPS satellites
The Block IIR satellites increase their presence in the GPS constellation. A
new effort will bring modernized functionality to IIR satellites. These mod-
ernized satellites, denoted as IIR-M (replenishment-modernization), will pro-
vide new services to military and civilian users. New signals and increased
L-band power will significantly improve the navigation performance (Mar-
quis 2001).

The Block IIF and the Block III satellites are the next generations.
These next generations of satellites will have many improvements over

the present satellites. It is planned to include the capability to transmit data
between satellites to make the system more independent. The autonomous
navigation (auto-nav) capability via intersatellite cross-link ranging will al-
low the satellites to essentially position themselves without extensive ground
tracking. In summary, the future satellites will have the following mainly mil-
itary advantages:

• Navigation accuracy will be maintained for six months without ground
support and control.

• Uplink jamming concerns will be minimized.
• One upload per spacecraft per month instead of one or even more per

day will be performed.
• Need for overseas stations to support navigation uploads will be re-

duced.
• Improved navigation accuracy will be achieved.

New signal structure
Referring to codes, presently civil users have unlimited access only to the
C/A-code on the carrier L1. The modernization will provide new signals:
implementing military codes (M-codes) on L1 and on L2 and a civilian code
on L2 (abbreviated as L2c). The M-code will provide the authorized users
with more signal security, improved acquisition options, and more jamming
resistance. The new civilian L2c signal will provide nonauthorized users dual-
frequency operation to perform ionospheric error correction. In addition to
these codes, a new L5 frequency will be provided for civilian users to en-
hance aviation applications. The notation L5 is chosen because, actually,



5.4 From GPS to coordinates 187

the satellites transmit additional signals at frequencies referred to as L3 and
L4. These signals are classified and for military purposes only (Misra and
Enge 2001: Sect. 2.3).

According to the modernization initiative released in 1999, the Inter-
agency GPS Executive Board concept will be realized with the following
specifications. Future GPS signals will be transmitted by three carriers where
L1 and L2 remain unchanged, and the new carrier L5 is specified as

L5 = 115f0 = 1176.45 MHz ,

where f0 = 10.23 MHz denotes the basic GPS frequency. The carrier L5,
placed in a protected aeronautical radio navigation service band, was re-
cently allocated by the World Radio Conference organized regularly by the
International Telecommunication Union (Vorhies 2000).

Note that both new civil GPS signals will have two codes. L5 will not
share with military signals and use two equal-length codes in phase quadra-
ture, each clocked at 10.23 MHz. L2 is shared between civil and military
signals. The new L2c signal provides two codes by time multiplexing. The
two codes are of different length (Fontana et al. 2001). The existing military
Y-code will be replaced by new (split) M-codes.

The linear carrier phase combination of L2 with L5 results in a signal
with a wavelength of about 5.9 m. Long wavelengths facilitate ambiguity
resolution. By contrast, the linear combination of L1 with L5 will be used
as ionosphere-free combination because large frequency differences are ad-
vantageous for calculating ionospheric corrections. The common processing
of phase data from all three carriers will be performed in the three-carrier
ambiguity resolution approach (Vollath et al. 1999).

A perspective for the implementation is given in the 2001 Federal Radio-
navigation Plan: IOC (18 satellites in orbit with the new L2c signal and
M-code capability) is planned for 2008 and FOC (24 satellites in orbit) is
planned for 2010. At least one satellite is planned to be operational with the
new L5 capability no later than 2005, with IOC planned for 2012 and FOC
planned for 2014.

5.4 From GPS to coordinates

So far, we have got an introductory GPS overview. Now we are interested in
applying elementary GPS approaches to demonstrate how coordinates are
obtained. Two examples, as simple as possible, are selected: point positioning
and relative positioning.
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5.4.1 Point positioning with code pseudoranges

The situation is shown in Fig. 5.2. The coordinates of A are to be determined
by using GPS. As we know from Sect. 5.3.4, four pseudoranges to different
satellites are necessary to determine the three coordinate components of A
and the receiver clock error. Generalizing (5–3), we obtain

Rj
A(t) = �j

A(t) + c δA(t) . (5–6)

This is the code pseudorange at an epoch t, where Rj
A(t) is the measured

code pseudorange between the observing site A (as indicated in Fig. 5.2) and
the satellite j, and �j

A(t) is the geometric distance between the satellite and
the observing point, and c is the speed of light. The last item is the receiver
clock error δA(t). Note that we assume the simplest possible model, thus,
we do not consider ionospheric and tropospheric influences, other biases and
errors.

Examining Eq. (5–6), the desired point coordinates to be determined are
implicitly comprised in the distance �j

A(t), which can explicitly be written
as

�j
A(t) =

√
(Xj(t) − XA)2 + (Y j(t) − YA)2 + (Zj(t) − ZA)2 , (5–7)

where the WGS 84 (World Geodetic System 1984, see Sect. 2.11) coordinates
Xj(t), Y j(t), Zj(t) are the components of the geocentric position vector of
the satellite at epoch t, and XA, YA, ZA are the three unknown WGS 84 co-
ordinates of the observing site, which might be denoted (XA, YA, ZA)WGS 84

or, which means the same, (XA, YA, ZA)GPS.
How many unknowns are involved? Note that the satellite coordinates

Xj(t), Y j(t), Zj(t) may always be assumed known (more precisely, are cal-
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Fig. 5.2. Point positioning
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culable) from the information broadcast by the satellite. Therefore, there re-
main the three unknown station coordinates XA, YA, ZA and the unknown
receiver clock error δA(t). In other terms, at least four satellites are required
to set up four equations of type (5–6). Denoting the satellites by j, k, l,m,
the corresponding system of equations

Rj
A(t) = �j

A(t) + c δA(t) ,

Rk
A(t) = �k

A(t) + c δA(t) ,

Rl
A(t) = �l

A(t) + c δA(t) ,

Rm
A (t) = �m

A (t) + c δA(t)

(5–8)

is obtained or, by substituting (5–7) accordingly,

Rj
A(t) =

√
(Xj(t) − XA)2 + (Y j(t) − YA)2 + (Zj(t) − ZA)2 + c δA(t) ,

Rk
A(t) =

√
(Xk(t) − XA)2 + (Y k(t) − YA)2 + (Zk(t) − ZA)2 + c δA(t) ,

Rl
A(t) =

√
(X l(t) − XA)2 + (Y l(t) − YA)2 + (Z l(t) − ZA)2 + c δA(t) ,

Rm
A (t) =

√
(Xm(t) − XA)2 + (Y m(t) − YA)2 + (Zm(t) − ZA)2 + c δA(t)

(5–9)
results. This system of equations comprises only the previously mentioned
four unknowns XA, YA, ZA and the unknown receiver clock error δA(t) and
may, thus, be solved. We do not consider linearization, possible redundant
measurements, etc. We just intended to demonstrate the principle. The clock
error is a by-product, but the desired result obtained from (5–9) are the GPS
coordinates XA, YA, ZA; this means, the resulting coordinates are obatined
in the WGS 84.

As described in Sect. 5.3.4, the accuracy of the point positioning method
based on code ranges may be expected to amount some 10 m (nominally). A
much higher accuracy is achieved by relative positioning treated in the next
section.

5.4.2 Relative positioning with phase pseudoranges

The objective of relative positioning is to determine the coordinates of an
unknown point with respect to a known point. In other words, relative po-
sitioning aims at the determination of the vector between the two points
which is often called the baseline vector or simply baseline (Fig. 5.3). Let
now A denote the known reference point, B the unknown point, and bAB

the baseline vector. Introducing the corresponding position vectors XA, XB,
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the relation
XB = XA + bAB (5–10)

may be formulated, and the components of the baseline vector bAB are

bAB =

⎡⎣ XB − XA

YB − YA

ZB − ZA

⎤⎦ =

⎡⎣ ∆XAB

∆YAB

∆ZAB

⎤⎦ . (5–11)

The coordinates of the reference point must be given in the WGS 84 and are
usually approximated by a code pseudorange solution. Relative positioning
can be performed with code pseudoranges (cf. Eq. (5–3)) or with phase
pseudoranges (cf. Eq. (5–4)). Subsequently, only phase pseudoranges are
explicitly considered. We repeat (5–4),

λΦ = � + c δ + λN , (5–12)

where we have already explained the wavelength λ, the phase Φ, the distance
� (which is the same as for the code pseudorange model), the speed of light
c, the receiver clock error δ, and the ambiguity N in Sect. 5.3.3.

Introducing f , the frequency of the corresponding satellite signal, and
taking into account the relation f = c/λ, we may divide (5–12) by λ obtain-
ing

Φ =
1
λ

� + f δ + N . (5–13)

This may be generalized to

Φj
i (t) =

1
λ

�j
i (t) + f δi(t) + N j

i , (5–14)
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where Φj
i (t) is the measured carrier phase expressed in cycles referred to

station i and satellite j at epoch t. The time-independent phase ambiguity
N j

i is an integer number and, therefore, often called integer ambiguity or
integer unknown or simply ambiguity.

Relative positioning requires simultaneous observations at both the ref-
erence and the unknown point. This means that the observation time tags
for the two points must be the same. Assuming such observations (5–14) at
the two points A and B to satellite j and another satellite k simultaneously
at epoch t, the following measurement equations may be set up:

Φj
A(t) =

1
λ

�j
A(t) + f δA(t) + N j

A ,

Φk
A(t) =

1
λ

�k
A(t) + f δA(t) + Nk

A ,

Φj
B(t) =

1
λ

�j
B(t) + f δB(t) + N j

B ,

Φk
B(t) =

1
λ

�k
B(t) + f δB(t) + Nk

B .

(5–15)

Introducing the short-hand notations

Φjk
AB(t) = Φk

B(t)−Φj
B(t)−Φk

A(t)+ Φj
A(t) ,

�jk
AB(t) = �k

B(t) − �j
B(t) − �k

A(t) + �j
A(t) ,

N jk
AB = Nk

B −N j
B −Nk

A + N j
A ,

(5–16)

we form the double-difference model which is defined as

Φjk
AB(t) =

1
λ

�jk
AB(t) + N jk

AB . (5–17)

Note that the receiver clock biases have canceled; this is the reason why
double-differences are preferably used. This cancellation resulted from the
assumptions of simultaneous observations and equal frequencies of the satel-
lite signals (which is justified for GPS).

Assuming A as reference station with known coordinates, the remain-
ing unknowns of the double-difference model are the desired coordinates
XB , YB , ZB – which are comprised in �j

B(t) and �k
B(t) – and the ambiguities.

To solve for these unknowns, we need more satellites (to set up additional
double-differences) and also more epochs.

We do not consider linearization, possible redundant measurements, etc.
We just intended to demonstrate the principle. The desired result obtained
from (5–17) is the baseline vector bAB with the components ∆XAB , ∆YAB,
∆ZAB or, finally, the GPS coordinates XB , YB, ZB derived from (5–10) via
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the known station A to achieve the high accuracy. Note that the resulting
coordinates are obtained in the WGS 84.

This concludes the short introduction how the user of GPS gets WGS 84
coordinates, i.e., geocentric rectangular coordinates X,Y,Z or, computed
from them, ellipsoidal coordinates ϕ, λ, h; see Sect. 5.6.1.

5.5 Projection onto the ellipsoid

Let us establish the position of a point P by means of the natural coor-
dinates Φ,Λ,H. Then we may project it onto the geoid along the (slightly
curved) plumb line. The orthometric height is the distance between P and its
projection P0 onto the geoid, measured along the plumb line (Fig. 5.4). Al-
though this mode of projection is entirely natural, the geoid is not suited for
performing computations on it directly; the point P0 is, therefore, projected
onto the reference ellipsoid by means of the straight ellipsoidal normal, thus
getting a point Q0 on the ellipsoid. In this way, the earth’s surface point P
and the corresponding point Q0 on the ellipsoid are connected by a double
projection, that is, by two projections which are performed one after the
other and which are quite analogous, the orthometric height H = PP0 cor-
responding to the geoidal undulation N = P0Q0. This double projection is
called Pizzetti’s projection.

It is much simpler to project the point P from the physical surface of the
earth directly onto the ellipsoid through the straight ellipsoidal normal, thus
obtaining a point Q. The distance PQ = h is the ellipsoidal height, i.e., the
height above the ellipsoid. The earth’s surface point P is then determined
by the ellipsoidal height h and the ellipsoidal coordinates ϕ, λ of Q on the
ellipsoid so that the ellipsoidal coordinates ϕ, λ, h take the place of the natural
coordinates Φ,Λ,H. This is called Helmert’s projection.

P

Q

geoid

ellipsoid

N

earth's

Q0

P0

"

h H
±

surface

Fig. 5.4. The projection of Helmert and of Pizzetti
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The practical difference between Pizzetti’s and Helmert’s projection is
small. The ellipsoidal height h is equal to H + N within a fraction of a
millimeter. The ellipsoidal coordinates ϕ and λ, with respect to the two
projections, are related by the equations

ϕHelmert = ϕPizzetti +
H

R
ξ ,

λHelmert = λPizzetti +
H

R
η sec ϕ ,

(5–18)

which can be read from Fig. 5.4, since QQ0
.= H ε; R = 6371 km is the

mean radius of the earth. Even if ε = 1 arc minute and H = 1000 m, the
distance QQ0 is only about 30 cm and the ellipsoidal coordinates differ by
less than 0.01′′, which is below the accuracy of astronomical observations.
For most purposes, we may, therefore, neglect the difference between the two
projections.

Pizzetti’s projection is better adapted to the geoid, because there is an
exact correspondence between a geoidal point P0 and an ellipsoidal point
Q0. Helmert’s projection has overwhelming practical advantages, notably
the straightforward conversion of the ellipsoidal coordinates ϕ, λ, h into rect-
angular coordinates x, y, z; it is also simpler in other respects. The decisive
advantage of Helmert’s projection is its direct relation to GPS. It is, there-
fore, exclusively used now in practice.

5.6 Coordinate transformations

5.6.1 Ellipsoidal and rectangular coordinates

We now derive the relation between the ellipsoidal coordinates ϕ, λ, h and
the corresponding rectangular coordinates x, y, z.

The equation of the reference ellipsoid in rectangular coordinates is

x2 + y2

a2
+

z2

b2
= 1 . (5–19)

The representation of this ellipsoid in terms of ellipsoidal coordinates is given
by

x = N cos ϕ cos λ ,

y = N cos ϕ sin λ ,

z =
b2

a2
N sin ϕ ,

(5–20)
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where N is the normal radius of curvature (2–149):

N =
a2√

a2 cos2ϕ + b2 sin2ϕ
. (5–21)

These equations are known from ellipsoidal geometry; it may also be verified
by direct substitution that a point with xyz-coordinates (5–20) satisfies the
equation of the ellipsoid (5–19) and so lies on the ellipsoid. The components
of the unit normal vector n are

n =
[
cos ϕ cos λ , cos ϕ sinλ , sin ϕ

]
, (5–22)

because ϕ is the angle between the ellipsoidal normal and the xy-plane,
which is the equatorial plane (Fig. 5.5). Now let the coordinates of a point
P outside the ellipsoid form the vector

X = [X , Y , Z ] ; (5–23)

similarly we have, for the coordinates of the point Q on the ellipsoid,

x = [x , y , z ] . (5–24)

From Fig. 5.5, we read
X = x + hn , (5–25)
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that is
X = x + h cos ϕ cos λ ,

Y = y + h cos ϕ sinλ ,

Z = z + h sin ϕ .

(5–26)

By (5–20), this becomes

X = (N + h) cos ϕ cos λ ,

Y = (N + h) cos ϕ sin λ ,

Z =
(

b2

a2
N + h

)
sin ϕ .

(5–27)

These equations are the basic transformation formulas between the ellip-
soidal coordinates ϕ, λ, h and the rectangular coordinates X,Y,Z of a point
outside the ellipsoid. The origin of the rectangular coordinate system is the
center of the ellipsoid, and the z-axis is its axis of rotation; the x-axis has
the Greenwich longitude 0◦ and the y-axis has the longitude 90◦ east of
Greenwich (i.e., λ = +90◦).

A possible source of confusion is that the normal radius of curvature of
the ellipsoid and the geoidal undulation are both denoted by the symbol N ;
in (5–27), N is, of course, the normal radius of curvature. Generally, let the
context decide between quantities of such different magnitude (6000 km and
60 m).

Equations (5–27) permit the computation of rectangular coordinates
X,Y,Z from the ellipsoidal coordinates ϕ, λ, h.

The inverse procedure, the computation of ϕ, λ, h from given X,Y,Z, is
frequently performed iteratively, although a solution in closed form exists.
A possible iterative procedure is as follows.

Denoting
√

X2 + Y 2 by p, we get from the first two equations of (5–27)
or from Fig. 5.5

p =
√

X2 + Y 2 = (N + h) cos ϕ , (5–28)

so that
h =

p

cos ϕ
− N . (5–29)

The third equation of (5–27) may be transformed into

Z =
(

N − a2 − b2

a2
N + h

)
sin ϕ = (N + h − e2N) sin ϕ , (5–30)
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where e2 = (a2 − b2)/a2. Dividing this equation by the above expression for
p, we find

Z

p
=
(

1 − e2 N

N + h

)
tan ϕ , (5–31)

so that

tan ϕ =
Z

p

(
1 − e2 N

N + h

)−1

. (5–32)

Given X,Y,Z, and hence p, Eqs. (5–29) and (5–32) may be solved iteratively
for h and ϕ. As a first approximation, we set h = 0 in (5–32), obtaining

tan ϕ(1) =
Z

p
(1 − e2)−1 . (5–33)

Using ϕ(1), we compute an approximate value N(1) by means of (5–21). Then
(5–29) gives h(1). Now, as a second approximation, we set h = h(1) in (5–32),
obtaining

tan ϕ(2) =
Z

p

(
1 − e2 N(1)

N(1) + h(1)

)−1

. (5–34)

Using ϕ(2), improved values for N and h are found, etc. This procedure is
repeated until ϕ and h remain practically constant.

The result for λ is immediately obtained from the first two equations of
(5–27):

λ = arctan
Y

X
. (5–35)

Many other computation methods have been devised. One example for
the transformation of X, Y, Z into ϕ, λ, h without iteration but with an
inherent approximation is

ϕ = arctan
Z + e′2 b sin3θ

p − e2 a cos3θ
,

λ = arctan
Y

X
,

h =
p

cos ϕ
− N ,

(5–36)

where
θ = arctan

Z a

p b
(5–37)

is an auxiliary quantity and

e2 = (a2 − b2)/a2 , e′2 = (a2 − b2)/b2 (5–38)



5.6 Coordinate transformations 197

are first and second numerical eccentricity. As introduced in (5–28), p =√
X2 + Y 2. Actually, there is no reason why these formulas are less popular

than the iterative procedure since there is no significant difference between
the two methods. Computation methods with neither iteration nor approx-
imation are, e.g., given by Sünkel (1977) and Zhu (1993).

5.6.2 Ellipsoidal, ellipsoidal-harmonic, and spherical
coordinates

Even if we have several times pointed out the different definitions, it is
very important to stress once more the need not to confuse the following
coordinate triples (see Fig. 5.6):

• ellipsoidal coordinates: ϕ, λ, h;

• ellipsoidal-harmonic coordinates: β, λ, u,
alternatively: ϑellipsoidal-harmonic, λ, u;

• spherical coordinates: ϕ̄, λ, r, alternatively: ϑspherical, λ, r.

The longitude λ is the same in all triples. The ellipsoidal coordinates latitude
ϕ and longitude λ are sometimes also denoted geodetic latitude and geodetic
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longitude. The ellipsoidal-harmonic coordinate β is the reduced latitude, and
the spherical coordinate ϕ̄ is the geocentric latitude.

The latitude ϕ refers to the reference ellipsoid. The reduced latitude β
refers to the coordinate ellipsoid u = constant (confocal ellipsoid through P
in Fig. 5.6).

So far so clear. Real attention is necessary when using the coordinate ϑ,
which has been introduced as complement of the spherical coordinate ϕ̄ and
as the complement of the ellipsoidal harmonic β as well.

Therefore, a correct but clumsy notation would be

ϑellipsoidal-harmonic = 90◦ − β ,

ϑspherical = 90◦ − ϕ̄ .
(5–39)

Note, however, that we did not use these indications to distinguish be-
tween the spherical and the ellipsoidal-harmonic ϑ! Thus, the reader is chal-
lenged to attentively distinguish between these quantities. Wherever possi-
ble, we tried to avoid conflicts.

Some examples: we used the spherical coordinates r, ϑ, λ in Sects. 1.4,
1.11, 1.12, 1.14, 2.5, 2.6, 2.13, 2.18, etc. We used the ellipsoidal-harmonic
coordinates u, ϑ, λ in Sects. 1.15, 1.16; we used the ellipsoidal-harmonic co-
ordinates u, β, λ in Sects. 2.7, 2.8, and we used the spherical coordinates
r, ϑ, λ as well as the ellipsoidal-harmonic coordinates u, β, λ in Sect. 2.9.

The following equations express the rectangular coordinates in these
three systems:

X = (N + h) cos ϕ cos λ =
√

u2 + E2 cos β cos λ = r cos ϕ̄ cos λ ,

Y = (N + h) cos ϕ sin λ =
√

u2 + E2 cos β sin λ = r cos ϕ̄ sin λ ,

Z =
(

b2

a2
N + h

)
sinϕ = u sin β = r sin ϕ̄ .

(5–40)

These relations, which follow from combining Eqs. (1–26), (1–151), and (5–
27), can be used if we wish to compute u and β from h and ϕ or from r and
ϕ̄, etc.

5.7 Geodetic datum transformations

5.7.1 Introduction

First we define a geodetic datum or a geodetic reference system. It is de-
fined by (1) the dimensions of the reference ellipsoid (semimajor axis a and



5.7 Geodetic datum transformations 199

flattening f) and (2) its position with respect to the earth or the geoid.
This relative position is most simply defined by the coordinates x0, y0, z0

of the center of the reference ellipsoid with respect to the geocenter. Since
the geocenter was not accessible to classical geodetic measurements before
the satellite era, a fundamental or initial point P1 on the earth surface was
chosen, such as Meades Ranch for North America and Potsdam for Central
Europe. It turns out that a convenient but conventional choice of the el-
lipsoidal coordinates ϕ1, λ1, h1 of the fundamental point P1 is equivalent to
x0, y0, z0 of the geocenter.

Thus, we have 5 defining parameters:

• 2 parameters a (semimajor axis) and f (flattening) as form parameters,
and

• 3 parameters x0, y0, z0 or ϕ1, λ1, h1 as position parameters.

Later on we shall also admit a scale factor and small rotations around the
three coordinate axes.

A (geodetic) datum transformation defines the relationship between a
global (geocentric) and a local (in general nongeocentric) three-dimensional
Cartesian coordinate system; therefore, a datum transformation transforms
one coordinate system of a certain type to another coordinate system of the
same type. This is one of the primary tasks when combining GPS data with
terrestrial data, i.e., the transformation of geocentric WGS 84 coordinates
to local terrestrial coordinates. The terrestrial system is usually based on a
locally best-fitting ellipsoid, e.g., the Clarke ellipsoid or the GRS-80 ellipsoid
in the U.S. and the Bessel ellipsoid in many parts of Europe. The local
ellipsoid is linked to a nongeocentric Cartesian coordinate system, where the
origin coincides with the center of the ellipsoid.

5.7.2 Three-dimensional transformation in general form

Consider two arbitrary sets of three-dimensional Cartesian coordinates form-
ing the vectors X and XT (Fig. 5.7). The 7-parameter transformation, also
denoted as Helmert transformation or similarity transformation in space,
between the two sets can be formulated by the relation

XT = x0 + µRX , (5–41)

where x0 is the translation (or shift) vector, µ is a scale factor, and R is a
rotation matrix.

The components of the shift vector

x0 =

⎡⎣ x0

y0

z0

⎤⎦ (5–42)
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Fig. 5.7. Three-dimensional transformation

account for the coordinates of the origin of the X system in the XT system.
Note that a single scale factor is considered. More generally (but with GPS
not necessary), three scale factors, one for each axis, could be used. The
rotation matrix is an orthogonal matrix which is composed of three successive
rotations

R = R3{ε3}R2{ε2}R1{ε1} . (5–43)

Explicitly,

R =

⎡⎢⎢⎢⎢⎢⎢⎣

cos ε2 cos ε3 cos ε1 sin ε3 sin ε1 sin ε3

+ sin ε1 sin ε2 cos ε3 − cos ε1 sin ε2 cos ε3

− cos ε2 sin ε3 cos ε1 cos ε3 sin ε1 cos ε3

− sin ε1 sin ε2 sin ε3 + cos ε1 sin ε2 sin ε3

sin ε2 − sin ε1 cos ε2 cos ε1 cos ε2

⎤⎥⎥⎥⎥⎥⎥⎦
(5–44)

is obtained.
In the case of known transformation parameters x0, µ, R, a point from

the X system can be transformed into the XT system by (5–41).
If the transformation parameters are unknown, they can be determined

with the aid of common (identical) points, also denoted as control points.
This means that the coordinates of the same point are given in both systems.
Since each common point (given by XT and X) yields three equations, two
common points and one additional common component (e.g., height) are
sufficient to solve for the seven unknown parameters. In practice, redun-
dant common point information is used and the unknown parameters are
calculated by least-squares adjustment.

Since the parameters are mixed nonlinearly in Eq. (5–41), a linearization
must be performed, where approximate values x0approx, µapprox, Rapprox are
required.
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5.7.3 Three-dimensional transformation between WGS 84
and a local system

In the case of a datum transformation between WGS 84 and a local sys-
tem, some simplifications will arise. Referring to the necessary approximate
values, the approximation µapprox = 1 is appropriate and the relation

µ = µapprox + δµ = 1 + δµ (5–45)

is obtained. Furthermore, the rotation angles εi in (5–44) are small and may
be treated as differential quantities. Introducing these quantities into (5–44),
setting cos εi = 1 and sin εi = εi, and considering only first-order terms gives

R =

⎡⎣ 1 ε3 −ε2

−ε3 1 ε1

ε2 −ε1 1

⎤⎦ = I + δR , (5–46)

where I is the unit matrix and δR is a (skewsymmetric) differential rotation
matrix. Thus, the approximation Rapprox = I is appropriate. Finally, the
shift vector is split up in the form

x0 = x0approx + δx0 , (5–47)

where the approximate shift vector

x0approx = XT − X (5–48)

follows by substituting the approximations for the scale factor and the rota-
tion matrix into Eq. (5–41).

Introducing Eqs. (5–45), (5–46), (5–47) into (5–41) and skipping de-
tails which can be found, for example, in Hofmann-Wellenhof et al. (1994:
Sect. 3.3) gives the linearized model for a single point i. This model can be
written in the form

XTi − Xi − x0approx = Ai δp , (5–49)

where the left side of the equation is known and may formally be considered
as an observation. The design matrix Ai and the vector δp, containing the
unknown parameters, are given by

Ai =

⎡⎣ 1 0 0 Xi 0 −Zi Yi

0 1 0 Yi Zi 0 −Xi

0 0 1 Zi −Yi Xi 0

⎤⎦ ,

δp = [ δx0 δy0 δz0 δµ ε1 ε2 ε3 ] .

(5–50)
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Recall that Eq. (5–49) is now a system of linear equations for point i. For n
common points, the design matrix A is

A =

⎡⎢⎢⎢⎣
A1

A2
...

An

⎤⎥⎥⎥⎦ . (5–51)

In detail, for three common points the design matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 X1 0 −Z1 Y1

0 1 0 Y1 Z1 0 −X1

0 0 1 Z1 −Y1 X1 0

1 0 0 X2 0 −Z2 Y2

0 1 0 Y2 Z2 0 −X2

0 0 1 Z2 −Y2 X2 0

1 0 0 X3 0 −Z3 Y3

0 1 0 Y3 Z3 0 −X3

0 0 1 Z3 −Y3 X3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5–52)

which leads to a slightly redundant system. Least-squares adjustment yields
the parameter vector δp and the adjusted values by (5–45), (5–46), (5–47).
Once the seven parameters of the similarity transformation are determined,
formula (5–41) can be used to transform other than the common points.

For a specific example, consider the task of transforming GPS coordi-
nates of a network, i.e., global geocentric WGS 84 coordinates, to (three-
dimensional) coordinates of a (nongeocentric) local system indicated by the
subscript LS. The GPS coordinates are denoted by (X,Y,Z)GPS and the lo-
cal system coordinates are the plane coordinates (y, x)LS and the ellipsoidal
height hLS. To obtain the transformation parameters, it is assumed that the
coordinates of the common points in both systems are available. The solution
of the task is obtained by the following algorithm:

1. Transform the plane coordinates (y, x)LS of the common points into
the ellipsoidal surface coordinates (ϕ, λ)LS by using the appropriate
mapping formulas.

2. Transform the ellipsoidal coordinates (ϕ, λ, h)LS of the common points
into the Cartesian coordinates (X,Y,Z)LS by (5–27).

3. Determine the seven parameters of a Helmert transformation by using
the coordinates (X,Y,Z)GPS and (X,Y,Z)LS of the common points.
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4. For network points other than the common points, transform the co-
ordinates (X,Y,Z)GPS into (X,Y,Z)LS via Eq. (5–41) using the trans-
formation parameters determined in the previous step.

5. Transform the Cartesian coordinates (X,Y,Z)LS computed in the pre-
vious step into ellipsoidal coordinates (ϕ, λ, h)LS, e.g., by the iterative
procedure given in (5–28) through (5–34).

6. Map the ellipsoidal surface coordinates (ϕ, λ)LS computed in the pre-
vious step into plane coordinates (y, x)LS by the appropriate mapping
formulas.

The advantage of the three-dimensional approach is that no a priori infor-
mation is required for the seven parameters of the similarity transformation.
The disadvantage of the method is that for the common points ellipsoidal
heights (and, thus, geoidal heights) are required. However, as reported by
Schmitt et al. (1991), incorrect heights of the common points often have
a negligible effect on the plane coordinates (y, x). For example, incorrect
heights may cause a tilt of a 20 km × 20 km network by an amount of 5 m
in space; however, the effect on the plane coordinates is only approximately
1mm.

For large areas, the height problem can be solved by adopting approx-
imate ellipsoidal heights for the common points and performing a three-
dimensional affine transformation instead of the similarity transformation.

5.7.4 Differential formulas for other datum transformations

Now we consider simplified cases. Suppose that the geocenter does not co-
incide with the center of the reference ellipsoid, but that the geocentric axes
and the ellipsoidal axes are parallel. Such a parallel shift is also called a
translation (Fig. 5.8). Assume a rectangular coordinate system XY Z whose
origin is the geocenter, the axes being directed as usual. Let the coordinates
of the center of the ellipsoid with respect to this system be x0, y0, z0, as
stated previously. Then Eqs. (5–27) must obviously be modified so that they
become

X = x0 + (N + h) cos ϕ cos λ ,

Y = y0 + (N + h) cos ϕ sin λ ,

Z = z0 +
(

b2

a2
N + h

)
sinϕ .

(5–53)

These equations form the starting point for various important differential
formulas of coordinate transformation.
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Fig. 5.8. Translation problem

First we ask how the rectangular coordinates X,Y,Z change if we vary
the ellipsoidal coordinates ϕ, λ, h by small amounts δϕ, δλ, δh and if we also
alter the geodetic datum, namely, the reference ellipsoid a, f and its position
x0, y0, z0, by δa, δf and δx0, δy0, δz0. Note that δx0, δy0, δz0 correspond to a
small translation (parallel displacement) of the ellipsoid, its axis remaining
parallel to the axis of the earth.

The solution of this problem is found by differentiating (5–53):

δX = δx0 +
∂X

∂a
δa +

∂X

∂f
δf +

∂X

∂ϕ
δϕ +

∂X

∂λ
δλ +

∂X

∂h
δh ,

δY = δy0 +
∂Y

∂a
δa +

∂Y

∂f
δf +

∂Y

∂ϕ
δϕ +

∂Y

∂λ
δλ +

∂Y

∂h
δh ,

δZ = δz0 +
∂Z

∂a
δa +

∂Z

∂f
δf +

∂Z

∂ϕ
δϕ +

∂Z

∂λ
δλ +

∂Z

∂h
δh ,

(5–54)

since, according to Taylor’s theorem, small changes can be treated as differ-
entials.

In these differential formulas we shall be satisfied with an approximation.
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Since the flattening f is small, we may expand (2–149) as

N =
a2

b
(1 + e′2 cos2ϕ)−1/2 =

a2

b

(
1 − 1

2 e′2 cos2ϕ · · ·)
= a (1 + f · · ·)(1 − f cos2ϕ · · ·) = a(1 + f − f cos2ϕ · · ·)

(5–55)

yielding
N

.= a (1 + f sin2ϕ) (5–56)

and

b2

a2
N = (1 − 2f · · ·) a (1 + f sin2ϕ · · ·) .= a (1 − 2f + f sin2ϕ) (5–57)

and
b = a (1 − f) , e′2 = 2f · · · . (5–58)

Thus, Eqs. (5–53) are approximated by

X = x0 + (a + af sin2ϕ + h) cos ϕ cos λ ,

Y = y0 + (a + af sin2ϕ + h) cos ϕ sin λ ,

Z = z0 + (a − 2af + af sin2ϕ + h) sin ϕ .

(5–59)

Now we can form the partial derivatives in (5–54), for instance,

∂X

∂a
= (1 + f sin2ϕ) cos ϕ cos λ

.= cos ϕ cos λ , (5–60)

since we may neglect the flattening in these coefficients. This amounts to
using for the coefficients, and only for them, a spherical approximation anal-
ogous to that of Sect. 2.13. Similarly, all coefficients are easily obtained as
partial derivatives, and Eqs. (5–54) become

δX = δx0 − a sinϕ cos λ δϕ − a cos ϕ sinλ δλ

+ cos ϕ cos λ (δh + δa + a sin2ϕ δf) ,

δY = δy0 − a sin ϕ sin λ δϕ + a cos ϕ cos λ δλ

+ cos ϕ sin λ (δh + δa + a sin2ϕ δf) ,

δZ = δz0 + a cos ϕ δϕ + sin ϕ (δh + δa + a sin2ϕ δf)

− 2a sin ϕ δf .

(5–61)

These formulas give the changes in the rectangular coordinates X,Y,Z in
terms of the variation in the position (x0, y0, z0) and the dimensions (a, f)
of the ellipsoid and in the ellipsoidal coordinates ϕ, λ, h referred to it.
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Transformation of the ellipsoidal coordinates
Several important formulas for the transformation of coordinates may be
derived from Eqs. (5–61). First, let the position of P in space remain un-
changed; that is, let

δX = δY = δZ = 0 . (5–62)

Determine the change of the ellipsoidal coordinates ϕ, λ, h if the dimensions
of the reference ellipsoid and its position are varied. Geometrically, this is
illustrated by Fig. 5.9. The problem is, thus, to solve equations (5–61) for
δϕ, δλ, δh, the left-hand sides being set equal to zero. To get δϕ, multiply the
first equation of (5–61) by − sin ϕ cos λ, the second equation of (5–61) by
− sinϕ sin λ, and the third equation of (5–61) by cos ϕ and add all equations
obtained in this way. For δλ, the factors are − sin λ, cos λ, and 0; for δh, they
are cos ϕ cos λ, cos ϕ sin λ, and sin ϕ. The result is

a δϕ = sin ϕ cos λ δx0 + sin ϕ sinλ δy0 − cos ϕ δz0 + 2a sinϕ cos ϕ δf ,

a cos ϕ δλ = sin λ δx0 − cos λ δy0 ,

δh = − cos ϕ cos λ δx0 − cos ϕ sin λ δy0 − sin ϕ δz0 − δa + a sin2ϕ δf .
(5–63)

These formulas express the variations δϕ, δλ, δh at an arbitrary point in
terms of the variations δx0, δy0, δz0 at a given point and the changes δa and
δf of the parameters of the reference ellipsoid. Thus, they relate two different
systems of ellipsoidal coordinates, provided these systems are so close to each
other that their differences may be considered as linear. Mathematically,
Eqs. (5–63) are infinitesimal coordinate transformations (essentially but not
exclusively orthogonal transformations); to the geodesist, they give the effect

Z

X

±x0

a

E1

E2

a+±a

' ±'+

'

h

h+±h

P

Y

Fig. 5.9. A small change of the reference ellipsoid together with a small
parallel shift
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of a change in the geodetic datum.
Remark. The differential formulas could also be replaced by a successive

application of the original finite formulas. Try!

Part II: Three-dimensional geodesy: a transition

5.8 The three-dimensional geodesy of Bruns and

Hotine

The idea of a computation of a triangulation network in space dates back to
Bruns (1878). On the basis of his ideas, Hotine (1969), and earlier in 1959, de-
veloped extensively the concept of a classical (pre-satellite) geodetic network
in a rigorous three-dimensional way. For a comparison, see Levallois (1963).

Consider the polyhedron formed by triangulation benchmarks on the sur-
face of the earth and the straight lines of sight connecting them (Fig. 5.10).
Another set of straight lines – one through each corner – represents the
plumb line at the stations.

In order to determine this figure, we need five parameters for each station
– three coordinates and two parameters defining the direction of the plumb
line. The main terrestrial observational data for this purpose are

1. horizontal angles and zenith angles, obtained by theodolite observa-
tions;

2. straight spatial distances, obtained by electronic distance measure-
ments; and

3. astronomical observations of latitude and longitude to fix the direction
of the plumb line, and of azimuth to determine the orientation of the
polyhedron.

Fig. 5.10. Bruns’ polyhedron
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We may use a rectangular coordinate system; then the three coordinates
to be determined will be X,Y,Z. The parameters defining the direction of
the plumb line are conveniently taken to be Φ and Λ, astronomical latitude
and longitude. We can express the astronomical azimuth A, the measured
zenith angle z′, and the spatial distance s in terms of these five parameters.
This will be the scope of Sect. 5.9.

This information is purely “geometric”. We need the terrestrial measure-
ments (especially Φ,Λ, A) in order to link this geometry to the gravity field
as represented by the plumb lines. The Bruns polyhedron is the best way to
show this geometrically.

Today, GPS is the best way to determine global rectangular coordinates
X,Y,Z or ellipsoidal coordinates ϕ, λ, h directly.

5.9 Global coordinates and local level coordinates

We shall use a Cartesian coordinate system XY Z introduced in Sect. 5.6.1,
global but not necessarily geocentric. The coordinates X, Y, Z form a vector
X. Thus, the vectors Xi and Xj represent two terrestrial points Pi and
Pj. We define the vector between these two points in the global coordinate
system by Xij = Xj − Xi.

In addition, we introduce a “local level system” referred to the tangential
plane to the level surface at a point Pi and to the local vertical, which is
the tangent at Pi to the natural plumb line defined by the astronomical
coordinates Φ and Λ, see Sect. 2.4. The axes ni, ei, ui of this local (tangent
plane) coordinate system at Pi corresponding to the north, east, and up

X

�i

Pi

.

ni

ei

ui

Y

Z

Xi

�i

Fig. 5.11. Global and local level coordinates
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Pj

Aij

uij

nij

eij

sij

(up, zenith)

Xij

zij'

(east)

(north)

Fig. 5.12. Measurement quantities in the local level system

direction, are thus represented in the global system by

ni =

⎡⎣− sin Φi cos Λi

− sin Φi sin Λi

cos Φi

⎤⎦ , ei =

⎡⎣− sin Λi

cos Λi

0

⎤⎦ , ui =

⎡⎣cos Φi cos Λi

cos Φi sin Λi

sin Φi

⎤⎦ ,

(5–64)
where the vectors ni and ei span the tangent plane at Pi (Fig. 5.11). The
third coordinate axis of the local level system, i.e., the vector ui, is orthog-
onal to the tangent plane and has the direction of the plumb line.

Now the components nij, eij , uij of the vector xij in the local level system
are introduced. These coordinates are sometimes denoted as ENU (east,
north, up) coordinates. Considering Fig. 5.12, these components are obtained
by a projection of vector Xij onto the local level axes ni, ei, ui. Analytically,
this is achieved by scalar products. Therefore,

xij =

⎡⎣ nij

eij

uij

⎤⎦ =

⎡⎣ ni ·Xij

ei · Xij

ui ·Xij

⎤⎦ (5–65)

is obtained. Assembling the vectors ni, ei, ui of the local level system as
columns in an orthogonal matrix Di, i.e.,

Di =

⎡⎣ − sinΦi cosΛi − sinΛi cos Φi cos Λi

− sinΦi sinΛi cosΛi cos Φi sin Λi

cos Φi 0 sin Φi

⎤⎦ , (5–66)

relation (5–65) may be written concisely as

xij = DT
i Xij . (5–67)
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The components of xij may also be expressed by the spatial distance sij,
the azimuth Aij , and the zenith angle z′ij , which is assumed to be corrected
for refraction. The appropriate relation is

xij =

⎡⎣ nij

eij

uij

⎤⎦ =

⎡⎢⎢⎣
sij sin z′ij cos Aij

sij sin z′ij sin Aij

sij cos z′ij

⎤⎥⎥⎦ , (5–68)

where the terrestrial measurement quantities sij, Aij , z′ij refer to Pi, i.e.,
the measurements were taken at Pi. Inverting (5–68) gives the measurement
quantities explicitly:

sij =
√

n2
ij + e2

ij + u2
ij ,

tan Aij =
eij

nij
,

cos z′ij =
uij√

n2
ij + e2

ij + u2
ij

.

(5–69)

Substituting (5–65) for nij, eij and uij , the measurement quantities may be
expressed by the components of the vector Xij in the global system.

A note on azimuth and zenith distance
Since the local level coordinates refer to the local plumb line defined by the
astronomical coordinates Φ,Λ (Sect. 2.4), A and z′ are called astronomical
azimuth and astronomical zenith distance (zenith angle). They will also play
a basic role in Part III.

A final word on the zenith distance. The measured (“astronomical”) az-
imuth is denoted by A, and the corresponding ellipsoidal azimuth is denoted
by α. Since the ellipsoidal zenith distance is conventionally denoted by z, it
would be consistent to indicate the measured (“astronomical”) zenith dis-
tance by Z. This symbol, however, is firmly reserved for the third axis of the
XY Z system, so we exceptionally, but consistently with the rest of the book,
use the symbol z′. (Both A and z′ will return in the following sections.)

5.10 Combining terrestrial data and GPS

5.10.1 Common coordinate system

So far, GPS and terrestrial networks have been considered separately with
respect to the adjustment. The combination, for example, by a datum trans-
formation, was supposed to be performed after individual adjustments. Now
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the common adjustment of GPS observations and terrestrial data is inves-
tigated. The problem encountered here is that GPS data refer to the three-
dimensional geocentric Cartesian system WGS 84, whereas terrestrial data
refer to the individual local level (tangent plane) systems at each measure-
ment point referenced to plumb lines. Furthermore, terrestrial data are tra-
ditionally separated into position and height, where the position refers to an
ellipsoid and the (orthometric) height to the geoid.

For a joint adjustment, a common coordinate system is required to which
all observations are transformed. In principle, any arbitrary system may be
introduced as common reference. One possibility is to use two-dimensional
(plane) coordinates in the local system as proposed by Daxinger and Stir-
ling (1995). Here, a three-dimensional coordinate system is chosen. The ori-
gin of the coordinate system is the center of the ellipsoid adopted for the
local system, the Z-axis coincides with the semiminor axis of the ellipsoid,
the X-axis is obtained by the intersection of the ellipsoidal Greenwich merid-
ian plane and the ellipsoidal equatorial plane, and the Y -axis completes the
right-handed system. Position vectors referred to this system are denoted by
XLS, where LS indicates the reference to the local system.

After the decision on the common coordinate system, the terrestrial mea-
surements referring to the individual local level systems at the observing
sites must be represented in this common coordinate system. Similarly, GPS
baseline vectors regarded as measurement quantities are to be transformed
to this system.

5.10.2 Representation of measurement quantities

Distances
The spatial distance sij as function of the local level coordinates is given in
(5–69). If nij, eij , uij , the components of xij, are substituted by (5–65), the
relation

sij =
√

n2
ij + e2

ij + u2
ij

=
√

(Xj − Xi)2 + (Yj − Yi)2 + (Zj − Zi)2
(5–70)

is obtained, where (5–64) has also been taken into account, namely, the
fact that ni, ei, ui are unit vectors. Obviously, the second expression arises
immediately from the Pythagorean theorem. Differentiation of (5–70) yields

dsij =
Xij

sij
(dXj − dXi) +

Yij

sij
(dYj − dYi) +

Zij

sij
(dZj − dZi) ,

(5–71)
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where
Xij = Xj − Xi ,

Yij = Yj − Yi ,

Zij = Zj − Zi

(5–72)

have been introduced accordingly. The relation (5–71) may also be expressed
as

δsij =
Xij

sij
(δXj − δXi) +

Yij

sij
(δYj − δYi) +

Zij

sij
(δZj − δZi)

(5–73)

if the differentials are replaced by differences.

Azimuths
Again the same principle applies: the measured azimuth Aij as a function of
the local level coordinates is given in (5–69). If nij, eij , uij , the components
of xij , are substituted by (5–65), the relation

tan Aij = eij/nij

=
−Xij sinΛi + Yij cos Λi

−Xij sin Φi cos Λi − Yij sinΦi sin Λi + Zij cos Φi

(5–74)

is obtained. After a lengthy derivation, the relation

δAij =
sin ϕi cos λi sin αij − sin λi cos αij

sij sin zij
(δXj − δXi)

+
sin ϕi sin λi sinαij + cos λi cos αij

sij sin zij
(δYj − δYi)

− cos ϕi sinαij

sij sin zij
(δZj − δZi)

+ cot zij sin αij δΦi

+ (sin ϕi − cos αij cos ϕi cot zij) δΛi

(5–75)

is obtained. Approximate values are sufficient in the coefficients, denoted by
ϕ, λ, α, z instead of Φ,Λ, A, z′.

Directions
Measured directions Rij are related to azimuths Aij by the orientation un-
known oi. The relation reads

Rij = Aij − oi , (5–76)
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and the expression
δRij = δAij − δoi (5–77)

is immediately obtained.

Zenith angles
The zenith angle z′ij as function of the local level coordinates is given in
(5–69). If nij, eij , uij , the components of xij, are substituted by (5–65), the
relation

cos z′ij = uij/sij

=
Xij cos Φi cos Λi + Yij cosΦi sin Λi + Zij sin Φi√

X2
ij + Y 2

ij + Z2
ij

(5–78)

is obtained, where (5–70) and (5–72) have been used. After a lengthy deriva-
tion, the relation

δz′ij =
Xij cos zij − sij cos ϕi cos λi

s2
ij sin zij

(δXj − δXi)

+
Yij cos zij − sij cos ϕi sin λi

s2
ij sin zij

(δYj − δYi)

+
Zij cos zij − sij sin ϕi

s2
ij sin zij

(δZj − δZi)

− cos αij δΦi − cos ϕi sin αij δΛi

(5–79)

is obtained.
It is presupposed that the zenith angles are reduced to the chord of the

light path. This reduction may be modeled by

z′ij = z′ijmeas
+

sij

2R
k , (5–80)

where zijmeas is the measured zenith angle, R is the mean radius of the
earth, and k is the coefficient of refraction. For k either a standard value
may be substituted or the coefficient of refraction is estimated as additional
unknown. In the case of estimation, there are several choices, e.g., one value
for k for all zenith angles or one value for a group of zenith angles or one
value per day. (It is known that measured zenith angles are “weaker” than
other observations, which can be taken into account by giving them lower
weights.)



214 5 The geometry of the earth

Ellipsoidal height differences
The “measured” ellipsoidal height difference is represented by

hij = hj − hi . (5–81)

The heights involved are obtained by transforming the Cartesian coordinates
into ellipsoidal coordinates according to (5–36) or by using the iterative pro-
cedure given in Sect. 5.6.1. The height difference is approximately (neglecting
the curvature of the earth) given by the third component of xij in the local
level system. Hence,

hij = ui · Xij (5–82)

or, by substituting ui according to (5–64), the relation

hij = cos Φi cos Λi Xij + cosΦi sin Λi Yij + sin Φi Zij (5–83)

is obtained. This equation may be differentiated with respect to the Carte-
sian coordinates. If the differentials are replaced by the corresponding dif-
ferences,

δhij = cos Φj cos Λj δXj + cosΦj sinΛj δYj + sinΦj δZj

− cos Φi cosΛi δXi − cos Φi sin Λi δYi − sin Φi δZi

(5–84)

is obtained, where the coordinate differences were decomposed into their
individual coordinates.

Baselines
From relative GPS measurements, baselines Xij(GPS)

= Xj(GPS)
−Xi(GPS)

in
the WGS 84 are obtained. The position vectors Xi(GPS)

and Xj(GPS)
may be

transformed by a three-dimensional (7-parameter) similarity transformation
to a local system indicated by LS. According to Eq. (5–41), the transforma-
tion formula reads

XLS = x0 + µRXGPS , (5–85)

where the meaning of the individual quantities is the following:

XLS . . . position vector in the local system ,
XGPS . . . position vector in the WGS 84 ,
x0 . . . shift vector ,
R . . . rotation matrix ,
µ . . . scale factor .

Forming the difference of two position vectors, i.e., the baseline Xij , the
shift vector x0 is eliminated. Using (5–85), there results

Xij(LS)
= µRXij(GPS)

(5–86)
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for the baseline. Similar to (5–49), the linearized form is

Xij(LS)
= Xij(GPS)

+ Aij δp , (5–87)

where now the vector δp and the design matrix Aij are given by

δp = [δµ ε1 ε2 ε3]T ,

Aij =

⎡⎢⎣ Xij 0 −Zij Yij

Yij Zij 0 −Xij

Zij −Yij Xij 0

⎤⎥⎦
(GPS)

.
(5–88)

Note that the rotations εi refer to the axes of the system used in GPS. If
they should refer to the local system, then the signs of the rotations must be
changed, i.e., the signs of the elements of the last three columns of matrix
Aij must be reversed.

The vector Xij(LS)
on the left side of (5–87) contains the points Xi(LS)

and Xj(LS)
in the local system. If these points are unknown, then they are

replaced by known approximate values and unknown increments

Xi(LS)
= Xi0(LS)

+ δXi(LS)
,

Xj(LS)
= Xj0(LS)

+ δXj(LS)
,

(5–89)

where the coefficients of these unknown increments (+1 or −1) together with
matrix Aij form the design matrix.

The vector Xij(GPS)
in (5–87) is regarded as measurement quantity. Thus,

finally,

Xij(GPS)
= δXj(LS)

− δXi(LS)
− Aij δp + Xj0(LS)

− Xi0(LS)
(5–90)

is the linearized observation equation.
In principle, any type of geodetic measurement can be employed if the

integrated geodesy adjustment model is used. The basic concept is that any
geodetic measurement can be expressed as a function of one or more posi-
tion vectors X and of the gravity field W of the earth. The usually non-
linear function must be linearized where the gravity field W is split into
the normal potential U of an ellipsoid and the disturbing potential T , thus,
W = U +T . Applying a minimum principle leads to the collocation formulas
(Moritz 1980 a: Chap. 11).

Many examples integrating GPS and other data can be found in technical
publications. For example, there are attempts to detect earth deformations
from GPS and terrestrial data.
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Part III: Local geodetic datums

5.11 Formulation of the problem

As we have remarked several times, the weak point of the Bruns–Hotine
method is the insufficient accuracy of the zenith angle measurement preclud-
ing the practical use of this method for larger triangulations. The trigono-
metric heights obtained in this way are significantly less accurate than the
horizontal positions.

A practical solution of this problem was to separate positions and heights.
The horizontal position was calculated on the reference ellipsoid in the way
we shall see later. Accurate heights were obtained by leveling referred to the
“actual” level surfaces, in particular to the geoid.

Thus, this theoretically and practically unsatisfactory procedure used
two different reference surfaces: the ellipsoid for horizontal position and the
geoid for heights. The mutual position of these two surfaces was not even
known because of lack of knowledge of the geoidal height N . It has been
rightfully ridiculed as “2+1-dimensional geodesy”.

There is a way out of this dilemma even for local (or rather regional)
geodetic systems. The trigonometric height h is not determined by zenith-
angle measurements but by using the simple formula

h = H + N (5–91)

from leveled orthometric heights H by adding the geoid height N !
But how do we get the geoid? Even before the satellite era, there existed

two methods:

1. the astrogeodetic method, determining N from deflections of the vertical
ξ and η;

2. the gravimetric method, using for this purpose gravity anomalies ∆g.

The theories of both methods were known as early as 1850, but what was
lacking were data, especially gravimetric ones. Serious practical applications
started not much before 1950, a hundred years later, just before the advent
of satellites. This will be discussed in detail later in this book.

A reasonable measuring accuracy was achievable, but another difficulty
appeared. Both methods require the evaluation of integrals of the data (ξ and
η, or ∆g) as continuous functions. The data, however, are always measured
at discrete points only. Interpolation is necessary and introduces additional
errors. If the data are distributed uniformly and densely, resulting errors
may be kept small. The fundamental problem exists, however.
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Summarizing, we may say: (1) The method of zenith angles is theoreti-
cally rigorous but not in general sufficiently accurate; (2) the astrogeodetic
method using integration of vertical deflections is not theoretically rigorous
in this sense but still may be accurate enough.

Method 1 has been treated in Part II of this chapter, so method 2 war-
rants detailed considerations in the present Part III.

5.12 Reduction of the astronomical measurements
to the ellipsoid

Now we establish the relation between the natural coordinates Φ,Λ,H and
the ellipsoidal coordinates ϕ, λ, h referring to an ellipsoid according to Hel-
mert’s projection.

The ellipsoidal height h and the orthometric height H have been consid-
ered, e.g., in Sect. 4.6 (see also Fig. 5.4 and Eq. (5–91)). They are related
by h = H + N .

Thus, there remains the reduction of the astronomical coordinates Φ and
Λ to the ellipsoid and, if we also include the astronomical observation of the
azimuth, the astronomical azimuth A to the ellipsoid in order to obtain the
ellipsoidal coordinates ϕ and λ and the ellipsoidal azimuth α.

We introduce the auxiliary quantities

∆ϕ = Φ − ϕ ,

∆λ = Λ − λ ,

∆α = A − α .

(5–92)

The reduction of Φ and Λ to the corresponding ellipsoidal coordinates ϕ and
λ is implicitly contained in Eq. (2–230):

ξ = Φ − ϕ = ∆ϕ ,

η = (Λ − λ) cos ϕ = ∆λ cos ϕ ,
(5–93)

where we have substituted the respective auxiliary quantities. Thus, the con-
version formulas from natural coordinates Φ,Λ,H to ellipsoidal coordinates
ϕ, λ, h are

ϕ = Φ − ξ ,

λ = Λ − η/ cos ϕ ,

h = H + N .

(5–94)

Now we turn to the reduction of the azimuth. Thus, the question is which
∆α arises from ∆ϕ and ∆λ. The answer is found in Eq. (5–75), where we
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only consider the last two terms on the right-hand side (i.e., we do not take
into account changes of the point coordinates). Omitting all subscripts and
introducing the auxiliary quantities of (5–92), we immediately get

∆α = cot z sinα ∆ϕ + (sin ϕ − cos α cos ϕ cot z)∆λ (5–95)

or, using ∆ϕ = ξ and ∆λ cos ϕ = η, yields

∆α = ξ sin α cot z + sin ϕ∆λ − η cos α cot z . (5–96)

This equation may be rearranged to

∆α = sin ϕ∆λ + (ξ sin α − η cos α) cot z . (5–97)

Alternatively, by using ∆λ = η/ cos ϕ, we get

∆α = η tan ϕ + (ξ sin α − η cos α) cot z . (5–98)

In first-order triangulation, the lines of sight are usually almost horizontal
so that z

.= 90◦, cot z
.= 0. Therefore, the corresponding term can in general

be neglected and we get

∆α = η tan ϕ = ∆λ sin ϕ . (5–99)

This is Laplace’s equation in its usual simplified form. It is remarkable that
the differences ∆α = A − α and ∆λ = Λ − λ should be related in such a
simple way. Laplace’s equation is fundamental for the classical astrogeodetic
computation of triangulations (Sect. 5.14).

For later reference we note that the total deflection of the vertical – that
is, the angle ϑ between the actual plumb line and the ellipsoidal normal – is
given by

ϑ =
√

ξ2 + η2 (5–100)

and that the deflection component ε in the direction of the azimuth α is

ε = ξ cos α + η sin α . (5–101)

It is clear that ϑ in (5–100) has nothing to do with the two different ϑ
used for spherical and ellipsoidal-harmonic coordinates (polar distances).

Returning to the reduction of astronomical to the corresponding ellip-
soidal quantities, we have (5–94) for the reduction of Φ, Λ, H to ϕ, λ, h and,
finally, the formula

α = A − η tan ϕ (5–102)

reduces the astronomical azimuth A to the ellipsoidal azimuth α.
For the application of these formulas, we need the geoidal undulation N

and the deflection components ξ and η with respect to the reference ellipsoid
used. Two points should be noted:
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1. The vertical axis of the reference ellipsoid is parallel to the earth’s
axis of rotation, but it need not be in an absolute position, its center
coinciding with the earth’s center of gravity. To repeat the reason:
the earth axis is accessible to (astronomical) observation, whereas the
geocenter is physically defined and inaccessible to direct geometrical
observation.

2. The geocenter is accessible in two physically defined ways: (1) gravi-
metrically through Stokes’ formula and (2) physically by the first Kep-
ler law applied to satellite motion and responsible for the geocentricity
of GPS orbits.

Note that unless otherwise stated, we always assume that our observa-
tions are made at sea level. This is not so unnatural for an inhabitant of a
large plain region but causes headache to a geodesist working in the Alps
or in the Rocky Mountains. We have already been confronted with this sit-
uation before, in gravity reduction, and will meet it repeatedly later, most
prominently under the heading of Molodensky’s problem.

It should also be mentioned that the ellipsoidal azimuth α in (5–102)
refers to the actual target, which does not in general lie on the ellipsoid.
For the conventional method of computation on the ellipsoid, one wishes the
azimuth to refer to a target on the ellipsoid, which is the point at the foot of
the normal through the actual target. Furthermore, α refers to what is called
a normal section of the ellipsoid, rather than to a geodesic line, which is used
in computation. In either case very small azimuth reductions are necessary;
since these reductions are purely problems in ellipsoidal geometry, the reader
is referred to any appropriate textbook.

Effect of polar motion
The direction of the earth’s axis of rotation is not rigorously fixed, neither
in space nor with respect to the earth, but undergoes very small, more or
less periodic variations. Astronomers know it by the name of nutation (with
respect to inertial space), geodesists know it by the name of polar motion
(with respect to the earth’s body). This phenomenon arises from a minute
difference between the axes of rotation and of maximum inertia, the angle
between these axes being about 0.3′′, and is somewhat similar to the preces-
sion of a spinning top. This motion of the pole has a main period of about
430 days, the Chandler period, but is rather irregular, presumably because
of the movement of masses, atmospheric variations, etc. (Fig. 5.13).

The International Earth Rotation Service (IERS), initially International
Latitude Service and then Polar Motion Service, which is maintained by
the International Astronomical Union and by the International Union of
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Fig. 5.13. Polar motion: mean pole displacement 1900–1997 (solid line),
detailed polar motion 1995–1998 (dotted line)

Geodesy and Geophysics, continuously observes the variation of a number of
parameters at a considerable number of stations distributed over the whole
earth. Thus, it monitors variations of the earth’s axis (polar motion) and of
its angular speed of rotation.

The results are published as the rectangular coordinates of the instanta-
neous pole PN with respect to a mean pole P 0

N . The astronomically observed
values of Φ,Λ, and A naturally refer to the instantaneous pole PN and must,
therefore, be reduced to the mean pole, using the published values of x and
y.

This is accomplished by means of the equations

Φ = Φobs − x cos λ + y sin λ ,

Λ = Λobs − (x sin λ + y cos λ) tan ϕ + y tan ϕGr ,

A = Aobs − (x sin λ + y cos λ) sec ϕ .

(5–103)

Now Φ,Λ, A are referred to the mean pole; these values are used in geodesy
because they do not vary with time. Longitude, throughout this book, is
reckoned positive to the east, as is usual in geodesy; it should be mentioned
that in the past literature these formulas are often written for west longi-
tude, according to the former practice of astronomers. Since the correction
terms containing x and y are extremely small (of the order of 0.1′′), we may
use either the ellipsoidal values ϕ and λ or the astronomical values Φ and Λ
in these terms. The term containing ϕGr (the latitude of Greenwich) in the
formula for Λ is usually omitted, so that the mean meridian of Greenwich re-
mains fixed as the conventional zero meridian, rather than the astronomical
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longitude of Greenwich itself.
These formulas (5–103) are Eqs. (7-13), (7-14), and (7-15) of Moritz and

Mueller (1987: pp. 419–420). It is interesting to note the close similarity
between the azimuth reduction (5–98) because of the “zenith variation” –
that is, the deflection of the vertical – and the longitude reduction of (5–103)
because of the polar variation. Actually, the geometry for both cases is the
same. The quantities ξ, η, 90◦ − z, ϕ correspond to x, y, ϕ, ϕGr; the difference
in sign of sin α and sin λ is due to the fact that, when viewed from the
zenith, azimuth is reckoned clockwise and, when viewed from the pole, east
longitude is reckoned counterclockwise.

5.13 Reduction of horizontal and vertical angles
and of distances

Horizontal angles
To reduce an observed horizontal angle ω to the ellipsoid, we note that every
angle may be considered as the difference between two azimuths:

ω = α2 − α1 . (5–104)

Hence, we can apply formula (5–98). In the difference α2 − α1, the main
term η tan ϕ drops out, so that for nearly horizontal lines of sight the whole
reduction may be neglected.

Vertical angles
The relation between the measured zenith angle z′ and the corresponding
ellipsoidal zenith angle z may be given as

z = z′ + ε = z′ + ξ cos α + η sinα , (5–105)

where α is the azimuth of the target.

Spatial distances
Electronic measurement of distance yields straight spatial distances l be-
tween two points A and B (Fig. 5.14). These distances may either be used
directly for computations in the ellipsoidal coordinate system ϕ, λ, h, as in
“three-dimensional geodesy” (see Sect. 5.9), or they may be reduced to the
surface of the ellipsoid to obtain chord distances l0 or geodesic distances s0.

We again approximate the ellipsoidal arc A0B0 by a circular arc of radius
R that is the mean ellipsoidal radius of curvature along A0B0. By applying
the law of cosines to the triangle OAB, we find

l2 = (R + h1)2 + (R + h2)2 − 2(R + h1)(R + h2) cos ψ . (5–106)
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With
cos ψ = 1 − 2 sin2 ψ

2
, (5–107)

this is transformed into

l2 = (h2 − h1)2 + 4R2

(
1 +

h1

R

)(
1 +

h2

R

)
sin2 ψ

2
; (5–108)

and with
l0 = 2R sin

ψ

2
(5–109)

and the abbreviation ∆h = h2 − h1, we obtain

l2 = ∆h2 +
(

1 +
h1

R

)(
1 +

h2

R

)
l20 . (5–110)

Hence, the chord l0 and the arc s0 are expressed by

l0 =

√√√√ l2 − ∆h2(
1 + h1

R

)(
1 + h2

R

) ; (5–111)



5.14 The astrogeodetic determination of the geoid 223

s0 = R ψ = 2R sin−1 l0
2R

. (5–112)

Ellipsoidal refinements of these formulas may be found in Rinner (1956).
As a matter of fact, spatial distances are independent of the vertical.

Therefore, the reduction formula (5–111) does not contain the deflection of
the vertical ε.

5.14 The astrogeodetic determination of the geoid

Helmert’s formula
The shape of the geoid can be determined if the deflections of the vertical
are given. Helmert’s formula

dN = −ε ds (5–113)

as given in (2–372) is the basic equation (Fig. 5.15). Integrating this relation,
we get

NB = NA −
∫ B

A
ε ds , (5–114)

where
ε = ξ cos α + η sin α (5–115)

is the component of the deflection of the vertical along the profile AB, whose
azimuth is α (see Eq. (5–101)).

Formula (5–114) expresses the geoidal undulation as an integral of the
vertical deflections along a profile. Since N is a function of position, this
integral is independent of the form of the line that connects the points A and
B. This line need not necessarily be a geodesic on the ellipsoid, and α may in
the general case be variable. In practice, north-south profiles (ε = ξ) or east-
west profiles (ε = η) are often used. The integral (5–114) is to be evaluated

geoid

ellipsoid

dN
ds

s

"

"

ds

ellipsoid normalplumb line

Fig. 5.15. Relation between geoidal undulation and deflection of
the vertical
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by a numerical or graphical integration. The deflection component ε must
be given at enough stations along the profile such that the interpolation
between these stations can be done reliably. Sometimes a map of ξ and η
is available for a certain area. Such a map is constructed by interpolation
between well-distributed stations at which ξ and η have been determined
(Grafarend and Offermanns 1975). Then the profiles of integration may be
suitably selected; loops may be formed to obtain redundancies which must
be adjusted.

If the deflection components ξ and η are obtained directly from the equa-
tions

ξ = Φ − ϕ , η = (Λ − λ) cos ϕ , (5–116)

that is, by comparing the astronomical and ellipsoidal (or geodetic) coordi-
nates of the same point, then this method is called the astrogeodetic deter-
mination of the geoid.

The astronomical coordinates are directly observed; the ellipsoidal coor-
dinates are obtained in the following way.

Determination of a local astrogeodetic datum
This is of historic interest only, but indispensible for an understanding of
the present classical triangulation system. In agreement with Part I, but in
contrast to Part II, “local” again means “regional”, referring to a country
(e.g., France) or even a continent (e.g., European Datum or North-American
Datum). In a larger triangulation system, a certain “initial point” P1 is
chosen for which the undulation N1 and the components ξ1 and η1 of the
deflection of the vertical are prescribed. Here ξ1, η1, and N1 may be assumed
arbitrarily in principle; the position of the reference ellipsoid with respect
to the earth is thereby fixed. For the sake of definiteness let us consider
the case that has been of greatest practical importance, that is, the case
in which ξ1 = η1 = N1 = 0. In this case, because ξ1 = η1 = 0, the geoid
and the ellipsoid have the same surface normal so that, because N1 = 0, the
ellipsoid is tangent to the geoid below P1 (Fig. 5.16). The condition that
the axis of the reference ellipsoid be parallel to the earth’s axis of rotation
finally determines the orientation of the triangulation net because Laplace’s
equation (5–99) then gives ∆α1 = η1 tan ϕ1 = 0, so that α1 = A1; that is, at
the initial point the ellipsoidal azimuth is equal to the astronomical azimuth.

Now we can reduce the measured distances and angles to the ellipsoid
and compute on it the position of the points of the triangulation net (their
ellipsoidal coordinates ϕ and λ) in the usual way. After measuring the coor-
dinates Φ and Λ astronomically at the same points, we can then compute the
deflection components ξ and η by (5–116). Starting from the assumed value
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Fig. 5.16. The reference ellipsoid is tangent to the geoid at P1

N1 at the initial point P1 (in our case, N1 = 0), we can finally compute the
geoidal heights N of any point of the triangulation net by repeated applica-
tion of (5–114). These geoidal heights refer to the ellipsoid that was fixed by
prescribing ξ1, η1, N1, and, of course, its semimajor axis a and its flattening
f . To employ a frequently used term, they refer to the given astrogeodetic
datum (a, f ; ξ1, η1, N1).

By means of N and the orthometric height H, the height h above the
ellipsoid is obtained via h = H + N , so that the rectangular spatial coordi-
nates X,Y,Z can be computed by (5–27). But unless ξ and η are absolute
(geocentric) deflections, the origin of the coordinate system will not be at
the center of the earth (see Sect. 5.7).

A flaw in the procedure described above apparently is that N, ξ, η are
already needed for the reduction of the measured angles and distances to
the ellipsoid. However, for this purpose approximate values of N, ξ, η are
sufficient. These are obtained by performing the process just explained with
unreduced angles and distances. We can also get suitable values for N, ξ, η
in other ways, for instance, by Stokes’ formula.

Use and misuse of Laplace’s equation
It should be mentioned that in practice the component η has been often
obtained from azimuth measurements using (5–102) in rearranged form, that
is,

η = (A − α) cot ϕ , (5–117)

because astronomical measurements of azimuth are simpler than those of
longitude. This is a misuse which may lead to a systematic distortion of the
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net. Longitude and azimuth are often measured at the same point. Then
Laplace’s condition

∆α = ∆λ sinϕ (5–118)

furnishes an important check on the correct orientation of the net and forces
the axis of the ellipsoid to be parallel with the earth’s axis of rotation. Thus
it may be used for adjustment purposes. Astronomical stations with longi-
tude and azimuth observations are, therefore, called Laplace stations. For
these purposes, the measuring accuracy of astronomical field observations is
sufficient, in contrast to the use for directly determining horizontal positions
by ϕ = Φ − ξ, etc. in Sect. 2.21.

The astrogeodetic determination of the geoid, also called astronomical
leveling, was known to Helmert (1880) and even before.

Comparison with the Stokes method
It is quite instructive to compare Helmert’s formula

N = NA −
∫ B

A
ε ds (5–119)

for the astrogeodetic method with Stokes’ formula

N =
R

4π γ0

∫
σ

∫
∆g S(ψ) dσ (5–120)

for the gravimetric method. Both methods use the gravity vector g. It is
compared with a normal gravity vector γ. The components ξ = ∆ϕ and
η = ∆λ cos ϕ of the deflection of the vertical represent the differences in
direction, and the gravity anomaly ∆g represents the difference in magnitude
of the two vectors. Helmert’s formula determines the geoidal undulation N
from ξ and η, that is, by means of the direction of g, and Stokes’ formula
determines N from ∆g, that is, by means of the magnitude of g. Both
formulas are somewhat similar: they are integrals which contain ε, or ξ and
η, and ∆g in linear form.

Otherwise, the two formulas show marked differences which are charac-
teristic for the respective method. In Helmert’s formula, the integration is
extended over part of a profile; thus, it is sufficient to know the deflection
of the vertical in a limited area. The position of the reference ellipsoid with
respect to the earth’s center of gravity is unknown, however, and can be
determined only by means of the gravimetric method or, more practically,
the analysis of satellite orbits (Sect. 7.2). Furthermore, the astrogeodetic
method can be used only on land, because the necessary measurements are
impossible at sea.
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In Stokes’ formula, however, the integration should be extended over
the whole earth. The gravity anomaly ∆g must be known all over the earth;
however, accurate gravity measurements at sea are possible. The gravimetric
method yields, for the whole earth, absolute geoidal undulations: the center
of the reference ellipsoid coincides with the center of the earth. Nowadays,
this is only a theoretical possibility because the required complete cover-
age of the whole earth is not available; again, GPS helps. Nevertheless, the
gravimetric method is still basic: it furnishes, not the geocenter, but details
of the geoid, together with the astrogeodetic method!

The astrogeodetic method has often been applied to the determination
of geoidal sections. We mention, because of its pioneering character and its
romantic title, “Das Geoid im Harz” by Galle (1914). In the years following
1970 it is becoming rare to use Helmert’s integral formula in its original
form, and deflections of the vertical are more and more combined with other
data (gravity, GPS, and other satellite data) for a uniform determination of
geoid and gravity field (see Chaps. 10 and 11).

Adjustment of nets of astrogeodetic geoidal heights
With a sufficiently dense net of astrogeodetic stations (preferably Laplace
points) with an average station distance of 10–20 km, the Helmert integral
(5–119) can be approximated by

∆NAB ≡ NB − NA = −
∫ B

A
ε ds = −εA + εB

2

∫ B

A
ds (5–121)

or
∆NAB = −εA + εB

2
sAB . (5–122)

Thus, the undulation difference can be computed for the line AB, and simi-
larly for other lines BC and CA in the triangle ABC (Fig. 5.17). The closure
condition

∆NAB + ∆NBC + ∆NCA = 0 (5–123)

must be satisfied and imposed as a condition in the least-squares adjustment

A

C

B
sAB

Fig. 5.17. Triangular net for an astrogeodetic geoid
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of the net. Accordingly, the other triangles can be computed as in any other
height network (e.g., leveling net).

It is curious that it may be shown that such closures are mathematically
equivalent to the well-known relation

∂2N

∂x∂y
=

∂2N

∂y ∂x
. (5–124)

See also Sect. 4.5.

5.15 Reduction for the curvature of the plumb line

Motivation
The astronomical coordinates Φ and Λ, as observed on the surface of the
earth, are not rigorously equal to their corresponding values at the geoid
because the plumb line, the line of force, is not straight, or in other words,
because the level surfaces are not parallel. Thus, if we wish our astronomical
coordinates to refer to the geoid, we must reduce our observations accord-
ingly.

Examples of such cases are the following:

1. The gravimetric deflections have usually been computed by Vening
Meinesz’ formula for the geoid, so that either the gravimetric deflec-
tions must be reduced upward to the ground point or the astronomical
observations must be reduced downward to the geoid, in order to make
the two quantities comparable.

2. If astronomical observations are used for the determination of the
geoid, the same reduction, in principle, must be applied.

Important remark
The principle of reduction of the plumb line is of fundamental theoretical
importance for understanding the geometry of the earth’s gravity field. In
practice, it is usually disregarded if the topography is sufficiently flat, or
replaced by more sophisticated methods in mountainous areas, as we shall
see later (Sects. 8.12 and 8.13). The present section may be skimmed at first
reading, except for the normal curvature of the plumb line at its very end.

Principles
Consider the projection of the plumb line onto the meridian plane. According
to the well-known definition of the curvature of a plane curve, the angle
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between two neighboring tangents of this projection of the plumb line is

dϕ = −κ1 dh , (5–125)

where the minus sign is conventional and the curvature κ1 is given by (2–50):

κ1 =
1
g

∂g

∂x
. (5–126)

The x-axis is horizontal and points northward. Hence, the total change of
latitude along the plumb line between a point on the ground, P , and its
projection onto the geoid, P0, is given by

δϕ =
∫ P

P0

dϕ = −
∫ P

P0

κ1 dh (5–127)

or

δϕ = −
∫ P

P0

1
g

∂g

∂x
dh . (5–128)

Using κ2 of (2–51), we similarly find for the change of longitude

δλ cos ϕ = −
∫ P

P0

1
g

∂g

∂y
dh , (5–129)

where the y-axis is horizontal and points eastward.

Alternative formulas
There is a close relationship between the curvature reduction of astronomical
coordinates and the orthometric reduction of leveling, considered in Sect. 4.3.

The orthometric correction d(OC) has been defined as the quantity that
must be added to the leveling increment dn in order to convert it into the
orthometric height difference dH:

d(OC) = dH − dn . (5–130)

From Fig. 5.18, we see that, for a north-south profile, the curvature reduction
and the orthometric correction are related by the simple formula

δϕ =
∂(OC)

∂x
. (5–131)

Similarly, we find

δλ cos ϕ =
∂(OC)

∂y
. (5–132)
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Fig. 5.18. Plumb-line curvature and orthometric correction

According to Sect. 4.3, we have

dC = g dn = −dW , H =
C

ḡ
. (5–133)

Hence, (5–130) becomes

d(OC) = dH − 1
g

dC = dH +
1
g

dW , (5–134)

so that
δϕ =

∂H

∂x
+

1
g

∂W

∂x
,

δλ cos ϕ =
∂H

∂y
+

1
g

∂W

∂y
.

(5–135)

These equations relate the reduction for the curvature of the plumb line
to the orthometric height H and the potential W . In view of the irregular
shape of the plumb lines, it is remarkable that such simple general relations
as (5–131), (5–132), and (5–135) exist.
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These relations may be used to find computational formulas for the cur-
vature reductions δϕ and δλ. We have

d(OC) = dH − dC

g
= d

(
C

ḡ

)
− dC

g

=
dC

ḡ
− C

ḡ2
dḡ − dC

g
= −C

ḡ2
dḡ +

g − ḡ

ḡ

dC

g

(5–136)

or

d(OC) = −H

ḡ
dḡ +

g − ḡ

ḡ
dn . (5–137)

By substituting this into (5–131) and (5–132), we obtain

δϕ = −H

ḡ

∂ḡ

∂x
+

g − ḡ

ḡ
tan β1 ,

δλ cos ϕ = −H

ḡ

∂ḡ

∂y
+

g − ḡ

ḡ
tan β2 ,

(5–138)

where we have set

tan β1 =
∂n

∂x
, tan β2 =

∂n

∂y
, (5–139)

so that β1 and β2 are the angles of inclination of the north-south and east-
west profiles with respect to the local horizon; ḡ is the mean value of gravity
between the geoid and the ground. In these formulas, we need only this
mean value ḡ, together with its horizontal derivatives, and the ground value
g, whereas in (5–128) and (5–129), we must know the horizontal derivatives
of gravity all along the plumb line. The detailed shape of the plumb lines
does not directly enter into (5–138) as it does into (5–128) and (5–129).

The mean value ḡ is found by a Prey reduction of the measured gravity
g. In order that the numerical differentiations ∂g/∂x and ∂g/∂y give reliable
results, a dense gravity net around the station is necessary, and the Prey
reduction must be performed carefully. The inclination angles β1 and β2 are
taken from a topographical map.

The sign of these corrections may be found in the following way. If g
decreases in the x-direction, then formulas (5–128) and (5–138) give δϕ > 0
and Fig. 5.18 shows that Φ at P0 is then greater than at P . The same holds
for Λ, so that we have

Φgeoid = Φground + δϕ ,

Λgeoid = Λground + δλ .
(5–140)
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Integrated form
In formula (5–114), the deflection components ξ and η refer to the geoid.
This means that the astronomical observations of Φ and Λ must be reduced
to the geoid.

It is also possible and often more convenient to apply this correction
for plumb-line curvature not to the astronomical coordinates Φ and Λ but
to the geoidal height differences computed from the unreduced deflection
components.

These N values, denoted by N ′, are obtained by using in (5–116) the
directly observed Φ and Λ, which define the direction of the plumb line at
the station P (Fig. 5.19). The notation N will be reserved for the correct
geoidal heights. Then we read from Fig. 5.19:

dh = dN + dH = dN ′ + dn , (5–141)

where h is the geometric height above the ellipsoid. Thus, we see that the
difference between the unreduced and the correct element of geoidal height,

dN ′ − dN = dH − dn = d(OC) , (5–142)

is equal to the difference between the element dH of orthometric height and

earth's surface

local horizon

geoid

h

P

P0

ds

dN

dN
dN '

dH
dn

ellipsoid

ellipsoidal
normal

plumb
line

geoid
normal

W W= P

W W= 0

Fig. 5.19. Reduction of astronomical leveling
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the leveling increment dn, which is the orthometric reduction d(OC). Thus,

NB − NA = N ′
B − N ′

A − OCAB , (5–143)

so that we can immediately apply Eq. (4–46):

NB−NA = −
∫ B

A
ε ds−

∫ B

A

g − γ0

γ0
dn+

ḡB − γ0

γ0
HB− ḡA − γ0

γ0
HA , (5–144)

where γ0 is our usual constant γ45◦ ; the deflection components ε are com-
puted from the observed ground values Φ and Λ by (5–116) and (5–115).
These ideas go back to Helmert, but they are hardly used anymore.

Curvature of the normal plumb line
If, instead of the actual gravity g, the normal gravity γ is applied for the
computation of the plumb-line curvature, we find, using

γ = γa

(
1 + f∗ sin2ϕ − 2

a
h · · ·

)
, (5–145)

that

∂γ

∂x

.=
1
R

∂γ

∂ϕ

.=
2γa

R
f∗ sin ϕ cos ϕ

.=
2γ
R

f∗ sinϕ cos ϕ ,

∂γ

∂y

.=
1

R cos ϕ

∂γ

∂λ
= 0 .

(5–146)

Hence, the integrand (1/γ)(∂γ/∂x) in (5–128) does not depend on h, so that
the integration can be performed immediately. We find

δϕnormal = −f∗

R
h sin 2ϕ = −0.17′′ h [km] sin 2ϕ ,

δλnormal = 0 .

(5–147)

The curvature of the normal plumb line in the east-west direction is zero,
owing to the rotational symmetry of the ellipsoid of revolution. The normal
reduction (5–147) is very simple and practically important, see especially
Sect. 8.13.

5.16 Best-fitting ellipsoids and the mean

earth ellipsoid

We define the mean earth ellipsoid physically as that ellipsoid of revolution
which shares with the earth the mass M , the potential W0, the difference
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between the principal moments of inertia G(C − Ā), where Ā = (A + B)/2,
and the angular velocity ω.

It is also possible to define the mean earth ellipsoid geometrically as
that ellipsoid which approximates the geoid most closely. This definition is
perhaps more appealing to the geodesist; it may, for instance, be formulated
by the condition that the sum of the squares of the deviations N of the geoid
from the ellipsoid be a minimum:∫

σ

∫
N2 dσ = minimum (5–148)

(this integral is to be considered the limit of a sum). The condition of clos-
est approximation may also be expressed in terms of the deflections of the
vertical: ∫

σ

∫
(ξ2 + η2) dσ = minimum , (5–149)

minimizing the sum of the squares of the total deflection of the vertical

ϑ =
√

ξ2 + η2 . (5–150)

Many other similar definitions of closest approximation are possible.
The first definition, based on the condition (5–148), is the most plausible

and the most appropriate intuitively, as has been already noted by Helmert;
in principle, however, all definitions are more or less conventional and are
equivalent theoretically as we shall see below.

The second definition, based on the condition (5–149), uses deflections
of the vertical and is, thus, particularly well adapted to the astrogeodetic
method. However, since this method can be applied only over limited areas,
at most spanning the continents, the integral (5–149) must be replaced by a
sum covering the astronomical stations of a restricted region:∑

(ξ2 + η2) dσ = minimum . (5–151)

In this way, we can get only the best-fitting ellipsoid for the region consid-
ered, rather than a general earth ellipsoid. As Fig. 5.20 indicates, a locally
best-fitting ellipsoid may be quite different from the mean earth ellipsoid,
which can be considered a best-fitting ellipsoid for the whole earth.

If a reasonably good approximation of the earth ellipsoid by a local best-
fitting ellipsoid is desired, it is advisable to subtract the effect of the topog-
raphy and of its isostatic compensation from the astrogeodetic deflections of
the vertical before the minimum condition (5–151) is applied. The purpose
of this procedure is to smooth the irregularities of the geoid. In this way,
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geoid

mean earth ellipsoid

best-fitting ellipsoid
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B

Fig. 5.20. A locally best-fitting ellipsoid and the mean earth ellipsoid

Hayford computed the international ellipsoid as ellipsoid that best fits the
isostatically reduced vertical deflections in the United States. Rapp (1963)
made an interesting recomputation.

Please note: Don’t use formula (5–151) in spite of its historical impor-
tance: the determination of local best-fitting ellipsoids is hopelessly obsolete
now!

The previously described method is impaired by unknown density anoma-
lies and by the lack of complete isostatic compensation. Therefore, it is better
to go still one step further and subtract the gravimetrically computed values
ξg, ηg from the astrogeodetic deflections ξa, ηa. Then the minimum condition∑[

(ξa − ξg)2 + (ηa − ηg)2
]

= minimum (5–152)

results. Thus, we may say that Hayford’s method is equivalent to the use of
(5–152), the gravimetric values ξg, ηg being approximated by deflections that
represent the effect of topography and of its isostatic compensation only. If
the isostatic compensation were complete, and if we had perfect knowledge
of the density above the geoid, both methods would give exactly the same
result if applied properly.

Equivalence of different definitions of the earth ellipsoid
It is quite remarkable that the minimum definitions (5–148) or (5–149) and
a similar definition due to Rudzki, using the condition∫

σ

∫
(∆g)2 dσ = minimum , (5–153)

yield results which, to the usual spherical approximation, are identical with
each other and with the physical definition in terms of M , W0, C − Ā, and



236 5 The geometry of the earth

ω. This can be seen as follows. We write the spherical-harmonic expansion
of the disturbing potential in the form

T =
GδM

R
+

∞∑
n=1

n∑
m=0

[
anmRnm(ϑ, λ) + bnmSnm(ϑ, λ)

]
. (5–154)

Then, according to Sect. 2.17, Eqs. (2–351) and (2–359) or (2–363), we have

N =
GδM

R γ0
− δW

γ0
+

1
γ0

∞∑
n=1

n∑
m=0

[
anmRnm(ϑ, λ) + bnmSnm(ϑ, λ)

]
(5–155)

and

∆g = −GδM

R2
+

2δW
R

+
1
R

∞∑
n=1

n∑
m=0

[
(n − 1) anmRnm(ϑ, λ) + (n − 1) bnmSnm(ϑ, λ)

]
;

(5–156)
remember that γ0 denotes a global mean value of gravity. The condition of
equal masses, δM = 0, is very natural and will be assumed. If we square
the formulas for N and ∆g and integrate over the whole earth, then all
the integrals of products of different harmonics Rnm and Snm will be zero,
according to the orthogonality property (1–83), and the remaining integrals
will be given by (1–84). Thus, we find∫

σ

∫
N2 dσ =

4π
γ2

0

δW 2

+
4π
γ2

0

∞∑
n=1

1
2n + 1

[
a2

n0 +
n∑

m=1

(n + m)!
2(n − m)!

(
a2

nm + b2
nm

)]
,

(5–157)∫
σ

∫
(∆g)2 dσ =

16π
R2

δW 2

+
4π
R2

∞∑
n=1

(n − 1)2

2n + 1

[
a2

n0 +
n∑

m=1

(n + m)!
2(n − m)!

(
a2

nm + b2
nm

)]
.

(5–158)
By a more complicated derivation, which we omit here but which can be
found in Molodenskii et al. (1962: p. 87), one gets the similar formula∫
σ

∫
(ξ2 +η2) dσ =

4π
R2 γ2

0

∞∑
n=1

n (n + 1)
2n + 1

[
a2

n0 +
n∑

m=1

(n + m)!
2(n − m)!

(
a2

nm + b2
nm

)]
.

(5–159)
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Varying the size and shape of the reference ellipsoid and its position with
respect to the earth changes only the coefficients δW , a10, a11, b11, and a20,
leaving the other coefficients practically invariant. Thus, the minimum of any
of the integrals (5–157), (5–158), (5–159) is obtained if all these coefficients
are equal to zero. Now, δW = 0 means equal potential U0 = W0; a10 = a11 =
b11 = 0 means absolute position (coincident centers of gravity); and a20 = 0
means equality of J2 or of C − (A + B)/2.

Therefore, the equivalence of the physical definition by means of M,W0,
C − Ā, ω and of the condition of closest approximation in any of the forms
(5–148), (5–149), or (5–153) has been established. (It may be noted that
(5–158) contains no first-degree term, because of the factor (n − 1)2, and
that (5–159) contains no term of degree zero, so that these equations do not
determine the missing terms.)

Best-fitting ellipsoid and World Geodetic System
It should be remembered, however, that the mean earth ellipsoid, defined
in this manner, is not necessarily the best reference surface for practical
geodetic purposes. It is essentially defined empirically by means of empiri-
cal determinations of GM, W0, etc. Its parameters will change with every
improvement in the quality or the number of the relevant measurements
(gravity, distances, etc.). Since an enormous amount of numerical data is
based on an assumed reference ellipsoid, it would be highly impractical to
change it very often, for this would involve repeated transformations of all
the data. It is much better to use a fixed reference ellipsoid with rigidly
assumed parameters, which can be more or less arbitrary if only they give
a reasonably good approximation. In this respect, the Geodetic Reference
System 1980 is still (2005) perfectly acceptable.

A certain amount of conflict exists between the interests of geodesists and
astronomers regarding the earth ellipsoid. The geodesist needs a permanent
reference surface, whereas the astronomer wants the best approximation of
the earth by an ellipsoid. A good compromise is to use a fixed geodetic
reference ellipsoid, but from time to time to compute the “best” corrections
to the assumed parameters for astronomical and other purposes. This has
been the practice of the IAG since 1974.




