
4 Heights

4.1 Spirit leveling

The principle of spirit leveling is well known. To measure the height difference
δHAB between two points A and B, vertical rods are set up at each of
these two points and a level (leveling instrument) somewhere between them
(Fig. 4.1). Since the line Ā B̄ is horizontal, the difference in the rod readings
l1 = AĀ and l2 = BB̄ is the height difference:

δHAB = l1 − l2 . (4–1)

If we measure a circuit, that is, a closed leveling line where we finally return
to the initial point, then the algebraic sum of all measured differences in
height will not in general be rigorously zero, as one would expect, even if we
had been able to observe with perfect precision. This misclosure indicates
that leveling is more complicated than it appears at first sight.

Let us look into the matter more closely. Figure 4.2 shows the relevant
geometrical principles. Let the points A and B be so far apart that the pro-
cedure of Fig. 4.1 must be applied repeatedly. Then the sum of the leveled
height differences between A and B will not be equal to the difference in the
orthometric heights HA and HB . The reason is that the leveling increment
δn, as we henceforth denote it, is different from the corresponding increment
δHB of HB (Fig. 4.2), due to the nonparallelism of the level surfaces. De-
noting the corresponding increment of the potential W by δW , we have by
(2–21)

−δW = g δn = g′ δHB , (4–2)
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Fig. 4.2. Leveling and orthometric height

where g is the gravity at the leveling station and g′ is the gravity on the
plumb line of B at δHB . Hence,

δHB =
g

g′
δn �= δn . (4–3)

There is, thus, no direct geometrical relation between the result of lev-
eling and the orthometric height, since (4–3) expresses a physical relation.
What, then, if not height, is directly obtained by leveling? If gravity g is also
measured, then

δW = −g δn (4–4)

is determined, so that we obtain

WB − WA = −
B∑
A

g δn . (4–5)

Thus, leveling combined with gravity measurements furnishes potential dif-
ferences, that is, physical quantities.

It is somewhat more rigorous theoretically to replace the sum in (4–5)
by an integral, obtaining

WB − WA = −
∫ B

A
g dn . (4–6)

Note that this integral is independent of the path of integration; that is,
different leveling lines connecting the points A and B (Fig. 4.3) should give
the same result. This is evident because W is a function of position only;
therefore, to every point there corresponds a unique value W . If the leveling
line returns to A, then the total integral must be zero:∮

g dn = −WA + WA = 0 . (4–7)
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Fig. 4.3. Two different leveling lines connecting A and B (taken to-
gether, they form a circuit)

The symbol
∮

denotes an integral over a circuit.
On the other hand, the measured height difference, that is, the sum of

the leveling increments

∆nAB =
B∑
A

δn =
∫ B

A
dn , (4–8)

depends on the path of integration and is, thus, not in general zero for a
circuit: ∮

dn = misclosure �= 0 . (4–9)

In mathematical terms, dn is not a perfect differential (the differential of a
function of position), whereas dW = −g dn is perfect, so that dn becomes a
perfect differential when it is multiplied by the integrating factor (−g).

Thus, potential differences are the result of leveling combined with grav-
ity measurements. They are basic to the whole theory of heights; even ortho-
metric heights must be considered as quantities derived from potential differ-
ences. Leveling without gravity measurements, although applied in practice,
is meaningless from a rigorous point of view, for the use of leveled heights
(4–8) as such leads to contradictions (misclosures); it will not be considered
here.

4.2 Geopotential numbers and dynamic heights

Let O be a point at sea level, that is, simplifying speaking, on the geoid;
usually a suitable point on the seashore is taken. Let A be another point,
connected to O by a leveling line. Then, by formula (4–6), the potential
difference between A and O can be determined. The integral∫ A

0
g dn = W0 − WA = C , (4–10)
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which is the difference between the potential at the geoid and the potential
at the point A, has been introduced as the geopotential number of A in
Sect. 2.4. It is defined so as to be always positive.

As a potential difference, the geopotential number C is independent of
the particular leveling line used for relating the point to sea level. It is the
same for all points of a level surface; it can, thus, be considered as a natural
measure of height, even if it does not have the dimension of a length.

The geopotential number C is measured in geopotential units (g.p.u.),
where

1 g.p.u. = 1 kgal m = 1000 gal m. (4–11)

Using g
.= 0.98 kgal in (4–10), we get

C
.= g H

.= 0.98H , (4–12)

so that the geopotential numbers in g.p.u. are almost equal to the height
above sea level in meters.

The geopotential numbers were adopted at a meeting of a Subcommission
of the IAG at Florence in 1955. Formerly, the dynamic heights were used,
defined by

Hdyn =
C

γ0
, (4–13)

where γ0 is normal gravity for an arbitrary standard latitude, usually 45◦:

γ45◦ = 9.806 199 203 m s−2 = 980.6 199 203 gal (4–14)

for the GRS 1980. Just note and keep in mind that 1 gal = 10−2 ms−2 and,
accordingly, 1mgal = 10−5 m s−2.

The dynamic height differs from the geopotential number only in the
scale or the unit: The division by the constant γ0 in (4–13) merely con-
verts a geopotential number into a length. However, the dynamic height has
no geometrical meaning whatsoever, so that the division by an arbitrary γ0

somehow obscures the true physical meaning of a potential difference. Hence,
the geopotential numbers are, for reasons of theory and for practically es-
tablishing a national or continental height system, preferable to the dynamic
heights.

Dynamic correction
It is sometimes convenient to convert the measured height difference ∆nAB

of (4–8) into a difference of dynamic height by adding a small correction.
Using Eqs. (4–13) and (4–10) gives

∆Hdyn

AB = Hdyn

B − Hdyn

A =
1
γ0

(CB − CA) =
1
γ0

∫ B

A
g dn , (4–15)
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which may be rewritten as

∆Hdyn

AB =
1
γ0

∫ B

A
(g − γ0 + γ0) dn =

∫ B

A
dn +

∫ B

A

g − γ0

γ0
dn , (4–16)

so that
∆Hdyn

AB = ∆nAB + DCAB , (4–17)

where

DCAB =
∫ B

A

g − γ0

γ0
dn

.=
B∑
A

g − γ0

γ0
δn (4–18)

is the dynamic correction.
As a matter of fact, the dynamic correction may also be used for com-

puting differences of geopotential numbers. We at once obtain

CB − CA = γ0 ∆nAB + γ0 DCAB . (4–19)

4.3 Orthometric heights

We denote the intersection of the geoid and the plumb line through point P
by P0 (Fig. 4.4). Let C be the geopotential number of P , that is,

C = W0 − W , (4–20)

and H its orthometric height, that is, the length of the plumb-line segment
between P0 and P . Perform the integration in (4–10) along the plumb line
P0P . This is permitted because the result is independent of the path. We
then get

C =
∫ H

0
g dH . (4–21)
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Fig. 4.4. Gravity reduction
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This equation contains H in an implicit way. It is also possible to get H
explicitly. From

dC = −dW = g dH , dH = −dW

g
=

dC

g
, (4–22)

we obtain

H = −
∫ W

W0

dW

g
=
∫ C

0

dC

g
. (4–23)

As before, the integration is extended over the plumb line.
The explicit formula (4–23), however, is of little practical use. It is better

to transform (4–21) in a way that at first looks entirely trivial:

C =
∫ H

0
g dH = H · 1

H

∫ H

0
g dH , (4–24)

so that
C = ḡ H , (4–25)

where

ḡ =
1
H

∫ H

0
g dH (4–26)

is the mean value of the gravity along the plumb line between the geoid,
point P0, and the surface point P . From (4–25) it follows that

H =
C

ḡ
, (4–27)

which permits H to be computed if the mean gravity ḡ is known. Since ḡ
does not strongly depend on H, Eq. (4–27) is a practically useful formula
and not merely a tautology. For determining the mean gravity ḡ, Eq. (4–26)
may be written

ḡ =
1
H

∫ H

0
g(z) dz , (4–28)

where g(z) is the actual gravity at the variable point Q which has the height z
(Fig. 3.8). The simplest approximation is to use the simplified Prey reduction
of (3–45):

g(z) = g + 0.0848 (H − z) , (4–29)

where g is the gravity measured at the surface point P . The integration
(4–28) can now be performed immediately, giving

ḡ =
1
H

∫ H

0

[
g + 0.0848 (H − z)

]
dz

= g +
0.0848

H

[
H z − z2

2

]∣∣∣H
0

(4–30)
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or
ḡ = g + 0.0424H (g in gal, H in km) . (4–31)

The factor 0.0424 refers to the normal density � = 2.67 g/cm3. The corre-
sponding formula for arbitrary constant density is, by (3–43),

ḡ = g −
(

1
2

∂γ

∂h
+ 2π G�

)
H . (4–32)

If we use ḡ according to (4–31) or (4–32) in the basic formula (4–27), we
obtain the so-called Helmert height:

H =
C

g + 0.0424H
(4–33)

with C in g.p.u., g in gal and H in km.
As we have seen in Sect. 3.5, this approximation replaces the terrain

with an infinite Bouguer plate of constant density and of height H. This is
often sufficient. Sometimes, in high mountains and for highest precision, it
is necessary to apply to g a more rigorous Prey reduction, such as the three
steps described in Sect. 3.5. A practical and very accurate method for this
purpose has been given by Niethammer in 1932. It takes the topography into
account, assuming only that the free-air gradient is normal and the density
is constant down to the geoid.

It is also sufficient to calculate ḡ as the arithmetic mean of gravity g mea-
sured at the surface point P and of gravity g0 computed at the corresponding
geoidal point P0 by the Prey reduction:

ḡ = 1
2 (g + g0) . (4–34)

This presupposes that gravity g varies linearly along the plumb line. This
can usually be assumed with sufficient accuracy, even in extreme cases, as
shown by Mader (1954) and by Ledersteger (1955).

Orthometric correction
The orthometric correction is added to the measured height difference, in
order to convert it into a difference in orthometric height.

We let the leveling line connect two points A and B (Fig. 4.5) and apply
a simple trick first:

∆HAB = HB − HA = HB − HA − Hdyn

B + Hdyn

A + (Hdyn

B − Hdyn

A )

= ∆Hdyn

AB + (HB − Hdyn

B ) − (HA − Hdyn

A ) .
(4–35)



164 4 Heights

A

B

geoid

earth's
surface

A0 B0

Fig. 4.5. Orthometric and dynamic correction

From (4–17), we have

∆Hdyn

AB = ∆nAB + DCAB . (4–36)

Consider now the differences between the orthometric and dynamic heights,
HA − Hdyn

A and HB − Hdyn

B . Imagine a fictitious leveling line leading from
point A0 at the geoid to the surface point A along the plumb line. Then the
measured height difference would be HA itself: ∆nA0A = HA, so that

DCA0A = ∆Hdyn

A0A − ∆nA0A = Hdyn

A − HA (4–37)

and
HA − Hdyn

A = −DCA0A ,

HB − Hdyn

B = −DCB0B .
(4–38)

Substituting (4–36) and (4–38) into (4–35), we finally have

∆HAB = ∆nAB + DCAB + DCA0A − DCB0B (4–39)

or
∆HAB = ∆nAB + OCAB , (4–40)

where
OCAB = DCAB + DCA0A − DCB0B (4–41)

is the orthometric correction. This is a remarkable relation between the or-
thometric and dynamic corrections (Ledersteger 1955). We may write this

OCAB = DCAB + DCA0A + DCBB0 , (4–42)

where we have reversed the sequence of the subscripts of the last term and,
consequently, the sign. With DCB0A0 = 0 (why?), we may write

OCAB = DCAB + DCBB0 + DCB0A0 + DCA0A . (4–43)
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Accordingly, this may be written

OCAB = DCABB0A0A. (4–44)

Thus, the orthometric correction from A to B equals the dynamic correc-
tion over the loop ABB0A0A, a curious, but practically completely useless
relation equivalent to (4–41). (Question: Why is this independent of γ0?)

From (4–18), we find

DCAB =
∫ B

A

g − γ0

γ0
dn =

B∑
A

g − γ0

γ0
δn ,

DCA0A =
∫ A

A0

g − γ0

γ0
dH =

ḡA − γ0

γ0
HA ,

DCB0B =
∫ B

B0

g − γ0

γ0
dH =

ḡB − γ0

γ0
HB ,

(4–45)

where ḡA and ḡB are the mean values of gravity along the plumb lines of A
and B. Thus, the orthometric correction (4–41) becomes

OCAB =
B∑
A

g − γ0

γ0
δn +

ḡA − γ0

γ0
HA − ḡB − γ0

γ0
HB . (4–46)

Here again we need the mean values of gravity along the plumb lines, ḡA and
ḡB ; γ0 is an arbitrary constant for which we always take normal gravity at
45◦ latitude.

Accuracy
Let us first evaluate the effect on H of an error in the mean gravity ḡ. From
H = C/ḡ, we obtain by differentiation

δH = −C

ḡ2
δḡ = −H

ḡ
δḡ . (4–47)

Since ḡ is about 1000 gal, we have, neglecting the minus sign, the simple
formula

δH[mm]

.= δḡ[mgal] H[km] , (4–48)

the subscripts denoting the units; δH is the error in H, caused by an error
δḡ in ḡ.

For H = 1 km,
δH[mm]

.= δḡ[mgal] , (4–49)
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which shows that an error δḡ in the order of 100 mgal falsifies an elevation
of 1000 m by only 10 cm.

Let us now estimate the effect of an error of the density � on ḡ. Differ-
entiating (4–32) and omitting the minus sign we find

δḡ = 2π GH d� . (4–50)

If δ� = 0.1 g cm−3 and H = 1 km, then

δḡ = 4.2 mgal , (4–51)

which causes an error of 4 mm in H. A density error of 0.6 g/cm3, which
corresponds to the maximum variation of rock density occurring in practice,
falsifies H = 1000 m by only 25 mm.

Mader (1954) has estimated the difference between the simple computa-
tion of mean gravity according to Helmert, Eq. (4–32), and more accurate
methods that take the terrain correction into account. He found for Hochtor,
in the Alps, H = 2504 m:

Helmert ḡ = 980.263 (Bouguer plate only),

Niethammer 286

ḡ = 1
2 (g + g0) 285

}
(also terrain correction) . (4–52)

Mean gravity ḡ according to (4–34) differs from Niethammer’s value by only
1mgal, which shows the linearity of g along the plumb line even in an extreme
case. This corresponds to a difference in H of 3mm. The simple Helmert
height differs by about 6 cm from these more elaborately computed heights.

Therefore, the differences are very small even in this rather extreme case;
we see that orthometric heights can be obtained with very high accuracy.
This is of great importance for a discussion of the recent theory of Moloden-
sky from a practical point of view. See Chap. 8, particularly Sect. 8.11.

4.4 Normal heights

Assume for the moment the gravity field of the earth to be normal, that is,
W = U , g = γ, T = 0. On this assumption compute “orthometric heights”;
they will be called normal heights and denoted by H∗. Thus, Eqs. (4–21)
through (4–26) become

W0 − W = C =
∫ H∗

0
γ dH∗ , (4–53)
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H∗ =
∫ C

0

dC

γ
, (4–54)

C = γ̄ H∗ , (4–55)

where

γ̄ =
1

H∗

∫ H∗

0
γ dH∗ (4–56)

is the mean normal gravity along the plumb line.
As the normal potential U is a simple analytic function, these formulas

can be evaluated straightforwards; but since the potential of the earth is
evidently not normal, what does all this mean? Consider a point P on the
physical surface of the earth. It has a certain potential WP and also a certain
normal potential UP , but in general WP �= UP . However, there is a certain
point Q on the plumb line of P , such that UQ = WP ; that is, the normal
potential U at Q is equal to the actual potential W at P . The normal height
H∗ of P is nothing but the ellipsoidal height of Q above the ellipsoid, just
as the orthometric height of P is the height of P above the geoid.

For more details the reader is referred to Sect. 8.3; Fig. 8.2 illustrates
the geometric relations.

We now give some practical formulas for the computation of normal
heights from geopotential numbers. Writing (4–56) in the form

γ̄ =
1

H∗

∫ H∗

0
γ(z) dz (4–57)

corresponding to (4–28), then we can express γ(z) by (2–215) as

γ(z) = γ

[
1 − 2

a

(
1 + f + m − 2f sin2ϕ

)
z +

3
a2

z2

]
, (4–58)

where γ is the gravity at the ellipsoid, depending on the latitude ϕ but not
on z. Thus, straightforward integration with respect to z yields

γ̄ =
1

H∗ γ

[
z − 2

a

(
1 + f + m − 2f sin2ϕ

)z2

2
+

3
a2

z3

3

] ∣∣∣H∗

0

=
1

H∗ γ

[
H∗ − 1

a

(
1 + f + m − 2f sin2ϕ

)
H∗2 +

1
a2

H∗3
] (4–59)

or

γ̄ = γ

[
1 −

(
1 + f + m − 2f sin2ϕ

)H∗2

a
+

H∗2

a2

]
. (4–60)

This formula may be used for computing H∗ by the formula

H∗ =
C

γ̄
. (4–61)
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The mean theoretical gravity itself depends on H∗, by (4–60), but not
strongly, so that an iterative solution is very simple.

It is also possible to give a direct expression of H∗ in terms of the geopo-
tential number C by substituting (4–60) into (4–61) and expanding into a
series of powers of H∗:

H∗ =
C

γ

[
1 +

1
a

(
1 + f + m − 2f sin2ϕ

)
H∗ + O(H∗2)

]
. (4–62)

Solving this equation for H∗ and expanding H∗ in powers of C/γ, we obtain

H∗ =
C

γ

[
1 +

(
1 + f + m − 2f sin2ϕ

) C

aγ
+
(

C

aγ

)2
]

, (4–63)

where γ is normal gravity at the ellipsoid, for the same latitude ϕ. The
accuracy of this formula will be sufficient for almost all practical purposes;
still more accurate expressions are given in Hirvonen (1960).

Corresponding to the dynamic and orthometric corrections, there is a
normal correction NC of the measured height differences. Equation (4–46)
immediately yields, on replacing ḡ by γ̄ and H by H∗:

NCAB =
B∑
A

g − γ0

γ0
δn +

γ̄A − γ0

γ0
H∗

A − γ̄B − γ0

γ0
H∗

B , (4–64)

so that
∆H∗

AB = H∗
B − H∗

A = ∆nAB + NCAB . (4–65)

The normal heights were introduced by Molodensky in connection with his
method of determining the physical surface of the earth; see Chap. 8.

4.5 Comparison of different height systems

By means of the geopotential number

C = W0 − W =
∫

point

geoid

g dn , (4–66)

we can write the different kinds of height in a common form which is very
instructive:

height =
C

G0
, (4–67)
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where the height systems differ according to how the gravity value G0 in the
denominator is chosen. We have:

dynamic height: G0 = γ0 = constant ,

orthometric height: G0 = ḡ ,

normal height: G0 = γ̄ .

(4–68)

It is seen that one can devise an unlimited number of other height systems
by selecting G0 in a different way.

The geopotential number C is, in a way, the most direct result of leveling
and is of great scientific importance. However, it is not a height in a geomet-
rical or practical sense. While the dynamic height has at least the dimension
of a height, it has no geometrical meaning. One advantage is that points of
the same level surface have the same dynamic height; this corresponds to the
intuitive feeling that if we move horizontally, we remain at the same height.
Note that the orthometric height differs for points of the same level surface
because the level surfaces are not parallel. This gives rise to the well-known
paradoxes of “water flowing uphill”, etc.

The dynamic correction can be very large, because gravity varies from
equator to pole by about 5000 mgal. Take, for instance, a leveling line of
1000 m difference of height at the equator, where g

.= 978.0 gal, computed
with γ0 = γ45◦

.= 980.6 gal. Then (4–18) gives a dynamic correction of
approximately

DC =
978.0 − 980.6

980.6
· 1000 m = −2.7 m . (4–69)

Because of these large corrections, dynamic heights are not suitable as prac-
tical heights, and the geopotential numbers are preferable for scientific pur-
poses.

Orthometric heights are the natural “heights above sea level”, that is,
heights above the geoid. Therefore, they have an unequalled geometrical
and physical significance. Their computation is relatively laborious, unless
Helmert’s simple formula (4–33) is used, which is sufficient in most cases.
The orthometric correction is rather small. In the Alpine leveling line of
Mader (1954), leading from an elevation of 754 m to 2505 m, the orthometric
correction is about 15 cm per 1 km of measured height difference. See also
Sect. 8.15.

The physical and geometrical meaning of the normal heights is less ob-
vious; they depend on the reference ellipsoid used. Although they are basic
in the new theories of physical geodesy, they have a somewhat artificial
character as compared to the orthometric heights. They are, however, easy
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to compute rigorously; the order of magnitude of the normal corrections is
about the same as that of the orthometric corrections. In some countries
they have replaced the orthometric heights in practice.

For estimates of the difference between orthometric height H and normal
height H∗, we refer the reader to Sect. 8.13.

All these height systems based on C are functions of position only. There
are, thus, no misclosures, as there are with measured heights. From a purely
practical point of view, the desired requirements of a height system are that

1. misclosures be eliminated,
2. corrections to the measured heights be as small as possible.

Empirical height systems have been devised to give smaller corrections than
either the orthometric or the normal heights. They have no clear physical
significance, however, and are beyond the scope of this book.

Accuracy
Leveling is one of the most accurate geodetic measurements. A standard
error of ±0.1 mm per km distance is possible; it increases with the square
root of the distance.

If the error of measurement and interpolation, etc., of gravity is negligible,
then the differences in the geopotential number C can be determined with
an accuracy of ±0.1 gal m per km distance; this corresponds to ±0.1 mm
in measured height. Referring to gravity measurements, it is sufficient to
measure at distances of some kilometers.

Dynamic heights and normal heights are clearly as accurate as the geopo-
tential numbers, because normal gravity γ is errorless. Orthometric heights,
however, are also affected by imperfect knowledge of density, etc., but only
slightly; see the end of Sect. 4.3.

Triangulated heights
Historically and for the sake of completeness, the determination of heights
by triangulation, that is, by means of zenith angles, should be mentioned.

The main problem is the atmospheric refraction affecting the zenith an-
gles. Thus, the accuracy of triangulated heights is much less than that of
leveling. Consequently, triangulated heights are not considered any longer
here.

For small distances (e.g., < 1 km), trigonometric height measurements,
referred to the local plumb line, have the character of a leveled height dif-
ference δn This fact may be used (with care!) to fill small gaps in a leveling
network.
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Remark on misclosures
All misclosures in any acceptable system of heights denoted for the moment
by h (not to be confused with ellipsoidal heights) must be zero:∮

dh = 0 (4–70)

for any closed path. Height networks consisting of triangles, if computed by
least-squares adjustment, thus must satisfy the condition that the sum of
height differences must be zero for each triangle. Mathematically, this can
be shown to be equivalent to the commutativity of second derivatives:

∂2h

∂x ∂y
=

∂2h

∂y ∂x
. (4–71)

4.6 GPS leveling

Spirit leveling (Fig. 4.6) is a very time-consuming operation. GPS has intro-
duced a revolution also here. The basic equation is

H = h − N . (4–72)

This equation relates the orthometric height H (above the geoid), the el-
lipsoidal height h (above the ellipsoid), and the geoidal undulation N . If
any two of these quantities are measured, then the third quantity can be
computed.

If h is measured by GPS, and if there exists a reliable digital geoid map
of N , then the orthometric height H can be obtained immediately.

Equation (4–72) can also be used for geoid determination: if h is measured
by GPS, and H is available from leveling, then the geoid N can be determined
as N = h − H. The same principle can be applied even on the oceans as
satellite altimetry, as we will see later in Chap. 7, e.g., Eq. (7–47).

GPS leveling implies replacing to some extent the classical leveling by
GPS. Referring to Fig. 4.6 and applying (4–72) to A and B leads to

HA = hA − NA ,

HB = hB − NB ,
(4–73)

and the height difference

HB − HA = hB − hA − NB + NA . (4–74)

Introducing the notations δHAB = HB −HA, δhAB = hB −hA, and δNAB =
NB − NA, the relation reduces to

δHAB = δhAB − δNAB . (4–75)
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Fig. 4.6. GPS leveling

With GPS leveling, δhAB is obtained, so that with a known geoid, i.e., known
δNAB , the orthometric height difference δHAB may be computed accord-
ing to (4–75). This is a tremendous advantage since otherwise the classical
leveling together with gravity measurements is required to determine the
orthometric height difference, see Eqs. (4–40) and (4–46).

Note that only the difference of the geoidal undulations impacts the
result.




