
3 Gravity reduction

3.1 Introduction

Gravity g measured on the physical surface of the earth must be distin-
guished from normal gravity γ referring to the surface of the ellipsoid. To
refer g to sea level, a reduction is necessary. Since there are masses above
sea level, the reduction methods differ depending on the way how to deal
with these topographic masses. Gravity reduction is essentially the same for
gravity anomalies ∆g and gravity disturbances δg.

Gravity reduction serves as a tool for three main purposes:

• determination of the geoid,
• interpolation and extrapolation of gravity,
• investigation of the earth’s crust.

Only the first two purposes are of a direct geodetic nature. The third is of
interest to theoretical geophysicists and geologists, who study the general
structure of the crust, and to exploration geophysicists.

The use of Stokes’ formula for the determination of the geoid requires
that the gravity anomalies ∆g represent boundary values at the geoid. This
implies two conditions: first, gravity g must refer to the geoid; second, there
must be no masses outside the geoid (Sect. 2.12). Hence, figuratively speak-
ing, gravity reduction consists of the following steps:

1. the topographic masses outside the geoid are completely removed or
shifted below sea level;

2. then the gravity station is lowered from the earth’s surface (point P )
to the geoid (point P0, see Fig. 3.1).
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Fig. 3.1. Gravity reduction
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The first step requires knowledge of the density of the topographic masses,
which is somewhat problematic.

By such a reduction procedure certain irregularities in gravity due to
differences in height of the stations are removed so that interpolation and
even extrapolation to unobserved areas become easier (Sect. 9.7).

3.2 Auxiliary formulas

Let us compute the potential U and the vertical attraction A of a homoge-
neous circular cylinder of radius a and height b at a point P situated on its
axis at a height c above its base (Fig. 3.2).

P outside cylinder
Assume first that P is above the cylinder, c > b. Then the potential is given
by the general formula (1–12),

U = G

∫∫∫
�

l
dv . (3–1)

Introducing polar coordinates s, α in the xy-plane by

x = s cos α , y = s sin α , (3–2)

we have
l =

√
s2 + (c − z)2 (3–3)

and
dv = dx dy dz = s ds dα dz . (3–4)
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Fig. 3.2. Potential and attraction of a circular cylinder on an external point
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Hence, we find, with the density � = constant,

U = G�

∫ 2π

α=0

∫ a

s=0

∫ b

z=0

s ds dz dα√
s2 + (c − z)2

= 2π G�

∫ a

s=0

∫ b

z=0

s ds dz√
s2 + (c − z)2

.

(3–5)

The integration with respect to s yields∫ a

s=0

s ds√
s2 + (c − z)2

=
√

s2 + (c − z)2
∣∣∣a
0

=
√

a2 + (c − z)2 − c + z ,

(3–6)

so that we have

U = 2π G�

∫ b

0

[
− c + z +

√
a2 + (c − z)2

]
dz . (3–7)

The indefinite integral is 2π G� times

1
2 (c−z)2− 1

2 (c−z)
√

a2 + (c − z)2− 1
2 a2 ln

[
c−z+

√
a2 + (c − z)2

]
, (3–8)

as may be verified by differentiation. Hence, U finally becomes

Ue = π G�
{

(c − b)2 − c2 − (c − b)
√

a2 + (c − b)2 + c
√

a2 + c2

− a2 ln
[
c − b +

√
a2 + (c − b)2

]
+ a2 ln

[
c +

√
a2 + c2

]}
,

(3–9)

where the subscript e denotes that P is external to the cylinder.
The vertical attraction A is the negative derivative of U with respect to

the height c [see Eq. (2–22)]:

A = −∂U

∂c
. (3–10)

Differentiating (3–9), we obtain

Ae = 2π G�
[
b +

√
a2 + (c − b)2 −

√
a2 + c2

]
. (3–11)
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P on cylinder
In this case we have c = b, and Eqs. (3–9) and (3–11) become

U0 = π G�

[
−b2 + b

√
a2 + b2 + a2 ln

b +
√

a2 + b2

a

]
, (3–12)

A0 = 2π G�
[
a + b −

√
a2 + b2

]
. (3–13)

P inside cylinder
We assume that P is now inside the cylinder, c < b. By the plane z = c we
separate the cylinder into two parts, 1 and 2 (Fig. 3.3), and compute U as
the sum of the contributions of these two parts:

Ui = U1 + U2 , (3–14)

where the subscript i denotes that P is now inside the cylinder. The term
U1 is given by (3–12) with b replaced by c, and U2 by the same formula with
b replaced by b − c. Their sum is

Ui = π G�

[
− c2 − (b − c)2 + c

√
a2 + c2 + (b − c)

√
a2 + (b − c)2

+ a2 ln
c +

√
a2 + c2

a
+ a2 ln

b − c +
√

a2 + (b − c)2

a

]
.

(3–15)

It is easily seen that the attraction is the difference A1 − A2:

Ai = 2π G�
[
2c − b −

√
a2 + c2 +

√
a2 + (b − c)2

]
; (3–16)

this formula may also be obtained by differentiating (3–15) according to
(3–10).
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Fig. 3.3. Potential and attraction on an internal point
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Circular disk

Let the thickness b of the cylinder go to zero such that the product

κ = b � (3–17)

remains finite. The quantity κ may then be considered as the surface density
with which matter is concentrated on the surface of a circle of radius a. We
need potential and attraction for an exterior point. By setting

� =
κ

b
(3–18)

in (3–9) and (3–11) and then letting b → 0, we get by well-known methods
of the calculus

U0
e = 2π Gκ

[√
a2 + c2 − c

]
,

A0
e = 2π Gκ

(
1 − c√

a2 + c2

)
.

(3–19)

Sectors and compartments

For a sector of radius a and angle

α =
2π
n

, (3–20)

we must divide the above formulas by n. For a compartment subtending the
same angle and bounded by the radii a1 and a2 (Fig. 3.4), we get, in an
obvious notation,

∆U =
1
n

[
U(a2) − U(a1)

]
,

∆A =
1
n

[
A(a2) − A(a1)

]
.

(3–21)
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Fig. 3.4. Template compartment
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Since Ae and Ai differ only by a constant, this constant drops out in the
second equation of (3–21), and we obtain from (3–11) and (3–16)

∆Ae = ∆Ai =
2π
n

G�
[√

a2
2 + (c − b)2 −

√
a2

1 + (c − b)2

−
√

a2
2 + c2 +

√
a2

1 + c2
]
.

(3–22)

On the other hand, ∆Ue �= ∆Ui.
Note that we have for didactic reasons purposely used the compartments

corresponding to polar coordinates (Fig. 3.4) because they are so simple
and instructive, but also still useful for many purposes. For practical com-
putation, rectangular blocks (see Fig. 2.21) are almost exclusively used. For
conceptual purposes, however, the polar coordinate template remains invalu-
able; cf. Sect. 2.21.

3.3 Free-air reduction

For a theoretically correct reduction of gravity to the geoid, we need ∂g/∂H,
the vertical gradient of gravity. If g is the observed value at the surface of the
earth, then the value g0 at the geoid may be obtained as a Taylor expansion:

g0 = g − ∂g

∂H
H · · · , (3–23)

where H is the height between P , the gravity station above the geoid, and
P0, the corresponding point on the geoid (Fig. 3.1). Suppose there are no
masses above the geoid and neglecting all terms but the linear one, we have

g0 = g + F , (3–24)

where
F = − ∂g

∂H
H (3–25)

is the free-air reduction to the geoid. Note that the assumption of no masses
above the geoid may be interpreted in the sense that such masses have been
mathematically removed beforehand, so that this reduction is indeed carried
out “in free air”.

For many practical purposes it is sufficient to use instead of ∂g/∂H the
normal gradient of gravity (associated with the ellipsoidal height h) ∂γ/∂h,
obtaining

F
.= −∂γ

∂h
H

.= +0.3086H [mgal] (3–26)

for H in meters.
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3.4 Bouguer reduction

The objective of the Bouguer reduction of gravity is the complete removal
of the topographic masses, that is, the masses outside the geoid.

The Bouguer plate

Assume the area around the gravity station P to be completely flat and
horizontal (Fig. 3.5), and let the masses between the geoid and the earth’s
surface have a constant density �. Then the attraction A of this so-called
Bouguer plate is obtained by letting a → ∞ in (3–13), since the plate,
considered plane, may be regarded as a circular cylinder of thickness b = H
and infinite radius. By well-known rules of the calculus, we obtain

AB = 2π G�H (3–27)

as the attraction of an infinite Bouguer plate. With standard density � =
2.67 g cm−3 this becomes

AB = 0.1119H [mgal] (3–28)

for H in meters.
Removing the plate is equivalent to subtracting its attraction (3–27) from

the observed gravity. This is called incomplete Bouguer reduction. Note that
this is the usual “plane” Bouguer plate; for a truly “spherical” Bouguer plate
we would have 4π instead of 2π (Moritz 1990: p. 235).

To continue and complete our gravity reduction, we must now apply the
free-air reduction F as given in (3–26). This combined process of removing
the topographic masses and applying the free-air reduction is called complete
Bouguer reduction. Its result is Bouguer gravity at the geoid:

gB = g − AB + F . (3–29)

P

H

P0

Fig. 3.5. Bouguer plate
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With the assumed numerical values, we have

gravity measured at P g
minus Bouguer plate − 0.1119 H
plus free-air reduction + 0.3086 H

Bouguer gravity at P0 gB = g + 0.1967 H .

(3–30)

Since gB now refers to the geoid, we obtain genuine gravity anomalies in the
sense of Sect. 2.12 by subtracting normal gravity γ referred to the ellipsoid:

∆gB = gB − γ . (3–31)

They are called Bouguer anomalies.

Terrain correction
This simple procedure is refined by taking into account the deviation of the
actual topography from the Bouguer plate of P (Fig. 3.6). This is called
terrain correction or topographic correction. At A the mass surplus ∆m+,
which attracts upward, is removed, causing g at P to increase. At B the
mass deficiency ∆m− is made up, causing g at P to increase again. The
terrain correction is always positive.

The practical determination of the terrain correction At is carried out
by means of a template, similar to that shown in Fig. 2.20, using (3–22) and
adding the effects of the individual compartments:

At =
∑

∆A . (3–32)
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Fig. 3.6. Terrain correction
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Again, we can use a template in polar coordinates (Fig. 2.20) for theoretical
considerations or a rectangular grid (Fig. 2.21) for numerical computations.
For a surplus mass ∆m+, H > Hp, we have

b = H − HP , c = 0 ; (3–33)

and for a mass deficiency ∆m−, H < HP ,

b = c = HP − H . (3–34)

By adding the terrain correction At to (3–29), the refined Bouguer gravity

gB = g − AB + At + F (3–35)

is obtained. The Bouguer reduction and the corresponding Bouguer anoma-
lies ∆gB are called refined or simple, depending on whether the terrain cor-
rection has been applied or not.

In practice it is convenient to separate the Bouguer reduction into the
effect of a Bouguer plate and the terrain correction, because the amount of
the latter is usually much less. Even for mountains 3000 m in height, the
terrain correction is only of the order of 50 mgal (Heiskanen and Vening
Meinesz 1958: p. 154).

Unified procedure
It is also possible to compute the total effect of the topographic masses,

AT = AB − At , (3–36)

in one step by using columns with base at sea level (Fig. 3.7), again sub-

P

P0

H

HP

Fig. 3.7. Bouguer reduction
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dividing the terrain by means of a template. Note the difference between
AT , the attraction of the topographic masses, and the terrain correction At!
Then

AT =
∑

∆A , (3–37)

where we now have b = H, c = HP . Use (3–13) with b = HP for the
innermost circle.

Instead of (3–35), we now have

gB = g − AT + F . (3–38)

The Bouguer reduction may be still further refined by the consider-
ation of density anomalies, anomalies in the free-air gradient of gravity
(Sect. 2.20), and spherical effects. More computational formulas may be
found in Jung (1961: Sect. 6.4).

3.5 Poincaré and Prey reduction

Suppose we need the gravity g′ inside the earth. Since g′ cannot be measured,
it must be computed from the surface gravity. This is done by reducing the
measured values of gravity according to the method of Poincaré and Prey.

We denote the point at which g′ is to be computed by Q, so that g′ = gQ.
Let P be the corresponding surface point so that P and Q are situated on
the same plumb line (Fig. 3.8). Gravity at P , denoted by gP , is measured.

The direct way of computing gQ would be to use the formula

gQ = gP −
∫ P

Q

∂g

∂H
dH , (3–39)

P

Q

geoid

W W= 0

plumb line

earth's surface
z H= Q

P0

H H= P

Fig. 3.8. Prey reduction
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provided that the actual gravity gradient ∂g/∂H inside the earth were known.
It can be obtained by Bruns’ formula (2–40),

∂g

∂H
= −2g J + 4π G� − 2ω2 , (3–40)

if the mean curvature J of the geopotential surfaces and the density � are
known between P and Q.

The normal free-air gradient is given by (2–147):

∂γ

∂h
= −2γ J0 − 2ω2 , (3–41)

where J0 is the mean curvature of the spheropotential surfaces. If the ap-
proximation

g J
.= γ J0 (3–42)

is sufficient, then we get from (3–40) and (3–41)

∂g

∂H
=

∂γ

∂h
+ 4π G� . (3–43)

Numerically, neglecting the variation of ∂γ/∂h with latitude, we find for the
density � = 2.67 g cm−3 and (truncated) G = 6.67 · 10−11 m3 kg−1 s−2

∂g

∂H
= −0.3086 + 0.2238 = −0.0848 gal km−1 , (3–44)

so that (3–39) becomes

gQ = gP + 0.0848 (HP − HQ) (3–45)

with g in gal and H in km. This simple formula, although being rather crude,
is often applied in practice.

The accurate way to compute gQ would be to use (3–39) and (3–40) with
the actual mean curvature J of the geopotential surfaces, but this would
require knowledge of the detailed shape of these surfaces far beyond what is
attainable today.

Another way of computing gQ, which is more practicable at present, is
the following. It is similar to the usual reduction of gravity to sea level (see
Sect. 3.4) and consists of three steps:

1. Remove all masses above the geopotential surface W = WQ, which
contains Q, and subtract their attraction from g at P .

2. Since the gravity station P is now “in free air”, apply the free-air
reduction, thus moving the gravity station from P to Q.
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3. Restore the removed masses to their former position, and add alge-
braically their attraction to g at Q.

The purpose of this slightly complicated but logically clear procedure
is that in step 2 the free-air gradient can be used. If we here replace the
actual free-air gradient by the normal gradient ∂γ/∂h, then the error will
presumably be smaller than in using (3–43).

Note that the free-air gradient can also be accurately computed alterna-
tively by (2–394); the gravity anomalies ∆g in this formula are the gravity
anomalies obtained after performing step 2, that is, Bouguer anomalies re-
ferred to the lower point Q.

The effect of the masses above Q (steps 1 and 3) may be computed, e.g.,
by means of some kind of template or computer procedure for numerical
three-dimensional integration. If the terrain correction is neglected and only
the infinite Bouguer plate between P and Q of the normal density � =
2.67 g cm−3 is taken into account, then we obtain with the steps numbered
as above:

gravity measured at P gP

1. remove Bouguer plate − 0.1119 (HP − HQ)
2. free-air reduction from P to Q + 0.3086 (HP − HQ)
3. restore Bouguer plate − 0.1119 (HP − HQ)

together: gravity at Q gQ = gP + 0.0848 (HP − HQ) .

(3–46)
This is the same as (3–45), which is, thus, confirmed independently. We see
now that the use of (3–43) or (3–45) amounts to replacing the terrain with
a Bouguer plate.

Finally, we note that the reduction of Poincaré and Prey, abbreviated
as Prey reduction, yields the actual gravity which would be measured inside
the earth if this were possible. Its purpose is, thus, completely different from
the purpose of the other gravity reductions which give boundary values at
the geoid.

It cannot be directly used for the determination of the geoid but is needed
to obtain orthometric heights as will be discussed in Sect. 4.3. Actual gravity
g0 at a geoidal point P0 is related to Bouguer gravity gB , Eq. (3–38), by

g0 = gB − AT, P0 . (3–47)

It is obtained by subtracting from gB the attraction AT, P0 of the topographic
masses on P0, which corresponds to restoring the topography after the free-
air reduction of Bouguer gravity from P to P0.
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3.6 Isostatic reduction

3.6.1 Isostasy

One might be inclined to assume that the topographic masses are simply
superposed on an essentially homogeneous crust. If this were the case, the
Bouguer reduction would remove the main irregularities of the gravity field
so that the Bouguer anomalies would be very small and would fluctuate
randomly around zero. However, just the opposite is true. Bouguer anoma-
lies in mountainous areas are systematically negative and may attain large
values, increasing in magnitude on the average by 100 mgal per 1000 m of
elevation. The only explanation possible is that there is some kind of mass
deficiency under the mountains. This means that the topographic masses are
compensated in some way.

There is a similar effect for the deflections of the vertical. The actual
deflections are smaller than the visible topographic masses would suggest.
In the middle of the nineteenth century, J.H. Pratt observed such an effect
in the Himalayas. At one station in this area he computed a value of 28′′

for the deflection of the vertical from the attraction of the visible masses
of the mountains. The value obtained through astrogeodetic measurements
was only 5′′. Again, some kind of compensation is needed to account for this
discrepancy.

Two different theories for such a compensation were developed at almost
exactly the same time, by J.H. Pratt in 1854 and 1859 and by G.B. Airy in
1855. According to Pratt, the mountains have risen from the underground
somewhat like a fermenting dough. According to Airy, the mountains are
floating on a fluid lava of higher density (somewhat like an iceberg floating
on water), so that the higher the mountain, the deeper it sinks.

Pratt–Hayford system

This system of compensation was outlined by Pratt and put into a mathe-
matical form by J.F. Hayford, who used it systematically for geodetic pur-
poses.

The principle is illustrated in Fig. 3.9. Underneath the level of compen-
sation there is uniform density. Above, the mass of each column of the same
cross section is equal. Let D be the depth of the level of compensation, reck-
oned from sea level, and let �0 be the density of a column of height D. Then
the density � of a column of height D + H (H representing the height of the
topography) satisfies the equation

(D + H) � = D �0 , (3–48)
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H'

level of compensation

2.67 2.62 2.57 2.59 2.52 2.67 2.76

H

6km
3km

4km
2km

D=100km

5km

.

Fig. 3.9. Pratt–Hayford isostasy model

which expresses the condition of equal mass. It may be assumed that

�0 = 2.67 g cm−3 . (3–49)

According to (3–48), the actual density � is slightly smaller than this normal
value �0. Consequently, there is a mass deficiency which, according to (3–48),
is given by

∆� = �0 − � =
h

D + H
�0 . (3–50)

In the oceans, the condition of equal mass is expressed as

(D − H ′) � + H ′ �w = D �0 , (3–51)

where
�w = 1.027 g cm−3 (3–52)

is the density and H ′ the depth of the ocean. Hence, there is a mass surplus
of a suboceanic column given by

� − �0 =
H ′

D − H ′ (�0 − �w) . (3–53)

As a matter of fact, this model of compensation is idealized and schematic.
It can be only approximately fulfilled in nature. Values of the depth of com-
pensation around

D = 100 km (3–54)
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are assumed.
For a spheroidal earth, the columns will converge slightly towards its

center, and other refinements may be introduced. We may postulate either
equality of mass or equality of pressure; each postulate leads to somewhat
different spherical refinements. It may be mentioned that for computational
reasons Hayford used still another, slightly different model; for instance, he
reckoned the depth of compensation D from the earth’s surface instead of
from sea level.

Airy–Heiskanen system
Airy proposed this model, and Heiskanen gave it a precise formulation for
geodetic purposes and applied it extensively. Figure 3.10 illustrates the prin-
ciple. The mountains of constant density

�0 = 2.67 g cm−3 (3–55)

float on a denser underlayer of constant density

�1 = 3.27 g cm−3 . (3–56)

The higher they are, the deeper they sink. Thus, root formations exist under
mountains, and “antiroots” under the oceans.

We denote the density difference �1−�0 by ∆�. On the basis of assumed
numerical values, we have

∆� = �1 − �0 = 0.6 g cm−3 . (3–57)

Denoting the height of the topography by H and the thickness of the cor-
responding root by t (Fig. 3.10), then the condition of floating equilibrium
is

t ∆� = H �0 , (3–58)

so that
t =

�0

∆�
H = 4.45 H (3–59)

results. For the oceans, the corresponding condition is

t′ ∆� = H ′ (�0 − �w) , (3–60)

where H ′ and �w are defined as above and t′ is the thickness of the antiroot
(Fig. 3.10), so that we get

t′ =
�0 − �w

�1 − �0
H ′ = 2.73 H ′ (3–61)
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H'

T=30km

H

t

8.9 km

t'

density 2.67

density 3.27

2km

Fig. 3.10. Airy–Heiskanen isostasy model

for the numerical values assumed.
Again, spherical corrections must be applied to these formulas for higher

accuracy, and the formulations in terms of equal mass and equal pressure
lead to slightly different results.

The normal thickness of the earth’s crust is denoted by T (Fig. 3.10);
values of around

T = 30km (3–62)

are assumed. The crustal thickness under mountains is then

T + H + t (3–63)

and under the oceans it is
T − H ′ − t′ . (3–64)

Vening Meinesz regional system
Both systems just discussed are highly idealized in that they assume the
compensation to be strictly local; that is, they assume that compensation
takes place along vertical columns. This presupposes free mobility of the
masses to a degree that is obviously unrealistic in this strict form.

For this reason, Vening Meinesz modified the Airy floating theory in 1931,
introducing regional instead of local compensation. The principal difference
between these two kinds of compensation is illustrated by Fig. 3.11. In Vening
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T

regional compensation

local compensation

Fig. 3.11. Local and regional compensation

Meinesz’ theory, the topography is considered as a load on an unbroken but
yielding elastic crust.

In a very sloppy way which is only good for memorizing, we may say that,
standing on thin ice, Airy will break through, but under Vening Meinesz the
ice is stronger and will bend but not break.

Although Vening Meinesz’ refinement of Airy’s theory is more realistic, it
is more complicated and is, therefore, seldom used by geodesists because, as
we will see, any isostatic system, if consistently applied, serves for geodetic
purposes as well.

Geophysical and geodetic evidence shows that the earth is about 90% iso-
statically compensated, but it is difficult to decide, at least from gravimetric
evidence alone, which model best accounts for this compensation. Although
seismic results indicate an Airy type of compensation, in some places the
compensation seems to follow the Pratt model. Nature will never conform
to any of these models to the degree of precision which we have assumed
above. However, a well-defined and consistent mathematical formulation is
certainly a necessary prerequisite for the application of isostasy for geodetic
purposes.

For an extensive presentation of several types of isostasy, see Moritz (1990:
Chap. 8). The Vening Meinesz model has been treated in detail by Abd-
Elmotaal (1995); much information is also available in the internet. A clas-
sic on isostasy and its geophysical applications is Heiskanen and Vening
Meinesz (1958: Chaps. 5 and 7).
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3.6.2 Topographic-isostatic reductions

The objective of the topographic-isostatic reduction of gravity is the regular-
ization of the earth’s crust according to some model of isostasy. Regulariza-
tion here means that we are trying to make the earth’s crust as homogeneous
as possible. The topographic masses are not completely removed as in the
Bouguer reduction but are shifted into the interior of the geoid in order
to make up the mass deficiencies that exist under the continents. In the
topographic-isostatic model of Pratt and Hayford, the topographic masses
are distributed between the level of compensation and sea level, in order to
bring the crustal density from its original value to the constant standard
value �0. In the Airy–Heiskanen model, the topographic masses are used to
fill the roots of the continents, bringing the density from �0 = 2.67 g/cm3

to �1 = 3.27 g/cm3.
In other terms, the topography is removed together with its compensa-

tion, and the final result is ideally a homogeneous crust of density �0 and
constant thickness D (Pratt–Hayford) or T (Airy–Heiskanen).

Thus we have three steps:

1. removal of topography,
2. removal of compensation,
3. free-air reduction to the geoid.

Steps 1 and 3 are known from Bouguer reduction, so that the techniques of
Sect. 3.4 can be applied to them. Step 2 is new and will be discussed now
for the two main topographic-isostatic systems.

Pratt–Hayford system
The method is the same as for the terrain correction, Sect. 3.4, Eq. (3–32).
The attraction of the (negative) compensation is again computed by

AC =
∑

∆A , (3–65)

where the attraction of a vertical column representing a compartment is
given by (3–22) with

b = D , c = D + HP (3–66)

and � replaced by the density defect ∆�. If the preceding Bouguer reduction
were done with the original density � of the column expressed by

� =
D

D + H
�0 (3–67)

according to (3–48), then ∆� would be given by (3–50).
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Usually the Bouguer reduction is performed using a constant density �0;
the density defect ∆� must then be computed by

∆� =
H

D
�0 , (3–68)

which differs slightly from (3–50), in order to restore equality of mass ac-
cording to

(�0 − ∆�)D + �0H = �0D . (3–69)

The first term on the left-hand side represents the mass of the layer between
the level of compensation and sea level; the second term represents the mass
of the topography, now assumed to have a density �0.

Airy–Heiskanen system
Again we use

AC =
∑

∆A , (3–70)

where b and c in (3–22) are, according to Fig. 3.12, given by

b = t , c = HP + T + t , (3–71)

and � is replaced by ∆� = �1 − �0 = 0.6 g/cm3.

T

troot

H
P

P0

HP

T t+
H T tP + +

Fig. 3.12. Topography and compensation – Airy–Heiskanen model

Total reduction
In analogy with (3–38), the topographic-isostatically reduced gravity on the
geoid becomes

gTI = g − AT + AC + F , (3–72)
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where −AC is the attraction of the compensation which is actually negative,
so that its removal is equivalent to the term +AC . The quantity AT is the
attraction of topography, to be computed as the effect of a Bouguer plate
combined with terrain correction, Eq. (3–36), or in one step, as described in
Sect. 3.4; F is the free-air reduction approximated by (3–26).

Oceanic stations

Here the terms AT and F of (3–72) are zero, since the station is situated on
the geoid, but the term AC is more complicated.

In the Pratt–Hayford model, the procedure is as follows. The mass sur-
plus (3–53) of a suboceanic column of height D − H ′ (Fig. 3.9) is removed
and used to fill the corresponding oceanic column of height H ′ to the proper
density �0. In mathematical terms, this is

AC = −A1 + A2 , (3–73)

where both A1 and A2 are of the form (3–32), ∆A is given by (3–22). For
A1 we have

b = D − H ′ , c = D , (3–74)

and density � − �0; for A2 we have

b = c = H ′ (3–75)

and density �0 − �w.
In the Airy–Heiskanen model, the mass surplus of the antiroot, �1 − �0,

is used to fill the oceans to the proper density �0. The corresponding value
is again given by (3–73), where for A1 we now have

b = t′ , c = T , (3–76)

and density �1 − �0; and for A2 we have, as before,

b = c = H ′ (3–77)

and density �0 − �w.
In both models, Eq. (3–72) reduces for oceanic stations to

gTI, ocean = g + AC . (3–78)
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Topographic-isostatic anomalies
The topographic-isostatic gravity anomalies are – in analogy to the Bouguer
anomalies – defined by

∆gTI = gTI − γ . (3–79)

If any of the topographic-isostatic systems were rigorously true, then the
topographic-isostatic reduction would fulfil perfectly its goal of complete reg-
ularization of the earth’s crust, which would become level and homogeneous.
Then, with a properly chosen reference model for γ, the topographic-isostatic
gravity anomalies (3–79) would be zero.

The actual topographic-isostatic compensation occurring in nature can-
not completely conform to such abstract models. As a consequence, nonzero
topo-graphic-isostatic gravity anomalies will be left, but they will be small,
smooth, and more or less randomly positive and negative. On account of
this smoothness and independence of elevation, they are better suited for in-
terpolation or extrapolation than any other type of anomalies; see Chap. 9,
particularly Sect. 9.7.

It may be stressed again that for geodetic purposes the topographic-
isostatic model used must be mathematically precise and self-consistent, and
the same model must be used throughout. Refinements include the consid-
eration of irregularities of density of the topographic masses and the consid-
eration of the anomalous gradient of gravity.

3.7 The indirect effect

The removal or shifting of masses underlying the gravity reductions change
the gravity potential and, hence, the geoid. This change of the geoid is an
indirect effect of the gravity reductions.

Thus, the surface computed by Stokes’ formula from topographic-isostatic
gravity anomalies, is not the geoid itself but a slightly different surface, the
cogeoid. To every gravity reduction there corresponds a different cogeoid.

Let the undulation of the cogeoid be N c. Then the undulation N of the
actual geoid is obtained from

N = N c + δN (3–80)

by taking into account the indirect effect on N , which is given by

δN =
δW

γ
, (3–81)

where δW is the change of potential at the geoid. Equation (3–81) is an
application of Bruns’ theorem (2–237).
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The change of potential, δW , is for the Bouguer reduction expressed by

δWB = UT (3–82)

and for the topographic-isostatic reduction by

δWTI = UT − UC , (3–83)

the subscripts of the potential U corresponding to those of the attraction A
used in the preceding sections.

For the practical determination of UT and UC , the template technique,
as expressed in (3–32), may again be used (at least, conceptually):

U =
∑

∆U , (3–84)

where the relevant formulas are the first equation of (3–21), (3–9), (3–12),
and (3–15). The point U refers to is always the point P0 at sea level (Fig. 3.1).
For UT we use U0, see (3–12), with b = H and density �0 (see Fig. 3.12). For
UC in the continental case, we use Ue, see (3–9), with the following values:
Pratt–Hayford,

b = c = d , density
H

D
�0 ; (3–85)

Airy–Heiskanen,

b = t , c = t + T , density �1 − �0 . (3–86)

The corresponding considerations for the oceanic case are left as an exercise
for the reader.

The indirect effect with Bouguer anomalies is very large, of the or-
der of ten times the geoidal undulation itself. See the map at the end of
Helmert (1884: Tafel I), where the maximum value is 440 m! The reason is
that the earth is in general topographic-isostatically compensated. There-
fore, the Bouguer anomalies cannot be used for the determination of the
geoid.

With topographic-isostatic gravity anomalies, as might be expected, the
indirect effect is smaller than N , of the order of 10 m. It is necessary, how-
ever, to compute the indirect effect δNI carefully, using exactly the same
topographic-isostatic model as for the gravity reductions.

Furthermore, before applying Stokes’ formula, the topographic-isostatic
gravity anomalies must be reduced from the geoid to the cogeoid. This is
done by a simple free-air reduction, using (3–26), by adding to ∆gI the
correction

δ = +0.3086 δN [mgal] , (3–87)
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δN in meters. This correction δ is the indirect effect on gravity; it is of the
order of 3 mgal.

Now the topographic-isostatic gravity anomalies refer strictly to the co-
geoid. The application of Stokes’ formula gives N c, which according to (3–80)
is to be corrected by the indirect effect δN to give the undulation N of the
actual geoid.

Deflections of the vertical

The indirect effect on the deflections of the vertical is, in agreement with
Eqs. (2–377), given by

δξ = − 1
R

∂ δN

∂ϕ
,

δη = − 1
R cos ϕ

∂ δN

∂λ
.

(3–88)

The indirect effect is essentially identical with the so-called topographic-
isostatic deflection of the vertical (Heiskanen and Vening Meinesz 1958:
pp. 252–255).

The topographic-isostatic reduction as such is very much alive, however.
It is practically the only gravity reduction used for geoid determination at
the present time (with the possible exception of free-air reduction, which is
a case by itself).

The last purely gravimetric geoid, before the advent of satellites, was the
Columbus Geoid (Heiskanen 1957).

3.8 The inversion reduction of Rudzki

It is possible to find a gravity reduction where the indirect effect is zero.
This is done by shifting the topographic masses into the interior of the geoid
in such a way that

UC = UT . (3–89)

Then
δW = UT − UC = 0 . (3–90)

This procedure was given by M.P. Rudzki in 1905. For the present purpose,
we may consider the geoid to be a sphere of radius R (Fig. 3.13). Let the
mass element dm at Q be replaced by a mass element dm′ at a certain point
Q′ inside the geoid situated on the same radius vector. The potential due to
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Fig. 3.13. Rudzki reduction as an inversion in a sphere

these mass elements at the geoidal point P0 is

dUT = G
dm

l
=

Gdm√
r2 + R2 − 2R r cos ψ

,

dUC = G
dm′

l′
=

Gdm′√
r′2 + R2 − 2R r′ cos ψ

.

(3–91)

We should have
dUC = dUT (3–92)

if
dm′ =

R

r
dm (3–93)

and

r′ =
R2

r
. (3–94)

This is readily verified by substitution into the second equation of (3–91).
The condition (3–94) means that Q′ and Q are related by inversion in the
sphere of radius R (Kellogg 1929: p. 231). Therefore, this reduction method
is called inversion reduction or Rudzki reduction.

The condition (3–93) expresses the fact that the compensating mass dm′

is not exactly equal to dm but is slightly smaller. Since this relative decrease
of mass is of the order of 10−8, it may be safely neglected by setting

dm′ = dm . (3–95)

Usually it is even sufficient to replace the sphere by a plane. Then Q′ is the
ordinary mirror image of Q (Fig. 3.14).
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Fig. 3.14. Rudzki reduction as a plane approximation

Rudzki gravity at the geoid becomes, in analogy to (3–72),

gR = g − AT + AC + F , (3–96)

where AC =
∑

∆A with b = H, c = H + HP , the density being equal to
that of topography.

Since the indirect effect is zero, the cogeoid of Rudzki coincides with the
actual geoid, but the gravity field outside the earth is changed, which to-
day is in the center of attention. In addition, the Rudzki reduction does not
correspond to a geophysically meaningful model. Nevertheless, it is impor-
tant conceptually. Regard it an interesting historic curiosity, but never even
consider to use it!

3.9 The condensation reduction of Helmert

Here the topography is condensed so as to form a surface layer (somewhat
like a glass sphere made of very thin but very heavy and robust glass) on the
geoid so that the total mass remains unchanged. Again, the mass is shifted
along the local vertical (Fig. 3.15).

We may consider Helmert’s condensation as a limiting case of an isostatic

P

H

geoid
· %= H

%

Fig. 3.15. Helmert’s method of condensation



154 3 Gravity reduction

reduction according to the Pratt–Hayford system as the depth of compen-
sation D goes to zero. This is sometimes useful.

Again we have
gH = g − AT + AC + F , (3–97)

where AC =
∑

∆A is now to be computed using the second equation of
(3–19) with c = HP and κ = �H; HP is the height of the station P and H
the height of the compartment.

The indirect effect is
δW = UT − UC . (3–98)

The potential UC =
∑

∆U is to be computed using the first equation of
(3–19) with κ = �H as before, but c = 0 since it refers to the geoidal point
P0. The corresponding δN is very small, amounting to about 1m per 3 km of
average elevation. It may, therefore, usually be neglected so that the cogeoid
of the condensation reduction practically coincides with the actual geoid.

Even the “direct effect”, −AT + AC , can usually be neglected, as the
attraction of the Helmert layer nearly compensates that of the topography.
There remains

gH = g + F , (3–99)

that is, the simple free-air reduction. In this sense, the simple free-air reduc-
tion may be considered as giving approximate boundary values at the geoid,
to be used in Stokes’ formula. To the same degree of approximation, the
“free-air cogeoid” coincides with the actual geoid.

Hence, the free-air anomalies

∆gF = g + F − γ (3–100)

may be considered as approximations of “condensation anomalies”

∆gH = gH − γ . (3–101)

The many facets of free-air reduction
This is one of the most basic, most difficult, and most fascinating topics of
physical geodesy. In fact, the free-air anomaly means several conceptually
different but related concepts.

1. The term F above has been seen to be part of every gravity reduction
rather than a full-fledged gravity reduction itself.

2. Approximately, free-air anomalies may be identified with Helmert’s
condensation anomalies as we have seen above.
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3. Rigorously, free-air anomalies can even be considered as resulting from
a mass-transporting gravity reduction, in a similar sense as the iso-
static anomaly. Just imagine that you transport the masses above the
geoid into its interior in such a way that the external potential remains
unchanged ! This reminds us of Rudzki’s reduction (geoid potential re-
mains constant) but is rather different. The most important advantage
is that the free-air anomaly in the present sense leaves the external po-
tential unchanged which nowadays is much more important than the
geoid. The greatest disavantage is that it cannot be computed: we do
not know how to shift the masses so that the external masses remain
unchanged. In logical terms, the Rudzki reduction is constructive –
we are told how to do it –, whereas the present reduction is non-
constructive – we do not know how to do it directly. More about this
in Sects. 8.2, 8.6, 8.9, and 8.15. We shall, thus, attempt to cut the
difficult cake into easier pieces.

These are the main methods that have been proposed for the reduction of
gravity. A simple overview is given by Fig. 3.16.

Pratt Airy Rudzki Helmert

H H H H

H

tD

T

Fig. 3.16. Topography and compensation for different gravity reductions




