
2 Gravity field of the earth

2.1 Gravity

The total force acting on a body at rest on the earth’s surface is the resultant
of gravitational force and the centrifugal force of the earth’s rotation and is
called gravity.

Take a rectangular coordinate system whose origin is at the earth’s center
of gravity and whose z-axis coincides with the earth’s mean axis of rotation
(Fig. 2.1). The x- and y-axes are so chosen as to obtain a right-handed
coordinate system; otherwise they are arbitrary. For convenience, we may
assume an x-axis which is associated with the mean Greenwich meridian (it
“points” towards the mean Greenwich meridian). Note that we are assuming
in this book that the earth is a solid body rotating with constant speed
around a fixed axis. This is a rather simplified assumption, see Moritz and
Mueller (1987). The centrifugal force f on a unit mass is given by

f = ω2p , (2–1)

where ω is the angular velocity of the earth’s rotation and

p =
√

x2 + y2 (2–2)

is the distance from the axis of rotation. The vector f of this force has the
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Fig. 2.1. The centrifugal force
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direction of the vector
p = [x, y, 0] (2–3)

and is, therefore, given by

f = ω2p = [ω2x, ω2y, 0] . (2–4)

The centrifugal force can also be derived from a potential

Φ =
1
2

ω2(x2 + y2) , (2–5)

so that

f = grad Φ ≡
[
∂Φ
∂x

,
∂Φ
∂y

,
∂Φ
∂z

]
. (2–6)

Substituting (2–5) into (2–6) yields (2–4).
In the introductory remark above, we mentioned that gravity is the resul-

tant of gravitational force and centrifugal force. Accordingly, the potential of
gravity, W , is the sum of the potentials of gravitational force, V , cf. (1–12),
and centrifugal force, Φ:

W = W (x, y, z) = V + Φ = G

∫∫
v

∫
�

l
dv +

1
2

ω2(x2 + y2) , (2–7)

where the integration is extended over the earth.
Differentiating (2–5), we find

∆Φ ≡ ∂2Φ
∂x2

+
∂2Φ
∂y2

+
∂2Φ
∂z2

= 2ω2 . (2–8)

If we combine this with Poisson’s equation (1–17) for V , we get the general-
ized Poisson equation for the gravity potential W :

∆W = −4π G� + 2ω2 . (2–9)

Since Φ is an analytic function, the discontinuities of W are those of V : some
second derivatives have jumps at discontinuities of density.

The gradient vector of W ,

g = grad W ≡
[
∂W

∂x
,

∂W

∂y
,

∂W

∂z

]
(2–10)



2.1 Gravity 45

with components

gx =
∂W

∂x
= −G

∫∫
v

∫
x − ξ

l3
� dv + ω2x ,

gy =
∂W

∂y
= −G

∫∫
v

∫
y − η

l3
� dv + ω2y ,

gz =
∂W

∂z
= −G

∫∫
v

∫
z − ζ

l3
� dv ,

(2–11)

is called the gravity vector ; it is the total force (gravitational force plus
centrifugal force) acting on a unit mass. As a vector, it has magnitude and
direction.

The magnitude g is called gravity in the narrower sense. It has the phys-
ical dimension of an acceleration and is measured in gal (1 gal = 1 cm s−2),
the unit being named in honor of Galileo Galilei. The numerical value of g
is about 978 gal at the equator, and 983 gal at the poles. In geodesy, another
unit is often convenient – the milligal, abbreviated mgal (1 mgal = 10−3 gal).

In SI units, we have

1 gal = 0.01 m s−2 ,

1 mgal = 10µm s−2 .
(2–12)

The direction of the gravity vector is the direction of the plumb line, or the
vertical; its basic significance for geodetic and astronomical measurements
is well known.

In addition to the centrifugal force, another force called the Coriolis force
acts on a moving body. It is proportional to the velocity with respect to the
earth, so that it is zero for bodies resting on the earth. Since in classical
geodesy (i.e., not considering navigation) we usually deal with instruments
at rest relative to the earth, the Coriolis force plays no role here and need
not be considered.

Gravitational and inertial mass
The reader may have noticed that the mass m has been used in two con-
ceptually completely different senses: as inertial mass in Newton’s law of
inertia, force=mass×acceleration and as gravitational mass in Newton’s
law of gravitation (1–1). Thus, m in gravitation, which is a “true” force, is
the gravitational mass, but m in the centrifugal “force”, which is an accel-
eration, is the inertial mass. The Hungarian physicist Roland Eötvös had
shown experimentally already around 1890 that both kinds of masses are
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equal within 10−11, which is a formidable accuracy. He used the same type
of instrument by which experimental physicists have been able to determine
the numerical value of the gravitational constant G only to a poor accuracy
of about 10−4, as we have seen at the beginning of this book. The coinci-
dence between the inertial and the gravitational mass was far too good to be
a physical accident, but, within classical mechanics, it was an inexplicable
miracle. It was not before 1915 that Einstein made it one of the pillars of
the general theory of relativity!

2.2 Level surfaces and plumb lines

The surfaces
W (x, y, z) = constant , (2–13)

on which the potential W is constant, are called equipotential surfaces or
level surfaces.

Differentiating the gravity potential W = W (x, y, z), we find

dW =
∂W

∂x
dx +

∂W

∂y
dy +

∂W

∂z
dz . (2–14)

In vector notation, using the scalar product, this reads

dW = grad W · dx = g · dx , (2–15)

where
dx = [dx, dy, dz] . (2–16)

If the vector dx is taken along the equipotential surface W = constant, then
the potential remains constant and dW = 0, so that (2–15) becomes

g · dx = 0 . (2–17)

If the scalar product of two vectors is zero, then these vectors are orthogonal
to each other. This equation therefore expresses the well-known fact that the
gravity vector is orthogonal to the equipotential surface passing through the
same point.

The surface of the oceans, after some slight idealization, is part of a
certain level surface. This particular equipotential surface was proposed as
the “mathematical figure of the earth” by C.F. Gauss, the “Prince of Mathe-
maticians”, and was later termed the geoid. This definition has proved highly
suitable, and the geoid is still frequently considered by many to be the fun-
damental surface of physical geodesy. The geoid is thus defined by

W = W0 = constant . (2–18)
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Fig. 2.2. Level surfaces and plumb lines

If we look at equation (2–7) for the gravity potential W , we can see that
the equipotential surfaces, expressed by W (x, y, z) = constant, are rather
complicated mathematically. The level surfaces that lie completely outside
the earth are at least analytical surfaces, although they have no simple ana-
lytical expression, because the gravity potential W is analytical outside the
earth. This is not true of level surfaces that are partly or wholly inside the
earth, such as the geoid. They are continuous and “smooth” (i.e., without
edges), but they are no longer analytical surfaces; we will see in the next sec-
tion that the curvature of the interior level surfaces changes discontinuously
with the density.

The lines that intersect all equipotential surfaces orthogonally are not
exactly straight but slightly curved (Fig. 2.2). They are called lines of force,
or plumb lines. The gravity vector at any point is tangent to the plumb line at
that point, hence “direction of the gravity vector”, “vertical”, and “direction
of the plumb line” are synonymous. Sometimes this direction itself is briefly
denoted as “plumb line”.

As the level surfaces are, so to speak, horizontal everywhere, they share
the strong intuitive and physical significance of the horizontal; and they share
the geodetic importance of the plumb line because they are orthogonal to
it. Thus, we understand why so much attention is paid to the equipotential
surfaces.

The height H of a point above sea level (also called the orthometric
height) is measured along the curved plumb line, starting from the geoid
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(Fig. 2.2). If we take the vector dx along the plumb line, in the direction of
increasing height H, then its length will be

‖dx‖ = dH (2–19)

and its direction is opposite to the gravity vector g, which points downward,
so that the angle between dx and g is 180◦. Using the definition of the scalar
product (i.e., for two vectors a and b it is defined as a · b = ‖a‖‖b‖ cos ω,
where ω is the angle between the two vectors), we get

g · dx = g dH cos 180◦ = −g dH (2–20)

accordingly, so that Eq. (2–15) becomes

dW = −g dH . (2–21)

This equation relates the height H to the potential W and will be basic for
the theory of height determination (Chap. 4). It shows clearly the insepara-
ble interrelation that characterizes geodesy – the interrelation between the
geometrical concepts (H) and the dynamic concepts (W ).

Another form of Eq. (2–21) is

g = −∂W

∂H
. (2–22)

It shows that gravity is the negative vertical gradient of the potential W , or
the negative vertical component of the gradient vector grad W .

Since geodetic measurements (theodolite measurements, leveling, but
also satellite techniques etc.) are almost exclusively referred to the system
of level surfaces and plumb lines, the geoid plays an essential part. Thus,
we see why the aim of physical geodesy has been formulated as the de-
termination of the level surfaces of the earth’s gravity field. In a still more
abstract but equivalent formulation, we may also say that physical geodesy
aims at the determination of the potential function W (x, y, z). At a first
glance, the reader is probably perplexed about this definition, which is due
to Bruns (1878), but its meaning is easily understood: If the potential W is
given as a function of the coordinates x, y, z, then we know all level surfaces
including the geoid; they are given by the equation

W (x, y, z) = constant. (2–23)

2.3 Curvature of level surfaces and plumb lines

The formula for the curvature of a curve y = f(x) is

κ =
1
�

=
y′′

(1 + y′2)3/2
, (2–24)
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Fig. 2.3. The curvature of a curve

where κ is the curvature, � is the radius of curvature, and

y′ =
dy

dx
, y′′ =

d2y

dx2
. (2–25)

If we use a plane local coordinate system xy in which a parallel to the x-axis
is tangent at the point P under consideration (Fig. 2.3), then this implies
y′ = 0 and we get simply

κ =
1
�

=
d2y

dx2
. (2–26)

Level surfaces
Consider now a point P on a level surface S. Take a local coordinate system
xyz with origin at P whose z-axis is vertical, that is, orthogonal to the
surface S (Fig. 2.4). We intersect this level surface

W (x, y, z) = constant (2–27)

with the xz-plane by setting
y = 0 . (2–28)
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Fig. 2.4. The local coordinate system
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Comparing Fig. 2.4 with Fig. 2.3, we see that z now takes the place of
y. Therefore, instead of (2–26) we have for the curvature of the intersection
of the level surface with the xz-plane:

K1 =
d2z

dx2
. (2–29)

If we differentiate W (x, y, z) = W0 with respect to x, considering that y
is zero and z is a function of x, we get

Wx + Wz
dz

dx
= 0 ,

Wxx + 2Wxz
dz

dx
+ Wzz

(
dz

dx

)2

+ Wz
d2z

dx2
= 0 ,

(2–30)

where the subscripts denote partial differentiation:

Wx =
∂W

∂x
, Wxz =

∂2W

∂x∂z
, . . . . (2–31)

Since the x-axis is tangent at P , we get dz/dx = 0 at P , so that

d2z

dx2
= −Wxx

Wz
. (2–32)

Since the z-axis is vertical, we have, using (2–22),

Wz =
∂W

∂z
=

∂W

∂H
= −g . (2–33)

Therefore, Eq. (2–29) becomes

K1 =
Wxx

g
. (2–34)

The curvature of the intersection of the level surface with the yz-plane is
found by replacing x with y:

K2 =
Wyy

g
. (2–35)

The mean curvature J of a surface at a point P is defined as the arith-
metic mean of the curvatures of the curves in which two mutually perpen-
dicular planes through the surface normal intersect the surface (Fig. 2.5).
Hence, we find

J = −1
2
(K1 + K2) = −Wxx + Wyy

2g
. (2–36)
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Fig. 2.5. Definition of mean curvature

Here the minus sign is only a convention. This is an expression for the mean
curvature of the level surface.

From the generalized Poisson equation

∆W ≡ Wxx + Wyy + Wzz = −4π G� + 2ω2 , (2–37)

we find
−2g J + Wzz = −4π G� + 2ω2 . (2–38)

Considering

Wz = −g , Wzz = −∂g

∂z
= − ∂g

∂H
, (2–39)

we finally obtain
∂g

∂H
= −2g J + 4π G� − 2ω2 . (2–40)

This important equation, relating the vertical gradient of gravity ∂g/∂H to
the mean curvature of the level surface, is also due to Bruns (1878). It is
another beautiful example of the interrelation between the geometric and
dynamic concepts in geodesy.

Plumb lines
The curvature of the plumb line is needed for the reduction of astronomical
observations to the geoid. A plumb line may be defined as a curve whose
line element vector

dx = [dx, dy, dz] (2–41)

has the direction of the gravity vector

g = [Wx, Wy, Wz] ; (2–42)
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that is, dx and g differ only by a proportionality factor. This is best expressed
in the form

dx

Wx
=

dy

Wy
=

dz

Wz
. (2–43)

In the coordinate system of Fig. 2.4, the curvature of the projection of
the plumb line onto the xz-plane is given by

κ1 =
d2x

dz2
; (2–44)

this is equation (2–26) applied to the present case. Using (2–43), we have

dx

dz
=

Wx

Wz
. (2–45)

We differentiate with respect to z, considering that y = 0:

d2x

dz2
=

1
W 2

z

[
Wz

(
Wxz + Wxx

dx

dz

)
− Wx

(
Wzz + Wzx

dx

dz

)]
. (2–46)

In our particular coordinate system, the gravity vector coincides with the
z-axis, so that its x- and y-components are zero:

Wx = Wy = 0 . (2–47)

Figure 2.4 shows that we also have

dx

dz
= 0 . (2–48)

Therefore,
d2x

dz2
=

Wz Wxz

W 2
z

=
Wxz

Wz
=

Wzx

Wz
. (2–49)

Considering Wz = −g, we finally obtain

κ1 =
1
g

∂g

∂x
(2–50)

and, similarly,

κ2 =
1
g

∂g

∂y
. (2–51)

These are the curvatures of the projections of the plumb line onto the xz- and
yz-plane, the z-axis being vertical, that is, coinciding with the gravity vector.
The total curvature κ of the plumb line is given, according to differential
geometry (essentially Pythagoras’ theorem), by

κ =
√

κ2
1 + κ2

2 =
1
g

√
g2
x + g2

y . (2–52)
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For reducing astronomical observations (Sect. 5.12), we need only the
projection curvatures (2–50) and (2–51).

We mention finally that the various formulas for the curvature of level
surfaces and plumb lines are equivalent to the single vector equation

grad g = (−2g J + 4π G� − 2ω2)n + g κn1 , (2–53)

where n is the unit vector along the plumb line (its unit tangent vector) and
n1 is the unit vector along the principal normal to the plumb line. This may
be easily verified. Using the local xyz-system, we have

n = [0, 0, 1] ,

n1 = [cos α, sin α, 0] ,
(2–54)

where α is the angle between the principal normal and the x-axis (Fig. 2.6).
The z-component of (2–53) yields Bruns’ equation (2–40), and the horizontal
components yield

∂g

∂x
= g κ cos α ,

∂g

∂y
= g κ sin α . (2–55)

These are identical to (2–50) and (2–51), since κ1 = κ cos α and κ2 = κ sin α,
as differential geometry shows. Equation (2–53) is called the generalized
Bruns equation.

More about the curvature properties and the “inner geometry” of the
gravitational field will be found in books by, e.g., Hotine (1969: Chaps. 4–
20), Marussi (1985) and Moritz and Hofmann-Wellenhof (1993: Chap. 3).
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Fig. 2.6. Generalized Bruns equation
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2.4 Natural coordinates

The system of level surfaces and plumb lines may be used as a three-
dimensional curvilinear coordinate system that is well suited to certain pur-
poses; these coordinates can be measured directly, as opposed to local rectan-
gular coordinates x, y, z. Note, however, that global rectangular coordinates
may be measured directly using satellites, see Sect. 5.3.

The direction of the earth’s axis of rotation and the position of the equa-
torial plane (normal to the axis) are well defined astronomically. The astro-
nomical latitude Φ of a point P is the angle between the vertical (direction
of the plumb line) at P and the equatorial plane, see Fig. 2.7. From this
figure, we also see that line PN is parallel to the rotation axis, plane GPF
normal to it, that is, parallel to the equatorial plane; n is the unit vector
along the plumb line; plane NPF is the meridian plane of P , and plane
NPG is parallel to the meridian plane of Greenwich.

Consider now a straight line through P parallel to the earth’s axis of
rotation. This parallel and the vertical at P together define the meridian
plane of P . The angle between this meridian plane and the meridian plane
of Greenwich (or some other fixed plane) is the astronomical longitude Λ of
P . (Exercise: define Φ and Λ without using the unit sphere. The solution
may be found in Sect. 5.9).
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Fig. 2.7. Definition of the astronomical coordinates Φ and Λ of P by
means of a unit sphere with center at P



2.4 Natural coordinates 55

The astronomical coordinates, latitude Φ and longitude Λ, form two of
the three spatial coordinates of P . As third coordinate we may take the
orthometric height H of P or its potential W . Equivalent to W is the geopo-
tential number C = W0 − W , where W0 is the potential of the geoid. The
orthometric height H was defined in Sect. 2.2; see also Fig. 2.2. The relations
between W , C, and H are given by the equations

W = W0 −
∫ H

0
g dH = W0 − C ,

C = W0 − W =
∫ H

0
g dH ,

H = −
∫ W

W0

dW

g
=
∫ C

0

dC

g
,

(2–56)

which follow from integrating (2–21). The integral is taken along the plumb
line of point P , starting from the geoid, where H = 0 and W = W0 (see also
Fig. 2.8).

The quantities
Φ, Λ, W or Φ, Λ, H (2–57)

are called natural coordinates. They are the real-earth counterparts of the
ellipsoidal coordinates. They are related in the following way to the geocen-
tric rectangular coordinates x, y, z of Sect. 2.1. The x-axis is associated with
the mean Greenwich meridian; from Fig. 2.7 we read that the unit vector of
the vertical n has the xyz-components

n = [cos Φ cos Λ, cos Φ sinΛ, sin Φ] ; (2–58)

the gravity vector g is known to be

g = [Wx, Wy, Wz] . (2–59)

earth's surface

level surface
P

H

sea level

0
geoid

W W= 0

W = constant

Fig. 2.8. The orthometric height H
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On the other hand, since n is the unit vector corresponding to g but of
opposite direction, it is given by

n = − g
‖g‖ = −g

g
, (2–60)

so that
g = −g n . (2–61)

This equation, together with (2–58) and (2–59), gives

−Wx = g cos Φ cos Λ ,

−Wy = g cos Φ sin Λ ,

−Wz = g sin Φ .

(2–62)

Solving for Φ and Λ, we finally obtain

Φ = tan−1 −Wz√
W 2

x + W 2
y

,

Λ = tan−1 Wy

Wx
,

W = W (x, y, z) .

(2–63)

These three equations relate the natural coordinates Φ, Λ, W to the rectan-
gular coordinates x, y, z, provided the function W = W (x, y, z) is known.

We see that Φ, Λ, H are related to x, y, z in a considerably more com-
plicated way than the spherical coordinates r, ϑ, λ of Sect. 1.4. Note also
the conceptual difference between the astronomical longitude Λ and the geo-
centric longitude λ.

2.5 The potential of the earth in terms of spherical
harmonics

Looking at the expression (2–7) for the gravity potential W , we see that the
part most difficult to handle is the gravitational potential V , the centrifugal
potential being a simple analytic function.

The gravitational potential V can be made more manageable for many
purposes if we keep in mind the fact that outside the attracting masses it is
a harmonic function and can therefore be expanded into a series of spherical
harmonics.
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Fig. 2.9. Expansion into spherical harmonics

We now evaluate the coefficients of this series. The gravitational potential
V is given by the basic equation (1–12):

V = G

∫∫∫
earth

dM

l
, (2–64)

where we now denote the mass element by dM ; the integral is extended over
the entire earth. Into this integral we substitute the expression (1–104):

1
l

=
∞∑

n=0

r′n

rn+1
Pn(cos ψ) , (2–65)

where the Pn are the conventional Legendre polynomials, r is the radius
vector of the fixed point P at which V is to be determined, r′ is the radius
vector of the variable mass element dM , and ψ is the angle between r and
r′ (Fig. 2.9).

Since r is a constant with respect to the integration over the earth, it
can be taken out of the integral. Thus, we get

V =
∞∑

n=0

1
rn+1

G

∫∫∫
earth

r′n Pn(cos ψ) dM . (2–66)

Writing this in the usual form as a series of solid spherical harmonics,

V =
∞∑

n=0

Yn(ϑ, λ)
rn+1

, (2–67)
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we see by comparison that the Laplace surface spherical harmonic Yn(ϑ, λ)
is given by

Yn(ϑ, λ) = G

∫∫∫
earth

r′n Pn(cos ψ) dM , (2–68)

the dependence on ϑ and λ arises from the angle ψ since

cos ψ = cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(λ′ − λ) . (2–69)

The spherical coordinates ϑ, λ have been defined in Sect. 1.4.
A more explicit form is obtained by using the decomposition formula

(1–108):

1
l

=
∞∑

n=0

n∑
m=0

1
2n + 1

[R̄nm(ϑ, λ)
rn+1

r′nR̄nm(ϑ′, λ′) +
S̄nm(ϑ, λ)

rn+1
r′nS̄nm(ϑ′, λ′)

]
.

(2–70)
Substituting this relation into the integral (2–64), we obtain

V =
∞∑

n=0

n∑
m=0

[
Ānm

R̄nm(ϑ, λ)
rn+1

+ B̄nm
S̄nm(ϑ, λ)

rn+1

]
, (2–71)

where the constant coefficients Ānm and B̄nm are given by

(2n + 1) Ānm = G

∫∫∫
earth

r′n R̄nm(ϑ′, λ′) dM ,

(2n + 1) B̄nm = G

∫∫∫
earth

r′n S̄nm(ϑ′, λ′) dM .

(2–72)

These formulas are very symmetrical and easy to remember: the coefficient,
multiplied by 2n + 1, of the solid harmonic

R̄nm(ϑ, λ)
rn+1

(2–73)

is the integral of the solid harmonic

r′nR̄nm(ϑ′, λ′) . (2–74)

An analogous relation results for S̄nm.
Note the nice analogy: V is a sum and the coefficients are integrals!
Since the mass element is

dM = � dx′ dy′ dz′ = � r′2 sin ϑ′ dr′ dϑ′ dλ′ , (2–75)



2.5 The potential of the earth in terms of spherical harmonics 59

the actual evaluation of the integrals requires that the density � be expressed
as a function of r′, ϑ′, λ′. Although no such expression is available at present,
this fact does not diminish the theoretical and practical significance of spher-
ical harmonics, since the coefficients Anm, Bnm can be determined from the
boundary values of gravity at the earth’s surface. This is a boundary-value
problem (see Sect. 1.13) and will be elaborated later.

Recalling the relations (1–91) and (1–98) between conventional and fully
normalized spherical harmonics, we can also write equations (2–71) and (2–
72) in terms of conventional harmonics, readily obtaining

V =
∞∑

n=0

n∑
m=0

[
Anm

Rnm(ϑ, λ)
rn+1

+ Bnm
Snm(ϑ, λ)

rn+1

]
, (2–76)

where

An0 = G

∫∫∫
earth

r′n Pn(cos ϑ′) dM ;

Anm = 2
(n − m)!
(n + m)!

G

∫∫∫
earth

r′n Rnm(ϑ′, λ′) dM

Bnm = 2
(n − m)!
(n + m)!

G

∫∫∫
earth

r′n Snm(ϑ′, λ′) dM

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(m �= 0) .

(2–77)

In connection with satellite dynamics, the potential V is often written in
the form

V =
GM

r

{
1 +

∞∑
n=1

n∑
m=0

(a

r

)n [
Cnm Rnm(ϑ, λ) + Snm Snm(ϑ, λ)

]}
, (2–78)

where a is the equatorial radius of the earth, so that

Anm = GM an Cnm

Bnm = GM an Snm

}
(n �= 0) . (2–79)

Distinguish the coefficient Snm and the function Snm! The coefficient Cn0

has formerly been denoted by −Jn. Note that C is related to cosine and S
is related to sine.
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The corresponding fully normalized coefficients

C̄n0 =
1√

2n + 1
Cn0 ,

C̄nm =

√
(n + m)!

2(2n + 1)(n − m)!
Cnm

S̄nm =

√
(n + m)!

2(2n + 1)(n − m)!
Snm

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(m �= 0)

(2–80)

are also used.
It is obvious that the nonzonal terms (m �= 0) would be missing in

all these expansions if the earth had complete rotational symmetry, since
the terms mentioned depend on the longitude λ. In rotationally symmetrical
bodies there is no dependence on λ because all longitudes are equivalent. The
tesseral and sectorial harmonics will be small, however, since the deviations
from rotational symmetry are slight.

Finally, we discuss the convergence of (2–71), or of the equivalent series
expansions, of the earth’s potential. This series is an expansion in powers
of 1/r. Therefore, the larger r is, the better the convergence. For smaller r
it is not necessarily convergent. For an arbitrary body, the expansion of V
into spherical harmonics can be shown to converge always outside the small-
est sphere r = r0 that completely encloses the body (Fig. 2.10). Inside this
sphere, the series is usually divergent. In certain cases it can converge partly
inside the sphere r = r0. If the earth were a homogeneous ellipsoid of about

r0

O

r r= 0

Fig. 2.10. Spherical-harmonic expansion of V
converges outside the sphere r = r0
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the same dimensions, then the series for V would indeed still converge at the
surface of the earth. Owing to the mass irregularities, however, the series of
the actual potential V of the earth can be divergent or also convergent at the
surface of the earth. Theoretically, this makes the use of a harmonic expan-
sion of V at the earth’s surface somewhat difficult; practically, it is always
safe to regard it as convergent. For a detailed discussion see Moritz (1980 a:
Sects. 6 and 7) and Sect. 8.6 herein.

It need hardly be pointed out that the spherical-harmonic expansion,
always expressing a harmonic function, can represent only the potential out-
side the attracting masses, never inside.

2.6 Harmonics of lower degree

It is instructive to evaluate the coefficients of the first few spherical harmonics
explicitly. For ready reference, we first state some conventional harmonic
functions Rnm and Snm, using (1–60), (1–66), and (1–82):

R00 = 1 , S00 = 0 ,

R10 = cos ϑ , S10 = 0 ,

R11 = sin ϑ cos λ , S11 = sinϑ sin λ ,

R20 = 3
2 cos2ϑ − 1

2 , S20 = 0 ,

R21 = 3 sin ϑ cos ϑ cos λ , S21 = 3 sin ϑ cos ϑ sin λ ,

R22 = 3 sin2ϑ cos 2λ , S22 = 3 sin2ϑ sin 2λ .

(2–81)

The corresponding solid harmonics rn Rnm and rn Snm are simply homoge-
neous polynomials in x, y, z. For instance,

r2S22 = 6r2 sin2ϑ sin λ cos λ = 6(r sinϑ cos λ)(r sinϑ sin λ) = 6xy . (2–82)

In this way, we find

R00 = 1 , S00 = 0 ,

rR10 = z , r S10 = 0 ,

rR11 = x , r S11 = y ,

r2R20 = −1
2 x2 − 1

2 y2 + z2, r2S20 = 0 ,

r2R21 = 3x z , r2S21 = 3y z ,

r2R22 = 3x2 − 3y2 , r2S22 = 6x y .

(2–83)
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Substituting these functions into the expression (2–77) for the coefficients
Anm and Bnm yields for the zero-degree term

A00 = G

∫∫∫
earth

dM = GM ; (2–84)

that is, the product of the mass of the earth times the gravitational constant.
For the first-degree coefficients, we get

A10 = G

∫∫∫
earth

z′ dM , A11 = G

∫∫∫
earth

x′ dM , B11 = G

∫∫∫
earth

y′ dM ;

(2–85)
and for the second-degree coefficients

A20 =
1
2

G

∫∫∫
earth

(−x′2 − y′2 + 2z′2) dM ,

A21 = G

∫∫∫
earth

x′ z′ dM , B21 = G

∫∫∫
earth

y′ z′ dM ,

A22 =
1
4

G

∫∫∫
earth

(x′2 − y′2) dM , B22 =
1
2

G

∫∫∫
earth

x′ y′ dM .

(2–86)

It is known from mechanics that

xc =
1
M

∫∫∫
x′ dM , yc =

1
M

∫∫∫
y′ dM , zc =

1
M

∫∫∫
z′ dM (2–87)

are the rectangular coordinates of the center of gravity (center of mass,
geocenter). If the origin of the coordinate system coincides with the center
of gravity, then these coordinates and, hence, the integrals (2–85) are zero.
If the origin r = 0 is the center of gravity of the earth, then there will be
no first-degree terms in the spherical-harmonic expansion of the potential V .
Therefore, this is true for our geocentric coordinate system.

The integrals∫∫∫
x′y′ dM ,

∫∫∫
y′z′ dM ,

∫∫∫
z′x′ dM (2–88)

are the products of inertia. They are zero if the coordinate axes coincide with
the principal axes of inertia. If the z-axis is identical with the mean rotational
axis of the earth, which coincides with the axis of maximum inertia, at least
the second and third of these products of inertia must vanish. Hence, A21 and
B21 will be zero, but not so B22, which is proportional to the first product of
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inertia; B22 would vanish only if the earth had complete rotational symmetry
or if a principal axis of inertia happened to coincide with the Greenwich
meridian.

The five harmonics A10 R10, A11 R11, B11 S11, A21 R21, and B21 S21 –
all first-degree harmonics and those of degree 2 and order 1 – which must,
thus, vanish in any spherical-harmonic expansion of the earth’s potential,
are called forbidden or inadmissible harmonics.

Introducing the moments of inertia with respect to the x-, y-, z-axes by
the definitions

A =
∫∫∫

(y′2 + z′2) dM ,

B =
∫∫∫

(z′2 + x′2) dM ,

C =
∫∫∫

(x′2 + y′2) dM ,

(2–89)

and denoting the xy-product of inertia, which cannot be said to vanish, by

D =
∫∫∫

x′y′ dM , (2–90)

we finally have
A00 = GM ,

A10 = A11 = B11 = 0 ,

A20 = G
[
(A + B)/2 − C

]
,

A21 = B21 = 0 ,

A22 = 1
4 G (B − A) ,

B22 = 1
2 GD .

(2–91)

Now let the x- and y-axes actually coincide with the corresponding prin-
cipal axes of inertia of the earth. This is only theoretically possible, since
the principal axes of inertia of the earth are only inaccurately known. Then
B22 = 0; taking into account (2–78) and (2–79), we may write explicitly

V =
GM

r
+

G

r3

{
1
2
[
C − (A + B)/2

]
(1 − 3 cos2ϑ) +

3
4

(B − A) sin2ϑ cos 2λ
}

+ O(1/r4) .

(2–92)
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In rectangular coordinates this assumes the symmetrical form

V =
GM

r
+

G

2r5

[
(B + C − 2A)x2 + (C + A − 2B) y2 +

(A + B − 2C) z2
]

+ O(1/r4) ,

(2–93)

which is obtained by taking into account the relations (1–26) between rect-
angular and spherical coordinates.

Terms of order higher than 1/r3 may be neglected for larger distances
(say, for the distance to the moon), so that (2–92) or (2–93), omitting the
higher-order terms 0(1/r4), are sufficient for many astronomical purposes,
cf. Moritz and Mueller (1987). Note that the notation 0(1/r4) means terms
of the order of 1/r4. For planetary distances even the first term,

V =
GM

r
, (2–94)

is generally sufficient; it represents the potential of a point mass. Thus, for
very large distances, every body acts like a point mass.

Using the form (2–78) of the spherical-harmonic expansion of V , then
the coefficients of lower degree are obtained from (2–79) and (2–91). We find

C10 = C11 = S11 = 0 ,

C20 = −C − (A + B)/2
M a2

,

C21 = S21 = 0 ,

C22 =
B − A

4M a2
,

S22 =
D

2M a2
.

(2–95)

The first of these formulas shows that the summation in (2–78) actually
begins with n = 2; the others relate the coefficients of second degree to the
mass and the moments and products of inertia of the earth.

2.7 The gravity field of the level ellipsoid

As a first approximation, the earth is a sphere; as a second approximation,
it may be considered an ellipsoid of revolution. Although the earth is not an
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exact ellipsoid, the gravity field of an ellipsoid is of fundamental practical
importance because it is easy to handle mathematically and the deviations
of the actual gravity field from the ellipsoidal “normal” field are so small that
they can be considered linear. This splitting of the earth’s gravity field into a
“normal” and a remaining small “disturbing” field considerably simplifies the
problem of its determination; the problem could hardly be solved otherwise.

Therefore, we assume that the normal figure of the earth is a level ellip-
soid, that is, an ellipsoid of revolution which is an equipotential surface of
a normal gravity field. This assumption is necessary because the ellipsoid is
to be the normal form of the geoid, which is an equipotential surface of the
actual gravity field. Denoting the potential of the normal gravity field by

U = U(x, y, z) , (2–96)

we see that the level ellipsoid, being a surface U = constant, exactly corre-
sponds to the geoid, which is defined as a surface W = constant.

The basic point here is that by postulating that the given ellipsoid be
an equipotential surface of the normal gravity field, and by prescribing the
total mass M , we completely and uniquely determine the normal potential
U . The detailed density distribution inside the ellipsoid, which produces the
potential U , is quite uninteresting and need not be known at all. In fact,
we do not know of any “reasonable” mass distribution for the level ellipsoid
(Moritz 1990: Chap. 5). Pizzetti (1894) unsuccessfully used a homogeneous
density distribution combined with a surface layer of negative density, which
is quite “unnatural”.

This determination is possible by Dirichlet’s principle (Sect. 1.12): The
gravitational potential outside a surface S is completely determined by know-
ing the geometric shape of S and the value of the potential on S. Originally
it was shown only for the gravitational potential V , but it can be applied to
the gravity potential

U = V + 1
2 ω2(x2 + y2) (2–97)

as well if the angular velocity ω is given. The proof follows that in Sect. 1.12,
with obvious modifications. Hence, the normal potential function U(x, y, z)
is completely determined by

1. the shape of the ellipsoid of revolution, that is, its semiaxes a and b,
2. the total mass M , and
3. the angular velocity ω.

The calculation will now be carried out in detail. The given ellipsoid S0,

x2 + y2

a2
+

z2

b2
= 1 , (2–98)
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is by definition an equipotential surface

U(x, y, z) = U0 . (2–99)

It is now convenient to introduce the ellipsoidal-harmonic coordinates u, β, λ
of Sect. 1.15. The ellipsoid S0 is taken as the reference ellipsoid u = b.

Since V (u, β), the gravitational part of the normal potential U , will be
harmonic outside the ellipsoid S0, we use the second equation of the series
(1–174). The field V has rotational symmetry and, hence, does not depend
on the longitude λ. Therefore, all nonzonal terms, which depend on λ, must
be zero, and there remains

V (u, β) =
∞∑

n=0

Qn

(
i

u

E

)
Qn

(
i

b

E

) AnPn(sin β) , (2–100)

where
E =

√
a2 − b2 (2–101)

is the linear eccentricity. The centrifugal potential Φ(u, β) is given by

Φ(u, β) = 1
2 ω2(u2 + E2) cos2β . (2–102)

Therefore, the total normal gravity potential may be written

U(u, β) =
∞∑

n=0

Qn

(
i

u

E

)
Qn

(
i

b

E

) AnPn(sin β) + 1
2 ω2(u2 + E2) cos2β . (2–103)

On the ellipsoid S0 we have u = b and U = U0. Hence,

∞∑
n=0

AnPn(sin β) + 1
2 ω2(u2 + E2) cos2β = U0 . (2–104)

This equation applies for all points of S0, that is, for all values of β. Since

b2 + E2 = a2 (2–105)

and
cos2β = 2

3

[
1 − P2(sin β)

]
, (2–106)

we have
∞∑

n=0

AnPn(sin β) + 1
3 ω2a2 − 1

3 ω2a2P2(sin β) − U0 = 0 (2–107)
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or (
A0 + 1

3 ω2a2 − U0

)
P0(sin β) + A1P1(sin β)

+
(
A2 − 1

3 ω2a2
)
P2(sin β) +

∞∑
n=3

AnPn(sin β) = 0 . (2–108)

This equation applies for all values of β only if the coefficient of every
Pn(sin β) is zero. Thus, we get

A0 = U0 − 1
3 ω2a2 , A1 = 0 ,

A2 = 1
3 ω2a2 , A3 = A4 = . . . = 0 .

(2–109)

Substituting these relations into (2–100) gives

V (u, β) =
(
U0 − 1

3 ω2a2
) Q0

(
i

u

E

)
Q0

(
i

b

E

) + 1
3 ω2a2

Q2

(
i

u

E

)
Q2

(
i

b

E

) P2(sin β) . (2–110)

This formula is basically the solution of Dirichlet’s problem for the level
ellipsoid, but we can give it more convenient forms. It is a closed formula!

First, we determine the Legendre functions of the second kind, Q0 and
Q2. As

coth−1(i x) =
1
i

cot−1x = −i tan−1 1
x

, (2–111)

we find by (1–80) with z = i u/E:

Q0

(
i

u

E

)
= −i tan−1 E

u
,

Q2

(
i

u

E

)
=

i

2

[(
1 + 3

u2

E2

)
tan−1 E

u
− 3

u

E

]
.

(2–112)

By introducing in (2–112) the abbreviations

q =
1
2

[(
1 + 3

u2

E2

)
tan−1 E

u
− 3

u

E

]
,

q0 =
1
2

[(
1 + 3

b2

E2

)
tan−1 E

b
− 3

b

E

] (2–113)

and substituting them in equation (2–110), we obtain

V (u, β) =
(
U0 − 1

3 ω2a2
) tan−1 E

u

tan−1 E

b

+ 1
3 ω2a2 q

q0
P2(sin β) . (2–114)
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Now we can express U0 in terms of the mass M . For large values of u, we
have

tan−1 E

u
=

E

u
+ O(1/u3) . (2–115)

From the expressions (1–26) for spherical coordinates and from equations
(1–151) for ellipsoidal-harmonic coordinates, we find

x2 + y2 + z2 = r2 = u2 + E2 cos2β , (2–116)

so that for large values of r we have

1
u

=
1
r

+ O(1/r3) (2–117)

and
tan−1 E

u
=

E

r
+ O(1/r3) , (2–118)

where O(x) means “small of order x”, i.e., small of order 1/r3 in our case.
For very large distances r, the first term in (2–114) is dominant, so that
asymptotically

V =
(
U0 − 1

3 ω2a2
) E

tan−1(E/b)
1
r

+ O(1/r3) . (2–119)

We know from Sect. 2.6 that

V =
GM

r
+ O(1/r3) . (2–120)

Substituting this expression for V into the left-hand side of (2–119) yields

GM

r
=
(
U0 − 1

3 ω2a2
) E

tan−1(E/b)
1
r

+ O(1/r3) . (2–121)

Now multiply this equation by r and let then r → 0. The result is (rigor-
ously!)

GM =
(
U0 − 1

3 ω2a2
) E

tan−1(E/b)
, (2–122)

which may be rearranged to

U0 =
GM

E
tan−1 E

b
+ 1

3 ω2a2 . (2–123)

This is the desired relation between mass M and potential U0.
Substituting the result for U0 obtained in (2–123) into (2–114), simplifies

the expression for V to

V =
GM

E
tan−1 E

u
+ 1

3 ω2a2 q

q0
P2(sin β) . (2–124)
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Expressing P2 as
P2(sin β) = 3

2 sin2β − 1
2 (2–125)

and, finally, adding the centrifugal potential Φ = ω2(u2 + E2) cos2β/2 from
(2–102), the normal gravity potential U results as

U(u, β) =
GM

E
tan−1 E

u
+ 1

2 ω2a2 q

q0

(
sin2β − 1

3

)
+ 1

2 ω2(u2 + E2) cos2β .

(2–126)
The only constants that occur in this formula are a, b, GM , and ω. This is
in complete agreement with Dirichlet’s theorem.

2.8 Normal gravity

Referring to the line element in ellipsoidal-harmonic coordinates according
to (1–155), replacing ϑ by its complement 90◦ − β, we get

ds2 = w2 du2 + w2(u2 + E2) dβ2 + (u2 + E2) cos2β dλ2 , (2–127)

where

w =

√
u2 + E2 sin2β

u2 + E2
(2–128)

has been introduced. Thus, along the coordinate lines we have

u = variable, β = constant, λ = constant, dsu = w du ,

β = variable, u = constant, λ = constant, dsβ = w
√

u2 + E2 dβ ,

λ = variable, u = constant, β = constant, dsλ =
√

u2 + E2 cos β dλ .
(2–129)

The components of the normal gravity vector

γ = grad U (2–130)

along these coordinate lines are accordingly given by

γu =
∂U

∂su
=

1
w

∂U

∂u
,

γβ =
∂U

∂sβ
=

1
w
√

u2 + E2

∂U

∂β
,

γλ =
∂U

∂sλ
=

1√
u2 + E2 cos β

∂U

∂λ
= 0 .

(2–131)
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The component γλ is zero because U does not contain λ. This is also evident
from the rotational symmetry.

Performing the partial differentiations, we find

−w γu =
GM

u2 + E2
+

ω2a2E

u2 + E2

q′

q0

(
1
2 sin2β − 1

6

)− ω2u cos2β ,

−w γβ =
(
− ω2a2

√
u2 + E2

q

q0
+ ω2

√
u2 + E2

)
sin β cos β ,

(2–132)

where we have set

q′ = −u2 + E2

E

dq

du
= 3

(
1 +

u2

E2

)(
1 − u

E
tan−1 E

u

)
− 1 . (2–133)

Note that q′ does not mean dq/du; this notation has been borrowed from Hir-
vonen (1960), where q′ is the derivative with respect to another independent
variable which we are not using here.

For the level ellipsoid S0 itself, we have u = b and get

γβ,0 = 0 . (2–134)

(Note that we will often mark quantities referred to S0 by the subscript
0.) This is also evident because on S0 the gravity vector is normal to the
level surface S0. Hence, in addition to the λ-component, the β-component
is also zero on the reference ellipsoid u = b. Note that the other coordinate
ellipsoids u = constant are not equipotential surfaces U = constant, so that
the β-component will not in general be zero.

Thus, the total gravity on the ellipsoid S0, which we simply denote by
γ, is given by

γ = |γu,0| =
GM

a
√

a2 sin2β + b2 cos2β
·

·
[
1 +

ω2a2E

GM

q′0
q0

(
1
2 sin2β − 1

6

)− ω2a2b

GM
cos2β

]
,

(2–135)

since on S0 we get the relations
√

u2 + E2 =
√

b2 + E2 = a ,

w0 =
1
a

√
b2 + E2 sin2β =

1
a

√
a2 sin2β + b2 cos2β .

(2–136)

Now we introduce the abbreviation

m =
ω2a2b

GM
(2–137)
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and the second eccentricity

e′ =
E

b
=

√
a2 − b2

b
. (2–138)

The prime on e does not denote differentiation, but merely distinguishes the
second eccentricity from the first eccentricity which is defined as e = E/a.

Removing the constant terms by noting that

1 = cos2β + sin2β , (2–139)

we obtain

γ =
GM

a
√

a2 sin2β + b2 cos2β
·

·
[(

1 +
m

3
e′q′0
q0

)
sin2β +

(
1 − m − m

6
e′q′0
q0

)
cos2β

]
.

(2–140)

At the equator (β = 0), we find

γa =
GM

ab

(
1 − m − m

6
e′q′0
q0

)
; (2–141)

at the poles (β = ±90◦), normal gravity is given by

γb =
GM

a2

(
1 +

m

3
e′q′0
q0

)
. (2–142)

Normal gravity at the equator, γa, and normal gravity at the pole, γb, satisfy
the relation

a − b

a
+

γb − γa

γa
=

ω2b

γa

(
1 +

e′q′0
2q0

)
, (2–143)

which should be verified by substitution. This is the rigorous form of an im-
portant approximate formula published by Clairaut in 1738. It is, therefore,
called Clairaut’s theorem. Its significance will become clear in Sect. 2.10.

By comparing expression (2–141) for γa and expression (2–142) for γb

with the quantities within parentheses in formula (2–140), we see that γ can
be written in the symmetrical form

γ =
a γb sin2β + b γa cos2β√

a2 sin2β + b2 cos2β
. (2–144)

We finally introduce the ellipsoidal latitude on the ellipsoid, ϕ, which is the
angle between the normal to the ellipsoid and the equatorial plane (Fig. 2.11).
Using the formula from ellipsoidal geometry,
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Oa

b

N

''
¯

P

Fig. 2.11. Ellipsoidal latitude ϕ, geocentric latitude ϕ̄, reduced
(ellipsoidal-harmonic) latitude β for a point P on the ellipsoid

tan β =
b

a
tan ϕ , (2–145)

we obtain

γ =
a γa cos2ϕ + b γb sin2ϕ√

a2 cos2ϕ + b2 sin2ϕ
. (2–146)

The computation is left as an exercise for the reader. This rigorous formula
for normal gravity on the ellipsoid is due to Somigliana from 1929.

We close this section with a short remark on the vertical gradient of
gravity at the reference ellipsoid, ∂γ/∂su = ∂γ/∂h. Bruns’ formula (2–40),
applied to the normal gravity field with the corresponding ellipsoidal height
h and with � = 0, yields

∂γ

∂h
= −2γ J − 2ω2 . (2–147)

The mean curvature of the ellipsoid is given by

J =
1
2

(
1
M

+
1
N

)
, (2–148)

where M and N are the principal radii of curvature: M is the radius in the
direction of the meridian, and N is the normal radius of curvature, taken
in the direction of the prime vertical. From ellipsoidal geometry, we use the
formulas

M =
c

(1 + e′2 cos2ϕ)3/2
, N =

c

(1 + e′2 cos2ϕ)1/2
, (2–149)
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where

c =
a2

b
(2–150)

is the radius of curvature at the pole. The normal radius of curvature, N ,
admits a simple geometrical interpretation (Fig. 2.11). It is, therefore, also
known as the “normal terminated by the minor axis” (Bomford 1962: p. 497).

2.9 Expansion of the normal potential in spherical
harmonics

We have found the gravitational potential of the normal figure of the earth
in terms of ellipsoidal harmonics in (2–124) as

V =
GM

E
tan−1 E

u
+

1
3

ω2a2 q

q0
P2(sin β) . (2–151)

Now we wish to express this equation in terms of spherical coordinates
r, ϑ, λ.

We first establish a relation between ellipsoidal-harmonic and spherical
coordinates. By comparing the rectangular coordinates in these two systems
according to Eqs. (1–26) and (1–151), we get

r sin ϑ cos λ =
√

u2 + E2 cos β cos λ ,

r sin ϑ sinλ =
√

u2 + E2 cos β sin λ ,

r cos ϑ = u sin β .

(2–152)

The longitude λ is the same in both systems. We easily find from these
equations

cot ϑ =
u√

u2 + E2
tan β ,

r =
√

u2 + E2 cos2β .

(2–153)

The direct transformation of (2–151) by expressing u and β in terms of
r and ϑ by means of equations (2–153) is extremely laborious. However, the
problem can be solved easily in an indirect way.

We expand tan−1(E/u) into the well-known power series

tan−1 E

u
=

E

u
− 1

3

(
E

u

)3

+
1
5

(
E

u

)5

− . . . . (2–154)

The substitution of this series into the first equation of formula (2–113), i.e.,

q =
1
2

[(
1 + 3

u2

E2

)
tan−1 E

u
− 3

u

E

]
, (2–155)
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leads, after simple manipulations, to

q = 2

[
1

3 · 5
(

E

u

)3

− 2
5 · 7

(
E

u

)5

+
3

7 · 9
(

E

u

)7

− . . .

]
. (2–156)

More concisely, we have

tan−1 E

u
=

E

u
+

∞∑
n=1

(−1)n
1

2n + 1

(
E

u

)2n+1

,

q = −
∞∑

n=1

(−1)n
2n

(2n + 1)(2n + 3)

(
E

u

)2n+1

.

(2–157)

By inserting these relations into (2–151) we obtain

V =
GM

u
+

GM

E

∞∑
n=1

(−1)n
1

2n + 1

(
E

u

)2n+1

− ω2a2

3q0

∞∑
n=1

(−1)n
2n

(2n + 1)(2n + 3)

(
E

u

)2n+1

P2(sin β) .

(2–158)

Introducing m, defined by (2–137), and the second eccentricity e′ = E/b, we
find

V =
GM

u
+

∞∑
n=1

(−1)n
GM

(2n + 1)E

(
E

u

)2n+1

·

·
[
1 − m e′

3q0

2n
2n + 3

P2(sin β)
]

. (2–159)

We expand the potential V into a series of spherical harmonics. Because
of the rotational symmetry, there will be only zonal terms, and because of
the symmetry with respect to the equatorial plane, there will be only even
zonal harmonics. The zonal harmonics of odd degree change sign for negative
latitudes and must, therefore, be absent. Accordingly, the series has the form

V =
GM

r
+ A2

P2(cos ϑ)
r3

+ A4
P4(cos ϑ)

r5
+ · · · . (2–160)

We next have to determine the coefficients A2, A4, . . . . For this purpose, we
consider a point on the axis of rotation, outside the ellipsoid. For this point,
we have β = 90◦, ϑ = 0◦, and, by (2–153), u = r. Then (2–159) becomes

V =
GM

r
+

∞∑
n=1

(−1)n
GM E2n

2n + 1

(
1 − 2n

2n + 3
m e′

3q0

)
1

r2n+1
, (2–161)



2.9 Expansion of the normal potential in spherical harmonics 75

and (2–160) takes the form

V =
GM

r
+

A2

r3
+

A4

r5
+ · · · =

GM

r
+

∞∑
n=1

A2n
1

r2n+1
. (2–162)

Here we have used the fact that for all values of n

Pn(1) = 1 (2–163)

(see also Fig. 1.4). Comparing the coefficients in both expressions for V , we
find

A2n = (−1)n
GM E2n

2n + 1

(
1 − 2n

2n + 3
m e′

3q0

)
. (2–164)

Equations (2–160) and (2–164) give the desired expression for the potential
of the level ellipsoid as a series of spherical harmonics.

The second-degree coefficient A2 is

A2 = G (A − C) . (2–165)

This follows from (2–91) by using A = B for reasons of symmetry. The C
is the moment of inertia with respect to the axis of rotation, and A is the
moment of inertia with respect to any axis in the equatorial plane. By letting
n = 1 in (2–164), we obtain

A2 = −1
3

GM E2

(
1 − 2

15
m e′

q0

)
. (2–166)

Comparing this with the preceding Eq. (2–165), we find

G (C − A) =
1
3

GM E2

(
1 − 2

15
m e′

q0

)
. (2–167)

Thus, the difference between the principal moments of inertia is expressed
in terms of “Stokes’ constants” a, b, M , and ω.

It is possible to eliminate q0 from Eqs. (2–164) and (2–167), obtaining

A2n = (−1)n
3GM E2n

(2n + 1)(2n + 3)

(
1 − n + 5n

C − A

M E2

)
. (2–168)

If we write the potential V in the form

V =
GM

r

[
1 + C2

(a

r

)2
P2(cos ϑ) + C4

(a

r

)4
P4(cos ϑ) + · · ·

]

=
GM

r

[
1 +

∞∑
n=1

C2n

(a

r

)2n
P2n(cos ϑ)

]
,

(2–169)
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then the C2n are given by

C2n = −J2n = (−1)n
3e2n

(2n + 1)(2n + 3)

(
1 − n + 5n

C − A

M E2

)
. (2–170)

Here we have introduced the first eccentricity e = E/a. For n = 1 this gives
the important formula

C20 = −C − A

M a2
(2–171)

or, equivalently,

J2 =
C − A

M a2
, (2–172)

which is in agreement with the respective relation in (2–95) when taking into
account the rotational symmetry causing A = B.

Finally, we note that on eliminating q0 = (1/i)Q2(i(b/E)) by using
Eq. (2–167), and U0 by using Eq. (2–122), we may write the expansion of V
in ellipsoidal harmonics, Eq. (2–110), in the form

V (u, β) =
i

E
GM Q0

(
i

u

E

)
+

15i
2E3

G
(
C − A − 1

3 M E2
)
Q2

(
i

u

E

)
P2(sin β) .

(2–173)

This shows that the coefficients of the ellipsoidal harmonics of degrees zero
and two are functions of the mass and of the difference between the two
principal moments of inertia. The analogy to the corresponding spherical-
harmonic coefficients (2–91) is obvious. This is a closed formula, not a trun-
cated series!

2.10 Series expansions for the normal gravity field

Since the earth ellipsoid is very nearly a sphere, the quantities

E =
√

a2 − b2 , linear eccentricity,

e =
E

a
, first (numerical) eccentricity,

e′ =
E

b
, second (numerical) eccentricity,

f =
a − b

a
, flattening,

(2–174)
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and similar parameters that characterize the deviation from a sphere are
small. Therefore, series expansions in terms of these or similar parameters
will be convenient for numerical calculations.

Linear approximation
In order that the readers may find their way through the subsequent practical
formulas, we first consider an approximation that is linear in the flattening f .
Here we get particularly simple and symmetrical formulas which also exhibit
plainly the structure of the higher-order expansions.

It is well known that the radius vector r of an ellipsoid is approximately
given by

r = a (1 − f sin2ϕ) . (2–175)

As we will see subsequently, normal gravity may, to the same approximation,
be written

γ = γa (1 + f∗ sin2ϕ) . (2–176)

For ϕ = ±90◦, at the poles, we have r = b and γ = γb. Hence, we may write

b = a (1 − f) , γb = γa (1 + f∗) , (2–177)

and solving for f and f∗, we obtain

f =
a − b

a
,

f∗ =
γb − γa

γa
,

(2–178)

so that f is the flattening defined by (2–174), and f∗ is an analogous quantity
which may be called gravity flattening.

To the same approximation, (2–143) becomes

f + f∗ = 5
2 m , (2–179)

where

m
.=

ω2a

γa
=

centrifugal force at equator
gravity at equator

. (2–180)

This is Clairaut’s theorem in its original form. It is one of the most striking
formulas of physical geodesy: the (geometrical) flattening f in (2–178) can
be derived from f∗ and m, which are purely dynamical quantities obtained
by gravity measurements; that is, the flattening of the earth can be obtained
from gravity measurements.

Clairaut’s formula is only a first approximation and must be improved,
first by the inclusion of higher-order ellipsoidal terms in f , and secondly by
taking into account the deviation of the earth’s gravity field from the normal
gravity field. But the principle remains the same.
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Second-order expansion

We now expand the closed formulas of the two preceding sections into series
in terms of the second numerical eccentricity e′ and the flattening f , in
general up to and including e′4 or f2. Terms of the order of e′6 or f3 and
higher will usually be neglected.

We start from the series

tan−1 E

u
=

E

u
− 1

3

(
E

u

)3

+
1
5

(
E

u

)5

− 1
7

(
E

u

)7

+ · · · ,

q = 2

[
1

3 · 5
(

E

u

)3

− 2
5 · 7

(
E

u

)5

+
3

7 · 9
(

E

u

)7

− · · ·
]

,

q′ = 6

[
1

3 · 5
(

E

u

)3

− 1
5 · 7

(
E

u

)5

+
1

7 · 9
(

E

u

)7

− · · ·
]

.

(2–181)

The first two series have already been used in the preceding section in (2–
154) and (2–156), respectively; the third is obtained by substituting the
tan−1 series into the closed formula (2–133) for q′.

On the reference ellipsoid S0, we have u = b and

E

u
=

E

b
= e′ , (2–182)

so that

tan−1e′ = e′ − 1
3 e′3 + 1

5 e′5 · · · ,

q0 = 2
15 e′3

(
1 − 6

7 e′2 · · · ) ,

q′0 = 2
5 e′2

(
1 − 3

7 e′2 · · · ) ,

e′ q′0
q0

= 3
(
1 + 3

7 e′2 · · · ) .

(2–183)

We also need the series

b =
a√

1 + e′2
= a

(
1 − 1

2 e′2 + 3
8 e′4 · · · ) . (2–184)
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Potential and gravity
By substituting these expressions into the closed formulas (2–123), (2–141),
(2–142), and (2–143), we obtain, up to and including the order e′4, the fol-
lowing relations.
Potential:

U0 =
GM

b

(
1 − 1

3 e′2 + 1
5 e′4

)
+ 1

3 ω2a2 . (2–185)

Gravity at the equator and the pole:

γa =
GM

ab

(
1 − 3

2 m − 3
14 e′2m

)
,

γb =
GM

a2

(
1 + m + 3

7 e′2m
)
.

(2–186)

Clairaut’s theorem:

f + f∗ =
5
2

ω2b

γa

(
1 +

9
35

e′2
)

. (2–187)

The ratio ω2a/γa may be expressed as

ω2a

γa
= m + 3

2 m2 , (2–188)

which is a more accurate version of (2–180).
From the first equation of (2–186), we find

GM = a b γa

(
1 + 3

2 m + 3
14 e′2m + 9

4 m2
)
, (2–189)

which gives the mass in terms of equatorial gravity. Using this equation, we
can express GM in Eq. (2–185) in terms of γa, obtaining

U0 = a γa

(
1 − 1

3 e′2 + 11
6 m + 1

5 e′4 − 2
7 e′2m + 11

4 m2
)
. (2–190)

Here we have eliminated ω2a by replacing it with GM m/b.
Now we can turn to Eq. (2–146) for normal gravity. A simple manipula-

tion yields

γ = γa

1 + b γb−a γa

a γb
sin2ϕ√

1 − a2−b2

a2 sin2ϕ
. (2–191)

The denominator is expanded into a binomial series:

1√
1 − x

= 1 + 1
2 x + 3

8 x2 + · · · . (2–192)
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Then the abbreviated series

a2 − b2

a2
=

e′2

1 + e′2
= e′2 − e′4 ,

b γb − a γa

a γa
= −e′2 + 5

2 m2 + e′4 − 13
7 e′2m + 15

4 m2

(2–193)

are introduced and we obtain, upon substitution,

γ = γa

[
1 +

(− 1
2 e′2 + 5

2 m + 1
2 e′4 − 13

7 e′2m + 15
4 m2

)
sin2 ϕ

+
(− 1

8 e′4 + 5
4 e′2m

)
sin4ϕ

]
.

(2–194)

We may also express these quantities in terms of the flattening f by substi-
tuting the equation

e′2 =
1

(1 − f)2
− 1 = 2f + 3f2 + · · · . (2–195)

The flattening f is most commonly used; it offers a slight advantage over
the second eccentricity e′ in that it is of the same order of magnitude as m:
it is not immediately apparent that m2, e′2m, and e′4 are quantities of the
same order of magnitude. We obtain

GM = a b γa

(
1 + 3

2 m + 3
7 f m + +9

4 m2
)
, (2–196)

U0 = a γa

(
1 − 2

3 f + 11
6 m − 1

5 f2 − 4
7 f m + 11

4 m2
)
, (2–197)

γ = γa

[
1 +

(− f + 5
2 m + 1

2 f2 − 26
7 f m + 15

4 m2
)

sin2ϕ

+
(− 1

2 f2 + 5
2 f m

)
sin4ϕ

]
.

(2–198)

The last formula is usually abbreviated as

γ = γa (1 + f2 sin2ϕ + f4 sin4ϕ) , (2–199)

so that we have

f2 = −f + 5
2 m + 1

2 f2 − 26
7 f m + 15

4 m2 ,

f4 = −1
2 f2 + 5

2 f m .

(2–200)

By substituting
sin4ϕ = sin2ϕ − 1

4 sin2 2ϕ , (2–201)
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we finally obtain

γ = γa (1 + f∗ sin2ϕ − 1
4 f4 sin2 2ϕ) , (2–202)

where
f∗ =

γb − γa

γa
= f2 + f4 (2–203)

is the “gravity flattening”.

Coefficients of spherical harmonics
Equation (2–167) for the principal moments of inertia yields at once

C − A

M E2
=

1
3
− 2

45
m e′

q0
. (2–204)

Expanding q0 by means of (2–183), we find

C − A

M E2
=

1
e′2
(

1
3 e′2 − 1

3 m − 2
7 e′2m

)
. (2–205)

Substituting this into (2–170) yields

−C20 = J2 =
C − A

M E2
= 1

3 e′2 − 1
3 m − 1

3 e′4 + 1
21 e′2m

= 2
3 f − 1

3 m − 1
3 f2 + 2

21 f m ,

(2–206)

−C40 = J4 = −1
5 e′4 + 2

7 e′2m = −4
5 f2 + 4

7 f m . (2–207)

The higher C or J , respectively, are already of an order of magnitude that
we have neglected.

Gravity above the ellipsoid
Denoting the height above the ellipsoid as ellipsoidal height h, then, in case
of a small height, the normal gravity γh at this height can be expanded into
a series in terms of h:

γh = γ +
∂γ

∂h
h +

1
2

∂2γ

∂h2
h2 + · · · , (2–208)

where γ and its derivatives are referred to the ellipsoid, where h = 0.
The first derivative ∂γ/∂h may be obtained by applying Bruns’ formula

(2–147) together with (2–148) to the ellipsoidal height h (instead of H):

∂γ

∂h
= −γ

(
1
M

+
1
N

)
− 2ω2 , (2–209)
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where M, N are the principal radii of curvature of the ellipsoid, defined by
(2–149). Since

1
M

=
b

a2

(
1 + e′2 cos2ϕ

)3/2 =
b

a2

(
1 + 3

2 e′2 cos2ϕ · · · ) ,

1
N

=
b

a2

(
1 + e′2 cos2ϕ

)1/2 =
b

a2

(
1 + 1

2 e′2 cos2ϕ · · · ) ,

(2–210)

we have

1
M

+
1
N

=
b

a2

(
2 + 2e′2 cos2ϕ

)
=

2b
a2

(1 + 2f cos2ϕ) . (2–211)

Here we have limited ourselves to terms linear in f , since the elevation h is
already a small quantity. Thus, we find from (2–209) after simple manipula-
tions:

∂γ

∂h
= −2γ

a
(1 + f + m − 2f sin2ϕ) . (2–212)

The second derivative ∂2γ/∂h2 may be taken from the spherical approxima-
tion, obtained by neglecting e′2 or f :

γ =
GM

a2
,

∂γ

∂h
=

∂γ

∂a
= −2GM

a3
,

∂2γ

∂h2
=

∂2γ

∂a2
=

6GM

a4
, (2–213)

so that
∂2γ

∂h2
=

6γ
a2

. (2–214)

Thus we obtain

γh = γ

[
1 − 2

a
(1 + f + m − 2f sin2ϕ)h +

3
a2

h2

]
. (2–215)

Using Eq. (2–198) for γ, we may also write the difference γh − γ in the form

γh − γ = −2γa

a

[
1 + f + m +

(− 3f + 5
2 m

)
sin2ϕ)

]
h +

3γa

a2
h2 . (2–216)

The symbol γh denotes the normal gravity for a point at latitude ϕ, situated
at height h above the ellipsoid; γ is the gravity at the ellipsoid itself, for the
same latitude ϕ, as given by (2–202) or equivalent formulas.

Second-order series developments for the inner gravity field are found in
Moritz (1990: Chap. 4); this is the main reason for such a development here,
because today one uses the closed formulas wherever possible.
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2.11 Reference ellipsoid – numerical values

Some history
The reference ellipsoid and its gravity field are completely determined by four
constants. Before the satellite era, one took the following four parameters:

a . . . semimajor axis ,
f . . . flattening ,

γa . . . equatorial gravity ,
ω . . . angular velocity .

(2–217)

The values best known and most widely used have been those of the Inter-
national Ellipsoid:

a = 6378 388.000 m ,
f = 1/297.000 ,

γa = 978.049 000 gal ,
ω = 0.729 211 51 · 10−4 s−1 .

(2–218)

The geometric parameters a and f were determined by Hayford in 1909 from
isostatically reduced astrogeodetic data in the United States. They were
adopted for the International Ellipsoid by the assembly of the International
Association of Geodesy (IAG) at Madrid in 1924. The equatorial gravity
value γa was computed by Heiskanen (1924, 1928) from isostatically reduced
gravity data. The corresponding international gravity formula,

γ = 978.0490 (1 + 0.005 2884 sin2ϕ − 0.000 0059 sin2 2ϕ) gal , (2–219)

was adopted by the assembly of IAG at Stockholm in 1930; whose coefficients
were computed from the assumed values for a, f, γa, ω by Cassinis (1930)
using Eqs. (2–200), (2–202), (2–203).

All parameters of the International Ellipsoid and its gravity field can
be computed from (2–218) to any desired degree of accuracy, which merely
expresses the inner consistency. In this way, we find (rounded values)

b = 6356 912 m ,
E = 522 976 m ,
e′2 = 0.006 7682 ,
m = 0.003 4499 .

(2–220)

For the constants in the spherical-harmonic expansion of the normal
gravity field, we find the values

−C20 = J2 =
C − A

M a2
= 0.001 0920 ,

−C40 = J4 = −0.000 002 43 .

(2–221)
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The change of normal gravity with elevation is given by the formula
(2–216), which for the International Ellipsoid becomes

γh = γ − (0.308 77 − 0.000 45 sin2ϕ)h + 0.000 072h2 , (2–222)

where γh and γ are measured in gal, and h is the elevation in kilometer.
Although the International Ellipsoid can no longer be considered the

closest approximation of the earth by an ellipsoid, it may still be used as
a reference ellipsoid for geodetic purposes. An official change of a reference
system must be very carefully considered because a large amount of data
may be referred to such a system.

The eastern countries have used the ellipsoid of Krassowsky:

a = 6378 245 m ,
f = 1/298.3 .

(2–223)

Contemporary data
After the start of Sputnik, the first artificial satellite, in 1957, the Interna-
tional Astronomical Union, in 1964, adopted a new set of constants, among
them a = 6378 160 m and f = 1/298.25. The value of a, which is consid-
erably smaller than that for the International Ellipsoid, incorporates astro-
geodetic determinations; the change in the value of J2, and consequently of
f , is due to the results from artificial satellites.

In 1967, these values were taken by the International Union of Geodesy
and Geophysics (IUGG) as the Geodetic Reference System 1967.

This decision was soon seen to be wrong; especially the value of a was
recognized to be too large: now we believe to be on the order of 6 378 137 m,
the value of the Geodetic Reference System 1980 (GRS 1980) and, based on
it, the World Geodetic System 1984 (WGS 84). More details of these two
systems are given below.

Geodetic Reference System 1980 (GRS 1980)
The GRS 1980 has been adopted at the XVII General Assembly of the IUGG
in Canberra, December 1979, by Resolution No. 7. Inherently, this resolu-
tion recognizing that the Geodetic Reference System 1967 adopted at the
XIV General Assembly of IUGG, Lucerne, 1967, no longer represents the
size, shape, and gravity field of the earth to an accuracy adequate for many
geodetic, geophysical, astronomical, and hydrographic applications and con-
sidering that more appropriate values are now available, recommends that
the Geodetic Reference System 1967 be replaced by the new Geodetic Refer-
ence System 1980 which is also based on the theory of the geocentric equipo-
tential ellipsoid. The four defining parameters of the GRS 1980 are given in
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Table 2.1. Defining parameters of the GRS 1980

Parameter and value Description
a = 6378 137 m semimajor axis of the ellipsoid
GM = 3986 005 · 108 m3 s−2 geocentric gravitational constant of the

earth (including the atmosphere)
J2 = 108 263 · 10−8 dynamical form factor of the earth (ex-

cluding the permanent tidal deforma-
tion)

ω = 7292 115 · 10−11 rad s−1 angular velocity of the earth

Table 2.1. Note that these parameters, as given in the table, are defined
as exact! Note also that GM , the “geocentric gravitational constant” of the
earth, may also more figuratively be denoted as “product of the (Newtonian)
gravitational constant and the earth’s mass”.

On the basis of these defining parameters and by the computational
formulas given in Moritz (1980 b), the geometrical and physical constants of
Table 2.2 may be derived.

The GRS 1980 is still (2005) valid as the official reference system of the
IUGG and it forms the fundamental basis of the WGS 84.

World Geodetic System 1984 (WGS 84)
As just mentioned, the WGS 84 may be regarded as a descendant of the
GRS 1980. Due to its still increasing importance, we consider it appropriate
to describe the WGS 84 in some more detail.

Following the National Imagery and Mapping Agency (2000) of the USA,
the definition of the WGS 84 may be described in the following way. The
WGS 84 is a Conventional Terrestrial Reference System (CTRS). The def-
inition of this coordinate system follows the criteria as outlined by the In-
ternational Earth Rotation Service (IERS). The criteria for this system are
the following:

• it is geocentric, the center of mass being defined for the whole earth
including oceans and atmosphere;

• its scale is that of the local earth frame, in the meaning of a relativistic
theory of gravitation;

• its orientation was initially given by the Bureau International de l’Heure
(BIH) orientation of 1984.0;

• its time evolution in orientation will create no residual global rotation
with regards to the crust.
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Table 2.2. GRS 1980 derived constants

Parameter and value Description

Geometrical constants

b = 6356 752.3141 m semiminor axis of the ellipsoid
E = 521 854.0097 m linear eccentricity
c = 6399 593.6259 m polar radius of curvature
e2 = 0.006 694 380 022 90 first eccentricity squared
e′2 = 0.006 739 496 775 48 second eccentricity squared
f = 0.003 352 810 681 18 flattening
1/f = 298.257 222 101 reciprocal flattening

Physical constants

U0 = 62636 860.850 m2 s−2 normal potential at the ellipsoid
J4 = −0.000 002 370 912 22 spherical-harmonic coefficient
J6 = 0.000 000 006 083 47 spherical-harmonic coefficient
J8 = −0.000 000 000 014 27 spherical-harmonic coefficient
m = 0.003 449 786 003 08 m = ω2a2b/(GM)
γa = 9.780 326 7715 m s−2 normal gravity at the equator
γb = 9.832 186 3685 m s−2 normal gravity at the pole

The WGS 84 is a right-handed, earth-fixed orthogonal coordinate system.
The origin and axes are defined in the following way:

• Origin: earth’s center of mass.
• Z-axis: the direction of the IERS Reference Pole (IRP); this direction

corresponds to the direction of the BIH Conventional Terrestrial Pole
(CTP) (epoch 1984.0). In other terms, the Z-axis is, by convention,
identical to the mean position of the earth’s rotational axis.

• X-axis: intersection of the IERS Reference Meridian (IRM) and the
plane passing through the origin and normal to the Z-axis; the IRM is
coincident with the BIH Zero Meridian (epoch 1984.0); in other terms,
the X-axis is associated with the mean Greenwich meridian.

• Y -axis: this axis completes a right-handed, earth-centered-earth-fixed
(ECEF) orthogonal coordinate system.

The WGS 84 origin also serves as the geometric center of the WGS 84 ellip-
soid and the Z-axis serves as the rotational axis of this ellipsoid of revolution.

This completes the definition of the WGS 84 as given in National Imagery
and Mapping Agency (2000). Note that the definition of the WGS 84 CTRS
has not changed in any fundamental way.
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Reference frames: WGS 84 and ITRF
Now we need the distinction between definition and realization. When using
the term “coordinate system” or “reference system”, then this implies the
definition only; however, when using the term “coordinate frame”, then a
realization is implied (Mueller 1985). So far, we have only given a definition
of the WGS 84; therefore, we ought to denote this as WGS 84 CTRS. Now
we consider a realization and, therefore, use the term “coordinate frame”.

Following closely National Imagery and Mapping Agency (2000) and
Hofmann-Wellenhof et al. (2001: Sect. 3.2.1), an example of a terrestrial
reference frame is – on the basis of the previous definition – the WGS 84
reference frame (often simply denoted as WGS 84 – as we will also do).
Associated to this frame is a geocentric ellipsoid of revolution, originally de-
fined by the four parameters (1) semimajor axis a, (2) normalized second
degree zonal gravitational coefficient C̄20, (3) truncated angular velocity of
the earth ω, and (4) earth’s gravitational constant G. This frame has been
used for GPS since 1987.

Another example for a terrestrial reference frame is the one produced
by the IERS and is called International Terrestrial Reference Frame (ITRF)
(McCarthy 1996). The definition of the axes is analogous to the WGS 84, i.e.,
the Z-axis is defined by the IERS Reference Pole (IRP) and the X-axis lies
in the IERS Reference Meridian (IRM); however, the realization differs! The
ITRF is realized by a number of terrestrial sites where temporal effects (plate
tectonics, tidal effects) are also taken into account. Thus, ITRF is regularly
updated (almost every year) and the acronym is supplemented by the last
two digits of the last year whose data were used in the formation of the
frame, e.g., ITRF89, ITRF90, ITRF91, ITRF92, ITRF93, ITRF94, ITRF95,
ITRF96, ITRF97, or the full designation of the year, e.g., ITRF2000.

The comparison of the original WGS 84 and ITRF revealed remarkable
differences (Malys and Slater 1994):

1. The WGS 84 was established through Doppler observations from the
TRANSIT satellite system, while ITRF is based on Satellite Laser
Ranging (SLR) and Very Long Baseline Interferometry (VLBI) obser-
vations. The accuracy of the TRANSIT reference stations was esti-
mated to be in the range of 1 to 2 meters, while the accuracy of the
ITRF reference stations is at the centimeter level.

2. The numerical values for the original defining parameters differ from
those in the ITRF. The only significant difference, however, was in
the earth’s gravitational constant GWGS −GITRF = 0.582 · 108 m3 s−2,
which resulted in measurable differences in the satellite orbits.

On the basis of this information, the former U.S. Defense Mapping Agency
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(DMA) has proposed to replace the value of G in the WGS 84 by the standard
IERS value and to refine the coordinates of the GPS tracking stations. The
revised WGS 84, valid since January 2, 1994, has been given the designation
WGS 84 (G 730), where the ‘G’ indicates that the respective coordinates
used were obtained through GPS and the following number 730 indicates
the GPS week number when DMA has implemented the refined system.

In 1996, the U.S.National Imagery and Mapping Agency (NIMA) – the
successor of DMA – has implemented a revised version of the frame denoted
as WGS 84 (G 873) and being valid since September 29, 1996. The frame is
realized by monitor stations with refined coordinates. The associated ellip-
soid and its gravity field are now defined by the four parameters a, f,GM,ω,
which are slightly different compared to the respective ITRF values, e.g., the
current WGS 84 (G 873) frame and the ITRF97 show insignificant systematic
differences of less than 2 cm. Hence, they are virtually identical.

Note that the refinements applied to the WGS 84 reference frame have
reduced the uncertainties in the coordinates of the frame, the uncertainty
of the gravitational model, and the uncertainty of the geoid undulations;
however, they have not changed the WGS 84 coordinate system in the sense
of definition !

More general, the relationship between the WGS 84 and the ITRF is
characterized by two statements: (1) WGS 84 and ITRF are consistent; (2)
the differences between WGS 84 and ITRF are in the centimeter range world-
wide (National Imagery and Mapping Agency 2000).

However, if a transformation between reference frames is required, this
is accomplished by a datum transformation (see Sect. 5.7).

Numerical values for the WGS 84 (reference frame)
As mentioned at the very beginning of Sect. 2.11, the reference ellipsoid and
its gravity field are completely determined by four constants. The current
defining parameters for WGS 84 are listed in Table 2.3.

Table 2.3. Defining parameters of the WGS 84

Parameter and value Description
a = 6378 137 m semimajor axis of the ellipsoid
f = 1/298.257 223 563 flattening of the ellipsoid
GM = 3986 004.418 · 108 m3 s−2 geocentric gravitational constant of

the earth (including the atmosphere)
ω = 7292 115 · 10−11 rad s−1 angular velocity of the earth
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Table 2.4. WGS 84 reference ellipsoid derived constants

Parameter and value Description

Geometrical constants

C̄20 = −0.484 166 774 985 · 10−3 normalized second-degree harmonic
b = 6356 752.3142 m semiminor axis of the ellipsoid
e = 8.181 919 084 2622 · 10−2 first eccentricity
e2 = 6.694 379 990 14 · 10−3 first eccentricity squared
e′ = 8.209 443 794 9696 · 10−2 second eccentricity
e′2 = 6.739 496 742 28 · 10−3 second eccentricity squared
E = 5.218 540 084 2339 · 105 linear eccentricity
c = 6399 593.6258 m polar radius of curvature

b/a = 0.996 647 189 335 axis ratio

Physical constants

U0 = 62636 851.7146 m2 s−2 normal potential at the ellipsoid
γa = 9.780 325 3359 m s−2 normal gravity at the equator
γb = 9.832 184 9378 m s−2 normal gravity at the pole
γ̄ = 9.797 643 2222 m s−2 mean value of normal gravity
M = 5.973 3328 · 1024 kg mass of the earth (includes atmosphere)
m = 0.003 449 786 506 84 m = ω2a2b/(GM)

Some history (even if only some years old) is important here because
the parameters selected to originally define the WGS 84 reference ellipsoid
were the semimajor axis a, the product of the earth’s mass and the grav-
itational constant GM (also denoted as “geocentric gravitational constant
of the earth”), the normalized second-degree zonal gravitational coefficient
C̄20, and the earth’s angular velocity ω. Due to significant refinements of
these original defining parameters, the DMA recommended, e.g., a refined
value for the GM parameter.

Anyway, a decision was made to retain the original WGS 84 reference
ellipsoid values for the semimajor axis a = 6378 137 m and for the flattening
f = 1/298.257 223 563. For this reason, the four defining parameters were
chosen to be a, f,GM,ω.

Readers who like some confusion may continue right here; otherwise skip
this short paragraph. Due to this new choice of the defining parameters,
there are in addition two distinct values for the C̄20 term, one is dynami-
cally derived and the other geometrically by the defining parameters. The
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geometric derivation based on the four defining parameters a, f,GM,ω yields
C̄20 = −0.484 166 774 985 · 10−3 which differs from the original value by
7.5015 · 10−11. For many more details refer to National Imagery and Map-
ping Agency (2000).

We conclude these considerations by a useful table. Using the four defin-
ing parameters, it is possible to derive the more commonly used geometric
constants and physical constants (Table 2.4) associated with the WGS 84
reference ellipsoid.

Numerical comparison of GRS 1980 and WGS 84
As mentioned previously, the GRS 1980 is the basis of the WGS 84. However,
due to different defining parameters on the one hand and, e.g., a refined value
for GM for the WGS 84 on the other hand, numerical differences between
the GRS 1980 and the WGS 84 arise. Some of these differences are given in
Table 2.5.

Table 2.5. Numerical comparison between GRS 1980 and WGS 84

Parameter GRS 1980 WGS 84

GM 3 986 005 · 108 m3 s−2 3 986 004.418 · 108 m3 s−2

1/f 298.257 222 101 298.257 223 563
b 6 356 752.3141 m 6356 752.3142 m
e2 0.006 694 380 022 90 0.006 694 379 990 14
e′2 0.006 739 496 775 48 0.006 739 496 742 28
E 521 854.0097 m 521 854.0084 m
c 6 399 593.6259 m 6399 593.6258 m
U0 62 636 860.850 m2 s−2 62 636 851.7146 m2 s−2

γa 9.780 326 7715 m s−2 9.780 325 3359 m s−2

γb 9.832 186 3685 m s−2 9.832 184 9378 m s−2

m 0.003 449 786 003 08 0.003 449 786 506 84

2.12 Anomalous gravity field, geoidal undulations,
and deflections of the vertical

The small difference between the actual gravity potential W and the normal
gravity potential U is denoted by T , so that

W (x, y, z) = U(x, y, z) + T (x, y, z) ; (2–224)
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Fig. 2.12. Geoid and reference ellipsoid

T is called the anomalous potential, or disturbing potential. We compare the
geoid

W (x, y, z) = W0 (2–225)

with a reference ellipsoid
U(x, y, z) = W0 (2–226)

of the same potential U0 = W0. A point P of the geoid is projected onto
the point Q of the ellipsoid by means of the ellipsoidal normal (Fig. 2.12).
The distance PQ between geoid and ellipsoid is called the geoidal height, or
geoidal undulation, and is denoted by N . Unfortunately, there is a conflict of
notation here. Denoting both the normal radius of curvature of the ellipsoid
and the geoidal height by N is well established in geodetic literature. We
continue this practice, as there is little chance of confusion.

Consider now the gravity vector g at P and the normal gravity vector γ
at Q. The gravity anomaly vector ∆g is defined as their difference:

∆g = gP − γQ . (2–227)

A vector is characterized by magnitude and direction. The difference in mag-
nitude is the gravity anomaly

∆g = gP − γQ ; (2–228)

the difference in direction is the deflection of the vertical.
The deflection of the vertical has two components, a north-south com-

ponent ξ and an east-west component η (Fig. 2.13). As the direction of the
vertical is directly defined by the astronomical coordinates latitude Φ and
longitude Λ, the components ξ and η can be expressed by them in a sim-
ple way. The actual astronomical coordinates of the geoidal point P , which
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Fig. 2.13. The deflection of the vertical as illustrated by means of a
unit sphere with center at P

define the direction of the plumb line n or of the gravity vector g, can be
determined by astronomical measurements. The ellipsoidal coordinates (or
geodetic coordinates in the sense of geographical coordinates on the ellip-
soid) given by the direction of the ellipsoidal normal n′ have been denoted
by ϕ and λ – these coordinates should not be confused with the ellipsoidal-
harmonic coordinates of Sect. 1.15 ! It is evident that this λ is identical with
the geocentric longitude (and also with the ellipsoidal-harmonic longitude).
Thus,

geoidal normal n, astronomical coordinates Φ, Λ ;

ellipsoidal normal n′, ellipsoidal coordinates ϕ, λ .
(2–229)

From Fig. 2.13, we read

ξ = Φ − ϕ ,

η = (Λ − λ) cos ϕ .
(2–230)

It is also possible to compare the vectors g and γ at the same point P . Then
we get the gravity disturbance vector

δg = gP − γP . (2–231)
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Accordingly, the difference in magnitude is the gravity disturbance

δg = gP − γP . (2–232)

The difference in direction – i.e., the deflection of the vertical – is the same
as before, since the directions of γP and γQ coincide virtually.

The gravity disturbance is conceptually even simpler than the gravity
anomaly, but it has not been that important in terrestrial geodesy. The
significance of the gravity anomaly is that it is given directly: the gravity
g is measured on the geoid (or reduced to it), see Chap. 3, and the normal
gravity γ is computed for the ellipsoid.

A very important remark
So far, for historical reasons, much more gravity anomalies ∆g are available
and are being processed than gravity disturbances δg. By GPS, however, the
point P is determined rather than Q. Therefore, in future, we may expect
that δg will become more important than ∆g.

However, mirroring the present state of practice of physical geodesy, we
continue mainly to work with ∆g. Most statements about ∆g will also apply
for δg, with obvious modifications, such as with Molodensky’s corrections
(see Chap. 8), and Stokes’ formula will be replaced by Koch’s formula (see
below in this chapter).

Relations
There are several basic mathematical relations between the quantities just
defined. Since

UP = UQ +
(

∂U

∂n

)
Q

N = UQ − γ N , (2–233)

we have
WP = UP + TP = UQ − γ N + TP . (2–234)

Because
WP = UQ = W0 , (2–235)

we find
T = γ N (2–236)

(where we have omitted the subscript P on the left-hand side) or

N =
T

γ
. (2–237)

This is the famous Bruns formula, which relates the geoidal undulation to
the disturbing potential.
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Next we consider the gravity disturbance. Since

g = grad W ,

γ = grad U ,
(2–238)

the gravity disturbance vector (2–231) becomes

δg = grad (W − U) = grad T ≡
[
∂T

∂x
,

∂T

∂y
,

∂T

∂z

]
. (2–239)

Then
g = −∂W

∂n
, γ = −∂U

∂n′
.= −∂U

∂n
, (2–240)

because the directions of the normals n and n′ almost coincide. Therefore,
the gravity disturbance is given by

δg = gP − γP = −
(

∂W

∂n
− ∂U

∂n′

)
.= −

(
∂W

∂n
− ∂U

∂n

)
(2–241)

or
δg = −∂T

∂n
. (2–242)

Since the elevation h is reckoned along the normal, we may also write

δg = −∂T

∂h
. (2–243)

Comparing (2–242) with (2–239), we see that the gravity disturbance δg, be-
sides being the difference in magnitude of the actual and the normal gravity
vector, is also the normal component of the gravity disturbance vector δg.

We now turn to the gravity anomaly ∆g. Since

γP = γQ +
∂γ

∂h
N , (2–244)

we have
−∂T

∂h
= δg = gP − γP = gP − γQ − ∂γ

∂h
N . (2–245)

Remembering the definition (2–228) of the gravity anomaly and taking into
account Bruns’ formula (2–237), we find the following equivalent relations:

−∂T

∂h
= ∆g − ∂γ

∂h
N , (2–246)

∆g = −∂T

∂h
+

∂γ

∂h
N , (2–247)
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∆g = −∂T

∂h
+

1
γ

∂γ

∂h
T , (2–248)

δg = ∆g − ∂γ

∂h
N , (2–249)

δg = ∆g − 1
γ

∂γ

∂h
T , (2–250)

relating different quantities of the anomalous gravity field.
Another equivalent form is

∂T

∂h
− 1

γ

∂γ

∂h
T + ∆g = 0 . (2–251)

This expression has been called the fundamental equation of physical geodesy,
because it relates the measured quantity ∆g to the unknown anomalous
potential T . In future, the relation

∂T

∂h
+ δg = 0 (2–252)

may replace it.
It has the form of a partial differential equation. If ∆g were known

throughout space, then (2–251) could be discussed and solved as a real par-
tial differential equation. However, since ∆g is known only along a surface
(the geoid), the fundamental equation (2–251) can be used only as a bound-
ary condition, which alone is not sufficient for computing T . Therefore, the
name “differential equation of physical geodesy”, which is sometimes used
for (2–251), is rather misleading.

One usually assumes that there are no masses outside the geoid. This is
not really true. But neither do we make observations directly on the geoid;
we make them on the physical surface of the earth. In reducing the measured
gravity to the geoid, the effect of the masses outside the geoid is removed by
computation, so that we can indeed assume that all masses are enclosed by
the geoid (see Chaps. 3 and 8).

In this case, since the density � is zero everywhere outside the geoid, the
anomalous potential T is harmonic there and satisfies Laplace’s equation

∆T ≡ ∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 . (2–253)

This is a true partial differential equation and suffices, if supplemented by
the boundary condition (2–251), for determining T at every point outside
the geoid. If we write the boundary condition in the form

−∂T

∂n
+

1
γ

∂γ

∂n
T = ∆g , (2–254)
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where ∆g is assumed to be known at every point of the geoid, then we see that
a linear combination of T and ∂T/∂n is given upon that surface. According
to Sect. 1.13, the determination of T is, therefore, a third boundary-value
problem of potential theory. If it is solved for T , then the geoidal height,
which is the most important geometric quantity in physical geodesy, can be
computed by Bruns’ formula (2–237).

Therefore, we may say that the basic problem of physical geodesy, the
determination of the geoid from gravity measurements, is essentially a third
boundary-value problem of potential theory.

2.13 Spherical approximation and expansion of the
disturbing potential in spherical harmonics

The reference ellipsoid deviates from a sphere only by quantities of the order
of the flattening, f

.= 3 · 10−3. Therefore, if we treat the reference ellipsoid
as a sphere in equations relating quantities of the anomalous field, this may
cause a relative error of the same order. This error is usually permissible in
N, T, ∆g, δg, etc. For instance, the absolute effect of this relative error on
the geoidal height is of the order of 3 ·10−3 N ; since N hardly exceeds 100 m,
this error can usually be expected to be less than 1m.

As a spherical approximation, we have

γ =
GM

r2
,

∂γ

∂h
=

∂γ

∂r
= −2

GM

r3
,

1
γ

∂γ

∂h
= −2

r
. (2–255)

We introduce a mean radius R of the earth. It is often defined as the radius of
a sphere that has the same volume as the earth ellipsoid; from the condition

4
3 π R3 = 4

3 π a2 b , (2–256)

we get
R = 3

√
a2 b . (2–257)

In a similar way, we may define a mean value of gravity, γ0, as normal gravity
at latitude ϕ = 45◦ (Moritz 1980b: p. 403). Numerical values of about

R = 6371 km, γ0 = 980.6 gal (2–258)

are usual. Then
1
γ

∂γ

∂h
= − 2

R
,

∂γ

∂h
= −2γ0

R
.

(2–259)
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Since the normal to the sphere is the direction of the radius vector r, we
have to the same approximation

∂

∂n
=

∂

∂h
=

∂

∂r
. (2–260)

In Bruns’ theorem (2–237) we may replace γ by γ0, and Eqs. (2–246)
through (2–250) and (2–251) become

−∂T

∂h
= ∆g +

2γ0

R
N , (2–261)

∆g = −∂T

∂r
− 2γ0

R
N , (2–262)

∆g = −∂T

∂r
− 2

R
T , (2–263)

δg = ∆g +
2γ0

R
N , (2–264)

δg = ∆g +
2
R

T , (2–265)

∂T

∂r
+

2
R

T + ∆g = 0 . (2–266)

The last equation is the spherical approximation of the fundamental bound-
ary condition.

Remark
The meaning of this spherical approximation should be carefully kept in
mind. It is used only in equations relating the small quantities T, N, ∆g, δg,
etc. The reference surface is never a sphere in any geometrical sense, but
always an ellipsoid. As the flattening f is very small, the ellipsoidal formulas
can be expanded into power series in terms of f , and then all terms containing
f, f2, etc., are neglected. In this way one obtains formulas that are rigorously
valid for the sphere, but approximately valid for the actual reference ellipsoid
as well. However, normal gravity γ in the gravity anomaly ∆g = g − γ
must be computed for the ellipsoid to a high degree of accuracy. To speak
of a “reference sphere” in space, in any geometric sense, may be highly
misleading.

Since the anomalous potential T = W −U is a harmonic function, it can be
expanded into a series of spherical harmonics:

T (r, ϑ, λ) =
∞∑

n=0

(
R

r

)n+1

Tn(ϑ, λ) . (2–267)
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Tn(ϑ, λ) is Laplace’s surface harmonic of degree n. On the geoid, which as a
spherical approximation corresponds to the sphere r = R, we have formally

T = T (R, ϑ, λ) =
∞∑

n=0

Tn(ϑ, λ) . (2–268)

We need not be concerned with questions of convergence here. Differentiating
the series (2–267) with respect to r, we find

δg = −∂T

∂r
=

1
r

∞∑
n=0

(n + 1)
(

R

r

)n+1

Tn(ϑ, λ) . (2–269)

On the geoid, where r = R, this becomes

δg = −∂T

∂r
=

1
R

∞∑
n=0

(n + 1) Tn(ϑ, λ) . (2–270)

These series express the gravity disturbance in terms of spherical harmonics.
The equivalent of (2–263) outside the earth is

∆g = −∂T

∂r
− 2

r
T . (2–271)

Its exact meaning will be discussed at the end of the following section. The
substitution of (2–269) and (2–267) into this equation yields

∆g =
1
r

∞∑
n=0

(n − 1)
(

R

r

)n+1

Tn(ϑ, λ) . (2–272)

On the geoid, this becomes

∆g =
1
R

∞∑
n=0

(n − 1) Tn(ϑ, λ) . (2–273)

This is the spherical-harmonic expansion of the gravity anomaly.
Note that even if the anomalous potential T contains a first-degree spher-

ical term T1(ϑ, λ), it will in the expression for ∆g be multiplied by the factor
1−1 = 0, so that ∆g can never have a first-degree spherical harmonic – even
if T has one.
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2.14 Gravity anomalies outside the earth

If a harmonic function H is given at the surface of the earth, then, as a
spherical approximation, the values of H outside the earth can be computed
by Poisson’s integral formula (1–123)

HP =
R

4π

∫
σ

∫
r2 − R2

l3
H dσ . (2–274)

The symbol
∫∫

σ is the usual abbreviation for an integral extended over the
whole unit sphere. The meaning of the other notations is read from Fig. 2.14.
The value of the harmonic function at the variable surface element R2 dσ is
denoted simply by H, whereas HP refers to the fixed point P . Then we get

l =
√

r2 + R2 − 2R r cos ψ . (2–275)

The harmonic function H can be expanded into a series of spherical har-
monics:

H =
(

R

r

)
H0 +

(
R

r

)2

H1 +
∞∑

n=2

(
R

r

)n+1

Hn . (2–276)

By omitting the terms of degrees one and zero, we get a new function

H ′ = H −
(

R

r

)
H0 −

(
R

r

)2

H1 =
∞∑

n=2

(
R

r

)n+1

Hn . (2–277)

P

terrestrial sphere

Ã
Ã

Rd¾

R d2 ¾

unit sphere

r R=

r = 1
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Fig. 2.14. Notations for Poisson’s integral and derived formulas
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The surface harmonics are given by

H0 =
1
4π

∫
σ

∫
H dσ , H1 =

3
4π

∫
σ

∫
H cos ψ dσ (2–278)

according to equation (1–89). Hence, we find from (2–277), on expressing H
by Poisson’s integral (2–274) and substituting the integrals (2–278) for H0

and H1, the basic formula

H ′
P =

1
4π

∫
σ

∫ (
r2 − R2

l3
− 1

r
− 3R

r2
cos ψ

)
H dσ . (2–279)

The reason for this modification of Poisson’s integral is that the formulas
of physical geodesy are simpler if the functions involved do not contain har-
monics of degrees zero and one. It is therefore convenient to split off these
terms. This is done automatically by the modified Poisson integral (2–279).

We now apply these formulas to the gravity anomalies outside the earth.
Equation (2–272) yields at once

r ∆g =
∞∑

n=0

(
R

r

)n+1

(n − 1) Tn(ϑ, λ) . (2–280)

Just as Tn(ϑ, λ) is a Laplace surface harmonic, so is (n−1)Tn. Consequently,
r ∆g, considered as a function in space, can be expanded into a series of
spherical harmonics and is, therefore, a harmonic function. Hence, we can
apply Poisson’s formula to r ∆g, getting

r ∆gP =
R

4π

∫
σ

∫ (
r2 − R2

l3
− 1

r
− 3R

r2
cos ψ

)
R ∆g dσ (2–281)

or

∆gP =
R2

4π r

∫
σ

∫ (
r2 − R2

l3
− 1

r
− 3R

r2
cos ψ

)
∆g dσ . (2–282)

This is the formula for the computation of gravity anomalies outside the
earth from surface gravity anomalies, or for the upward continuation of grav-
ity anomalies.

Finally, we discuss the exact meaning of the gravity anomaly δgP outside
the earth. We start with a convenient definition. The level surfaces of the
actual gravity potential, the surfaces

W = constant , (2–283)
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Fig. 2.15. Geopotential and spheropotential surfaces

are often called geopotential surfaces; the level surfaces of the normal gravity
field, the surfaces

U = constant , (2–284)

are called spheropotential surfaces.
We consider now the point P outside the earth (Fig. 2.15) and denote

the geopotential surface passing through it by

W = WP . (2–285)

There is also a spheropotential surface

U = WP (2–286)

of the same constant WP . The normal plumb line through P intersects this
spheropotential surface at the point Q, which is said to correspond to P .

We see that the level surfaces W = WP and U = WP are related to each
other in exactly the same way as are the geoid W = W0 and the reference
ellipsoid U = W0. If, therefore, the gravity anomaly is defined by

∆gP = gP − γQ , (2–287)

as in Sect. 2.12, then all derivations and formulas of that section also apply
for the present situation, the geopotential surface W = WP replacing the
geoid W = W0, and the spheropotential surface U = WP replacing the
ellipsoid U = W0. This is also the reason why (2–271) applies at P as well
as at the geoid.

Note that P in Sect. 2.12 is a point at the geoid, which is denoted by P0

in Fig. 2.15.
This situation will be taken up again in Chap. 8, in the context of Molo-

densky’s problem.
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2.15 Stokes’ formula

The basic Eq. (2–271),

∆g = −∂T

∂r
− 2

r
T , (2–288)

can be regarded as a boundary condition only, as long as the gravity anoma-
lies ∆g are known only at the surface of the earth. However, by the up-
ward continuation integral (2–282), we are now able to compute the gravity
anomalies outside the earth. Thus, our basic equation changes its meaning
radically, becoming a real differential equation that can be integrated with
respect to r. Note that this is made possible only because T , in addition to
the boundary condition, satisfies Laplace’s equation ∆T = 0.

Multiplying (2–288) by −r2, we get

−r2 ∆g = r2 ∂T

∂r
+ 2r T =

∂

∂r
(r2 T ) . (2–289)

Integrating the formula

∂

∂r
(r2 T ) = −r2 ∆g(r) (2–290)

between the limits ∞ and r, we find

r2 T
∣∣∣r
∞

= −
∫ r

∞
r2 ∆g(r) dr , (2–291)

where ∆g(r) indicates that ∆g is now a function of r, computed from sur-
face gravity anomalies by means of the formula (2–282). Since this formula
automatically removes the spherical harmonics of degrees one and zero from
∆g(r), the anomalous potential T , as computed from ∆g(r), cannot contain
such terms. Thus, we have

T =
∞∑

n=2

(
R

r

)n+1

Tn =
R3

r3
T2 +

R4

r4
T3 + · · · . (2–292)

Therefore,

lim
r→∞(r2 T ) = lim

r→∞

(
R3

r
T2 +

R4

r2
T3 + · · ·

)
= 0 , (2–293)

so that
r2 T

∣∣∣r
∞

= r2 T − lim
r→∞(r2 T ) = r2 T (2–294)

and
r2 T = −

∫ r

∞
r2 ∆g(r) dr . (2–295)
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The fact that r is used both as an integration variable and as an upper
limit should not cause any difficulty. Substituting the upward continuation
integral (2–282), we get

r2 T =
R2

4π

∫ r

∞

⎡⎣∫
σ

∫ (
−r3 − R2 r

l3
+ 1 +

3R
r

cos ψ

)
∆g dσ

⎤⎦ dr . (2–296)

Interchanging the order of the integrations gives

r2 T =
R2

4π

∫
σ

∫ [∫ r

∞

(
−r3 − R2 r

l3
+ 1 +

3R
r

cos ψ

)
dr

]
∆g dσ . (2–297)

The integral in brackets can be evaluated by standard methods. The indefi-
nite integral is∫ (

−r3 − R2 r

l3
+ 1 +

3R
r

cos ψ

)
dr

=
2r2

l
− 3l − 3R cos ψ ln(r − R cos ψ + l) + r + 3R cos ψ ln r .

(2–298)
The reader is advised to perform this integration, taking into account (2–
275), or at least to check the result by differentiating the right-hand side
with respect to r.

For large values of r, we have

l = r

(
1 − R

r
cos ψ · · ·

)
= r − R cos ψ · · · (2–299)

and, hence, we find that as r → ∞, the right-hand side of the above indefinite
integral approaches

5R cos ψ − 3R cos ψ ln 2 . (2–300)

If we subtract this from the indefinite integral, we get the definite integral,
since infinity is its lower limit of integration. Thus,

r∫
∞

(
−r3 − R2 r

l3
+ 1 +

3R
r

cos ψ

)
dr

=
2r2

l
+ r − 3l − R cos ψ

(
5 + 3 ln

r − R cos ψ + l

2r

)
.

(2–301)

Hence, we obtain Pizzetti’s formula

T (r, ϑ, λ) =
R

4π

∫
σ

∫
S(r, ψ)∆g dσ , (2–302)
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where

S(r, ψ) =
2R
l

+
R

r
− 3

R l

r2
− R2

r2
cos ψ

(
5 + 3 ln

r − R cos ψ + l

2r

)
. (2–303)

On the geoid itself, we have r = R, and denoting T (R,ϑ, λ) simply by T , we
find

T =
R

4π

∫
σ

∫
∆g S(ψ) dσ , (2–304)

where

S(ψ) =
1

sin(ψ/2)
−6 sin

ψ

2
+1−5 cos ψ−3 cos ψ ln

(
sin

ψ

2
+ sin2 ψ

2

)
(2–305)

is obtained from S(r, ψ) by setting

r = R and l = 2R sin
ψ

2
. (2–306)

By Bruns’ theorem, N = T/γ0, we finally get

N =
R

4π γ0

∫
σ

∫
∆g S(ψ) dσ . (2–307)

This formula was published by G.G. Stokes in 1849; it is, therefore, called
Stokes’ formula, or Stokes’ integral. It is by far the most important formula
of physical geodesy because it performs to determine the geoid from gravity
data. Equation (2–304) is also called Stokes’ formula, and S(ψ) is known as
Stokes’ function.

Using formula (2–302), which was derived by Pizzetti (1911) and later on
by Vening Meinesz (1928), we can compute the anomalous potential T at any
point outside the earth. Dividing T by the normal gravity at the given point
P (Bruns’ theorem), we obtain the separation NP between the geopotential
surface W = WP and the corresponding spheropotential surface U = WP ,
which, outside the earth, takes the place of the geoidal undulation N (see
Fig. 2.15 and the explanations at the end of the preceding section).

We mention again that these formulas are based on a spherical approx-
imation; quantities of the order of 3 · 10−3 N are neglected. This results in
an error of probably less than 1 m in N , which can be neglected for many
practical purposes. Sagrebin (1956), Molodenskii et al. (1962: p. 53), Bjer-
hammar, and Lelgemann have developed higher approximations, which take
into account the flattening f of the reference ellipsoid; see Moritz (1980 a:
Sect. 39).
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We next see from the derivation of Stokes’ formula by means of the
upward continuation integral (2–282) that it automatically suppresses the
harmonic terms of degrees one and zero in T and N . The implications of this
will be discussed later. We will see that Stokes’ formula in its original form
(2–304) and (2–307) only applies for a reference ellipsoid that (1) has the
same potential U0 = W0 as the geoid, (2) encloses a mass that is numerically
equal to the earth’s mass, and (3) has its center at the center of gravity of
the earth. Since the first two conditions are not accurately satisfied by the
reference ellipsoids that are in current practical use, and can hardly ever be
rigorously fulfilled, Stokes’ formula will later be modified for the case of an
arbitrary reference ellipsoid.

Finally, T is assumed to be harmonic outside the geoid. This means that
the effect of the masses above the geoid must be removed by suitable gravity
reductions. This will be discussed in Chaps. 3 and 8.

A bonus application to satellite geodesy
As a somewhat unexpected application, not related to Stokes’ formula, we
note that Eq. (2–280) can be used to compute gravity anomalies ∆g from
a satellite-determined spherical-harmonic series of the external gravitational
potential V !

2.16 Explicit form of Stokes’ integral and Stokes’
function in spherical harmonics

We now write Stokes’ formula (2–307) more explicitly by introducing suitable
coordinate systems on the sphere.

The use of spherical polar coordinates with origin at P offers the ad-
vantage that the angle ψ, which is the argument of Stokes’ function, is one
coordinate, the spherical distance. The other coordinate is the azimuth α,
reckoned from north. Their definitions are seen in Fig. 2.16. Denoting by P
both a fixed point on the sphere r = R (or in space) and its projection on
the unit sphere is common practice and will not cause any trouble.

If P coincides with the north pole, then ψ and α are identical with ϑ and
λ. According to Sect. 1.9, the surface element dσ is then given by

dσ = sinψ dψ dα . (2–308)

Since all points of the sphere are equivalent, this relation applies for an
arbitrary origin P . In the same way, we have∫

σ

∫
=
∫ 2π

α=0

∫ π

ψ=0
. (2–309)
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Fig. 2.16. Polar coordinates on the unit sphere

Hence, we find

N =
R

4π γ0

∫ 2π

α=0

∫ π

ψ=0
∆g(ψ,α)S(ψ) sin ψ dψ dα (2–310)

as an explicit form of (2–307). Performing the integration with respect to α
first, we obtain

N =
R

2γ0

∫ π

ψ=0

[
1
2π

∫ 2π

α=0
∆g(ψ,α) dα

]
S(ψ) sin ψ dψ . (2–311)

The expression in brackets is the average of ∆g along a parallel of spherical
radius ψ. We denote this average by ∆g(ψ), so that

∆g(ψ) =
1
2π

∫ 2π

α=0
∆g(ψ,α) dα . (2–312)

Thus, Stokes’ formula may be written

N =
R

γ0

∫ π

ψ=0
∆g(ψ)F (ψ) dψ , (2–313)

where we have introduced

1
2 S(ψ) sin ψ = F (ψ) . (2–314)

The functions S(ψ) and F (ψ) are shown in Fig. 2.17. Alternatively, we may
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Fig. 2.17. Stokes’ functions S(ψ) and F (ψ)

use ellipsoidal coordinates ϕ, λ. As a spherical approximation, ϑ is the com-
plement of ellipsoidal latitude:

ϑ = 90◦ − ϕ . (2–315)

Hence, we have ∫
σ

∫
dσ =

∫ 2π

λ=0

∫ π/2

ϕ=−π/2
cos ϕ dϕ dλ , (2–316)

so that Stokes’ formula now becomes

N(ϕ, λ) =
R

4π γ0

∫ 2π

λ′=0

∫ π/2

ϕ′=−π/2
∆g(ϕ′, λ′)S(ψ) cos ϕ′ dϕ′ dλ′ , (2–317)

where ϕ, λ are the ellipsoidal coordinates of the computation point and ϕ′, λ′

are the coordinates of the variable surface element dσ. The spherical distance
ψ is expressed as a function of these coordinates by

cos ψ = sin ϕ sin ϕ′ + cos ϕ cos ϕ′ cos(λ′ − λ) . (2–318)

Stokes’ function in terms of spherical harmonics
In Sect. 2.13, Eq. (2–273), we have found

∆g(ϑ, λ) =
1
R

∞∑
n=0

(n − 1) Tn(ϑ, λ) . (2–319)
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We may also directly express ∆g(ϑ, λ) as a series of Laplace surface spherical
harmonics:

∆g(ϑ, λ) =
∞∑

n=0

∆gn(ϑ, λ) . (2–320)

Comparing these two series yields

∆gn(ϑ, λ) =
n − 1

R
Tn(ϑ, λ) or Tn =

R

n − 1
∆gn , (2–321)

so that

T =
∞∑

n=0

Tn = R

∞∑
n=0

∆gn

n − 1
. (2–322)

This equation shows again that there must not be a first-degree term in the
spherical-harmonic expansion of ∆g; otherwise the term ∆gn/(n− 1) would
be infinite for n = 1. As usual, we now assume that the harmonics of degrees
zero and one are missing. Therefore, we start the summation with n = 2.

By Eq. (1–89), we may write

∆gn =
2n + 1

4π

∫
σ

∫
∆g Pn(cos ψ) dσ , (2–323)

so that the preceding formula becomes

T =
R

4π

∞∑
n=2

2n + 1
n − 1

∫
σ

∫
∆g Pn(cos ψ) dσ . (2–324)

By interchanging the order of summation and integration, we get

T =
R

4π

∫
σ

∫ [ ∞∑
n=2

2n + 1
n − 1

Pn(cos ψ)

]
∆g dσ . (2–325)

Comparing this with Stokes’ formula (2–304), we find the expression for
Stokes’ function in terms of Legendre polynomials (zonal harmonics):

S(ψ) =
∞∑

n=2

2n + 1
n − 1

Pn(cos ψ) . (2–326)

In fact, the analytic expression (2–305) of Stokes’ function could have
been derived somewhat more simply by direct summation of this series,
but we believe that the derivation given in the preceding section is more
instructive because it also throws sidelights on important related problems
such as the “bonus equation” (2–280).
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2.17 Generalization to an arbitrary reference

ellipsoid

As we have seen, Stokes’ formula, in its original form, suppresses the spherical
harmonics of degrees zero and one in the anomalous potential T and is,
therefore, strictly valid only if these terms are missing. This fact and the
condition U0 = W0 impose restrictions on the reference ellipsoid and on its
normal gravity field that are difficult to fulfil in practice.

Therefore, we generalize Stokes’ formula so that it will apply to an arbi-
trary ellipsoid of reference, which must satisfy only the condition that it is
so close to the geoid that the deviations of the geoid from the ellipsoid can
be treated as linear.

Consider the anomalous potential T at the surface of the earth. Its ex-
pression in surface spherical harmonics is given by

T (ϑ, λ) =
∞∑

n=0

Tn(ϑ, λ) . (2–327)

By separating the terms of degrees zero and one, we may write

T (ϑ, λ) = T0 + T1(ϑ, λ) + T ′(ϑ, λ) , (2–328)

where

T ′(ϑ, λ) =
∞∑

n=2

Tn(ϑ, λ) . (2–329)

In the general case this function T ′, rather than T itself, is the quantity given
by Stokes’ formula. It is equal to T only if T0 and T1 are missing. Otherwise,
we have to add T0 and T1 in order to get the complete function T .

The zero-degree term in the spherical-harmonic expansion of the poten-
tial is equal to

GM

r
, (2–330)

where M is the mass. Hence, the zero-degree term of the anomalous potential
T = W − U at the surface of the earth, where r = R, is given by

T0 =
G δM

R
, (2–331)

where
δM = M − M ′ (2–332)

is the difference between the mass M of the earth and the mass M ′ of the
ellipsoid. It would be zero if both masses were equal – but since we do not
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know the exact mass of the earth, how can we make M ′ rigorously equal to
M?

Subsequently, we will see that the first-degree harmonic can always be
assumed to be zero. Under this assumption, we can substitute (2–331) into
(2–328) and express T ′ by the conventional Stokes formula (2–304). Thus we
obtain

T =
G δM

R
+

R

4π

∫
σ

∫
∆g S(ψ) dσ . (2–333)

This is the generalization of Stokes’ formula for T . It holds for an arbitrary
reference ellipsoid whose center coincides with the center of the earth.

First-degree terms
The coefficients of the first-degree harmonic in the potential W are, according
to (2–85) and (2–87), given by

GM xc , GM yc , GM zc , (2–334)

where xc, yc, zc are the rectangular coordinates of the earth’s center of grav-
ity. For the normal potential U , we have the analogous quantities

GM ′ x′
c , GM ′ yc , GM ′ zc . (2–335)

As x′
c, y′c, z′c are very small in any case, these are practically equal to

GM x′
c , GM y′c , GM z′c . (2–336)

The coefficients of the first-degree harmonic in the anomalous potential T =
W − U are, therefore, equal to

GM (xc − x′
c) , GM (yc − y′c) , GM (zc − z′c) . (2–337)

They are zero, and there is no first-degree harmonic T1(ϑ, λ) if and only if
the center of the reference ellipsoid coincides with the center of gravity of
the earth. This is usually assumed.

In the general case, we find from the first-degree term of (2–76), on
putting r = R and using the coefficients (2–85) together with (2–87),

T1(ϑ, λ) =
GM

R2

[
(zc − z′c)P10(cos ϑ) + (xc − x′

c)P11(cos ϑ) cos λ

+ (yc − y′c)P11(cos ϑ) sinλ
]
.

(2–338)

If the origin of the coordinate system is taken to be the center of the reference
ellipsoid, then x′

c = y′c = z′c = 0. With P10(cos ϑ) = cos ϑ, P11(cos ϑ) = sin ϑ,
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and GM/R2 = γ0 we then obtain the following expression for the first-degree
harmonic of T :

T1(ϑ, λ) = γ0 (xc sin ϑ cos λ + yc sin ϑ sin λ + zc cos ϑ) . (2–339)

Dividing by γ0, we find the first-degree harmonic of the geoidal height:

N1(ϑ, λ) = xc sinϑ cos λ + yc sin ϑ sin λ + zc cos ϑ . (2–340)

Introducing the vector
xc = [xc, yc, zc] (2–341)

and the unit vector of the direction (ϑ, λ),

e = [sin ϑ cos λ, sin ϑ sin λ, cos ϑ] , (2–342)

(2–340) may be written as

N1(ϑ, λ) = xc · e , (2–343)

which is interpreted as the projection of the vector xc onto the direction
(ϑ, λ).

Hence, if the two centers of gravity do not coincide, then we need only
add the first-degree terms (2–339) and (2–340) to the generalized Stokes
formula (2–333) and to its analogue for N , respectively, in order to get the
most general solution for Stokes’ problem, the computation of T and N from
∆g. Equation (2–273) shows that any value of T1(ϑ, λ) is compatible with a
given ∆g field because, for n = 1, the quantity (n − 1)T1 is zero and so T1,
whatever be its value, does not at all enter into ∆g.

Hence, the most general solution for T and N contains three arbitrary
constants xc, yc, zc, which can, thus, be regarded as the constants of integra-
tion for Stokes’ problem. In actual practice, one always sets xc = yc = zc = 0,
thus placing the center of the reference ellipsoid at the center of the earth.
This constitutes an essential advantage of the gravimetric determination of
the geoid over the astrogeodetic method, where the position of the reference
ellipsoid with respect to the center of the earth remains unknown.

Zero-degree terms in N and ∆g

Let us first extend Bruns’ formula (2–237) to an arbitrary reference ellipsoid.
Suppose

W (x, y, z) = W0 ,

U(x, y, z) = U0

(2–344)
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are the equations of the geoid and the ellipsoid, where in general the con-
stants W0 and U0 are different. As in Sect. 2.12, we have, using Fig. 2.12,
WP = UQ − γ N + T , but now UQ = U0 �= W0 = WP , so that

γ N = T − (W0 − U0) . (2–345)

Denoting the difference between the potentials by

δW = W0 − U0 , (2–346)

we obtain the following simple generalization of Bruns’ formula:

N =
T − δW

γ
. (2–347)

We also need the extension of Eqs. (2–246) through (2–250). Those for-
mulas which contain N instead of T are easily seen to hold for an arbitrary
reference ellipsoid as well, but the transition from N to T is now effected by
means of (2–347). Hence, Eq. (2–247), i.e.,

∆g = −∂T

∂h
+

∂γ

∂h
N , (2–348)

remains unchanged, but (2–248) becomes

∆g = −∂T

∂h
+

1
γ

∂γ

∂h
T − 1

γ

∂γ

∂h
δW . (2–349)

Therefore, the fundamental boundary condition is now

−∂T

∂h
+

1
γ

∂γ

∂h
T = ∆g +

1
γ

∂γ

∂h
δW . (2–350)

The spherical approximations of these equations are

N =
T − δW

γ0
(2–351)

and

∆g = −∂T

∂r
− 2

R
T +

2
R

δW (2–352)

and

−∂T

∂r
− 2

R
T = ∆g − 2

R
δW . (2–353)
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Relations between T , N , and ∆g

By (2–347), we have
T = γ0 N + δW . (2–354)

Substituting this into (2–333) and dividing by γ0, we obtain

N =
G δM

R γ0
− δW

γ0
+

R

4π γ0

∫
σ

∫
∆g S(ψ) dσ . (2–355)

This is the generalization of Stokes’ formula for N . It applies for an arbitrary
reference ellipsoid whose center coincides with the center of the earth.

While formula (2–333) for T contains only the effect of a mass difference
δM , the formula (2–355) for N contains, in addition, the potential differ-
ence δW . These formulas also show clearly that the simple Stokes integrals
(2–304) and (2–307) hold only if δM = δW = 0, that is, if the reference el-
lipsoid has the same potential as the geoid and the same mass as the earth.
Otherwise, they give N and T only up to additive constants: putting

N0 =
G δM

R γ0
− δW

γ0
(2–356)

and taking into account (2–331), we have

T = T0 +
R

4π

∫
σ

∫
∆g S(ψ) dσ , (2–357)

N = N0 +
R

4π γ0

∫
σ

∫
∆g S(ψ) dσ . (2–358)

Alternative forms of (2–355), which are sometimes useful, are obtained in
the following way. Substituting the series (2–268) and (2–270) into (2–352),
we get

∆g(ϑ, λ) =
1
R

∞∑
n=0

(n − 1) Tn(ϑ, λ) +
2
R

δW (2–359)

as the generalization of (2–273). Expanding the function ∆g(ϑ, λ) into the
usual series of Laplace surface spherical harmonics,

∆g(ϑ, λ) =
∞∑

n=0

∆gn(ϑ, λ) , (2–360)

and comparing the constant terms (n = 0) of these two equations, we get

− 1
R

T0 +
2
R

δW = ∆g0 , (2–361)
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where, by (1–89),

∆g0 =
1
4π

∫
σ

∫
∆g dσ . (2–362)

Expressing T0 by (2–331) in terms of δM , we obtain

∆g0 = − 1
R2

G δM +
2
R

δW . (2–363)

The two equations (2–356) for N0 and (2–363) for ∆g0 can now be solved
for δM and δW :

G δM = R (R ∆g0 + 2γ0 N0) ,

δW = R ∆g0 + γ0 N0 .
(2–364)

The constant N0 may be expressed by either of these equations:

N0 = − R

2γ0
∆g0 +

G δM

2γ0 R
,

N0 = −R

γ0
∆g0 +

δW

γ0
.

(2–365)

A final note
A direct consequence of Eq. (2–356) is that N0 has an immediate geometrical
meaning: if a is the equatorial radius (semimajor axis) of the given reference
ellipsoid, then

aE = a + N0 (2–366)

is the equatorial radius of an ellipsoid whose normal potential U0 is equal to
the actual potential W0 of the geoid, and which encloses the same mass as
that of the earth, the flattening f remaining the same. The reason is that
for such a new ellipsoid E the new N0 = 0 by (2–356) with δM = 0 and
δW = 0.

A small additive constant N0 is equivalent to a change of scale for a nearly
spherical earth. To see this, imagine a nearly spherical orange. Increasing the
thickness of the peel of an orange everywhere by 1mm (say) is equivalent
to a similarity transformation (uniform increase of the size) of the orange’s
surface.

So, the usual Stokes formula, without N0, gives a global geoid that is
determined only up to the scale which implicitly is contained in N0. It is,
however, geocentric, at least in theory, because it contains no spherical har-
monic of first degree, T1(ϑ, λ). It would be exactly geocentric if the earth
were covered uniformly by gravity measurements. The scale was formerly de-
termined astrogeodetically, historically by grade measurements dating back
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to the 18th century (Clairaut, Maupertuis; see Todhunter [1873]). Today,
the scale is furnished by satellites (laser, GPS).

2.18 Gravity disturbances and Koch’s formula

It is easy to find Koch’s formula, which is the alternative of Stokes’ formula
for gravity disturbances δg. We just indicate the road in its general outlines,
leaving the reader to generate a four-lane highway.

Compare equations (2–269) and (2–270) with (2–272) and (2–273). We
see that the main difference between gravity disturbances δg and gravity
anomalies ∆g is the spherical harmonic factor n + 1 and n− 1, respectively.
The other – very small – difference is that we omit in ∆g the terms n = 0
and 1 (see comment after (2–273)), which is not necessary in δg.

Using almost literally the development of Sect. 2.14, we get an equa-
tion for δg which is the exact equivalent of (2–282) for ∆g. Following the
integration in Sect. 2.15, we get a formula of form (2–302)

T (r, ϑ, λ) =
R

4π

∫
σ

∫
K(r, ψ) δg dσ , (2–367)

and on the sphere r = R we get a formula of form (2–304) which we call
Koch’s formula:

T =
R

4π

∫
σ

∫
K(ψ) δg dσ , (2–368)

where K(ψ) is the Hotine–Koch function

K(ψ) =
1

sin(ψ/2)
− ln

(
1 +

1
sin(ψ/2)

)
, (2–369)

which is very similar to the Stokes function (2–305). By Bruns’ theorem, we
finally get

N =
R

4πγ0

∫
σ

∫
K(ψ) δg dσ . (2–370)

In absolute analogy with (2–326), we have, simply by replacing n− 1 by
n + 1 and leaving n = 0 as the lower limit of the sum,

K(ψ) =
∞∑

n=0

2n + 1
n + 1

Pn(cos ψ) (2–371)

as the expression of the Koch–Hotine function in terms of Legendre polyno-
mials (zonal harmonics). It is really that simple!
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A historical remark
This remark is due to Mrs. M. I. Yurkina, Moscow. Mathematically, the
above is the solution of Neumann’s problem (the second boundary-value
problem of potential theory) for the sphere, cf. Sect. 1.13. It is a classical
problem of potential theory, with a history of at least 150 years, similarly
to Stokes’ formula. “Neumann’s problem” is named after the mathematician
Carl Neumann, who edited his father’s (Franz Neumann) lectures from the
1850s (Neumann 1887: see especially p. 275). The external spherical Neu-
mann problem also occurs in Kellogg (1929: p. 247). It is again found in
Hotine (1969: pp. 311, 318).

Their basic significance for modern physical geodesy with a known earth
surface was recognized and elaborated by Koch (1971). So the present inte-
gral formula should perhaps be called F. Neumann–C. Neumann–Kellogg–
Hotine–Koch formula. For brevity, we refer to it as Koch’s formula.

2.19 Deflections of the vertical and formula of
Vening Meinesz

Stokes’ formula permits the calculation of the geoidal undulations from grav-
ity anomalies. A similar formula for the computation of the deflections of the
vertical from gravity anomalies has been given by Vening Meinesz (1928).

Figure 2.18 shows the intersection of geoid and reference ellipsoid with
a vertical plane of arbitrary azimuth. If ε is the component of the deflection
of the vertical in this plane, then

dN = −ε ds (2–372)

or
ε = −dN

ds
; (2–373)

the minus sign is a convention, its meaning will be explained later.

geoid

ellipsoid

dN
ds

s

"

"

ds

ellipsoidal normalplumb line

Fig. 2.18. The relation between the geoidal undulation and the
deflection of the vertical
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In a north-south direction, we have

ε = ξ and ds = dsϕ = R dϕ ; (2–374)

in an east-west direction,

ε = η and ds = dsλ = R cos ϕ dλ . (2–375)

In the formulas for dsϕ and dsλ, we have again used the spherical approxi-
mation; according to (1–30), the element of arc on the sphere r = R is given
by

ds2 = R2 dϕ2 + R2 cos2ϕ dλ2 . (2–376)

By specializing (2–373), we find

ξ = − dN

dsϕ
= − 1

R

∂N

∂ϕ
,

η = −dN

dsλ
= − 1

R cos ϕ

∂N

∂λ
,

(2–377)

which gives the connection between the geoidal undulation N and the com-
ponents ξ and η of the deflection of the vertical.

As N is given by Stokes’ integral, our problem is to differentiate this
formula with respect to ϕ and λ. For this purpose, we use the form (2–317),

N(ϕ, λ) =
R

4π γ0

∫ 2π

λ′=0

∫ π/2

ϕ′=−π/2
∆g(ϕ′, λ′)S(ψ) cos ϕ′ dϕ′ dλ′ , (2–378)

where ψ is defined in (2–318) as a function of ϕ, λ and ϕ′, λ′.
The integral on the right-hand side of this formula depends on ϕ and

λ only through ψ in S(ψ). Therefore, by differentiating under the integral
sign,

∂N

∂ϕ
=

R

4π γ0

∫ 2π

λ′=0

∫ π/2

ϕ′=−π/2
∆g(ϕ′, λ′)

∂S(ψ)
∂ϕ

cos ϕ′ dϕ′ dλ′ (2–379)

is obtained and a similar formula for ∂N/∂λ. Here we have

∂S(ψ)
∂ϕ

=
dS(ψ)

dψ

∂ψ

∂ϕ
,

∂S(ψ)
∂λ

=
dS(ψ)

dψ

∂ψ

∂λ
. (2–380)

Differentiating (2–318) with respect to ϕ and λ, we obtain

− sinψ
∂ψ

∂ϕ
= cos ϕ sin ϕ′ − sin ϕ cos ϕ′ cos(λ′ − λ) ,

− sinψ
∂ψ

∂λ
= cos ϕ cos ϕ′ sin(λ′ − λ) .

(2–381)
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P

Ã
d¾

®

north pole

90°– ' 90°– ''

¸'– ¸

Fig. 2.19. Relation between geographical and polar coordinates on the sphere

We now introduce the azimuth α, as shown in Fig. 2.16. From the spherical
triangle of Fig. 2.19 we get, using well-known formulas of spherical trigonom-
etry,

sin ψ cos α = cos ϕ sin ϕ′ − sinϕ cos ϕ′ cos(λ′ − λ) ,

sin ψ sin α = cos ϕ′ sin(λ′ − λ) .
(2–382)

Substituting these relations into the preceding equations, we find the simple
expressions

∂ψ

∂ϕ
= − cos α ,

∂ψ

∂λ
= − cos ϕ sin α , (2–383)

so that

∂S(ψ)
∂ϕ

= −dS(ψ)
dψ

cos α ,
∂S(ψ)

∂λ
= −dS(ψ)

dψ
cos ϕ sinα . (2–384)

These are substituted into (2–379) and the corresponding formula for ∂N/∂λ
and from equations (2–377) we finally obtain

ξ(ϕ, λ) =
1

4π γ0

∫ 2π

λ′=0

∫ π/2

ϕ′=−π/2
∆g(ϕ′, λ′)

dS(ψ)
dψ

cos α cos ϕ′ dϕ′ dλ′ ,

η(ϕ, λ) =
1

4π γ0

∫ 2π

λ′=0

∫ π/2

ϕ′=−π/2
∆g(ϕ′, λ′)

dS(ψ)
dψ

sin α cos ϕ′ dϕ′ dλ′

(2–385)
or, written in the usual abbreviated form,

ξ =
1

4π γ0

∫
σ

∫
∆g

dS(ψ)
dψ

cos α dσ ,

η =
1

4π γ0

∫
σ

∫
∆g

dS(ψ)
dψ

sin α dσ .

(2–386)
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These are the formulas of Vening Meinesz. Differentiating Stokes’ function
S(ψ), Eq. (2–305), with respect to ψ, we obtain Vening Meinesz’ function

dS(ψ)
dψ

= − cos(ψ/2)
2 sin2(ψ/2)

+ 8 sin ψ − 6 cos(ψ/2) − 3
1 − sin(ψ/2)

sin ψ

+ 3 sin ψ ln
[
sin(ψ/2) + sin2(ψ/2)

]
.

(2–387)

This can be readily verified by using the elementary trigonometric identities.
The azimuth α is given by the formula

tan α =
cos ϕ′ sin(λ′ − λ)

cos ϕ sin ϕ′ − sin ϕ cos ϕ′ cos(λ′ − λ)
, (2–388)

which is an immediate consequence of (2–382).
The form (2–385) is an expression of (2–386) in terms of ellipsoidal co-

ordinates ϕ and λ. As with Stokes’ formula (Sect. 2.15), we may also use an
expression in terms of spherical polar coordinates ψ and α:

ξ =
1

4π γ0

∫ 2π

α=0

∫ π

ψ=0
∆g(ψ,α) cos α

dS(ψ)
dψ

sin ψ dψ dα ,

η =
1

4π γ0

∫ 2π

α=0

∫ π

ψ=0
∆g(ψ,α) sin α

dS(ψ)
dψ

sin ψ dψ dα .

(2–389)

The reader can easily verify that these equations give the deflection compo-
nents ξ and η with the correct sign corresponding to the definition (2–230);
see also Fig. 2.13. This is the reason why we introduced the minus sign in
(2–373).

We note that the formula of Vening Meinesz is valid as it stands for an
arbitrary reference ellipsoid, whereas Stokes’ formula had to be modified by
adding a constant N0. If we differentiate the modified Stokes formula with
respect to ϕ and λ, to get Vening Meinesz’ formula, then this constant N0

drops out and we get Eqs. (2–386).
For the practical application of Stokes’ and Vening Meinesz’ formulas

and problems, the reader is referred to Sect. 2.21 and to Chap. 3.

2.20 The vertical gradient of gravity

Bruns’ formula (2–40), with � = 0,

∂g

∂H
= −2g J − 2ω2 , (2–390)
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cannot be directly applied to determine the gradient ∂g/∂H because the
mean curvature J of the level surfaces is unknown. Therefore, we proceed in
the usual way by splitting ∂g/∂H into a normal and an anomalous part:

∂g

∂H
=

∂γ

∂H
+

∂∆g

∂H
. (2–391)

The normal gradient ∂γ/∂H is given by (2–147) and (2–148). The anomalous
part, ∂∆g/∂H

.= ∂∆g/∂r, will be considered now.

Expression in terms of ∆g

Equation (2–272) may be written as (note that r ∆g is harmonic and the
factor must be 1 for r = R)

∆g(r, ϑ, λ) =
∞∑

n=0

(
R

r

)n+2

∆gn(ϑ, λ) . (2–392)

By differentiating with respect to r and setting r = R, we obtain at sea level:

∂∆g

∂r
= − 1

R

∞∑
n=0

(n + 2)∆gn = − 1
R

∞∑
n=0

n ∆gn − 2
R

∆g . (2–393)

Now we can apply (1–149), setting V = ∆g and Yn = ∆gn. The result is

∂∆g

∂r
=

R2

2π

∫
σ

∫
∆g − ∆gP

l30
dσ − 2

R
∆gP . (2–394)

In this equation, ∆gP is referred to the fixed point P at which ∂∆g/∂r is
to be computed; l0 is the spatial distance between the fixed point P and the
variable surface element R2 dσ, expressed in terms of the angular distance ψ
by

l0 = 2R sin
ψ

2
. (2–395)

Compare Fig. 1.9 of Sect. 1.14; the element R2 dσ is at the point P ′.
The important integral formula (2–394) expresses the vertical gradient

of the gravity anomaly in terms of the gravity anomaly itself. Since the
integrand decreases very rapidly with increasing distance l0, it is sufficient in
this formula to extend the integration only over the immediate neighborhood
of the point P , as opposed to Stokes’ and Vening Meinesz’ formulas, where
the integration must include the whole earth, if a sufficient accuracy is to be
obtained.
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Expression in terms of N

By differentiating equation (2–271),

∆g = −∂T

∂r
− 2

r
T , (2–396)

with respect to r, we get

∂∆g

∂r
= −∂2T

∂r2
− 2

r

∂T

∂r
+

2
r2

T . (2–397)

To this formula we add Laplace’s equation ∆T = 0, which in spherical
coordinates has the form

∂2T

∂r2
+

2
r

∂T

∂r
− tan ϕ

r2

∂T

∂ϕ
+

1
r2

∂2T

∂ϕ2
+

1
r2 cos2ϕ

∂2T

∂λ2
= 0 ; (2–398)

see Eq. (1–35), modify by replacing V by T and substitute ϑ = 90− ϕ. The
result, on setting r = R, is

∂∆g

∂r
=

2
R2

T − tan ϕ

R2

∂T

∂ϕ
+

1
R2

∂2T

∂ϕ2
+

1
R2 cos2ϕ

∂2T

∂λ2
. (2–399)

Since T = γ0 N , we may also write

∂∆g

∂r
=

2γ0

R2
N − γ0

R2
tan ϕ

∂N

∂ϕ
+

γ0

R2

∂2N

∂ϕ2
+

γ0

R2 cos2ϕ
∂2N

∂λ2
, (2–400)

where γ0 is a global mean value as usual. This equation expresses the vertical
gradient of the gravity anomaly in terms of the geoidal undulation N and
its first and second horizontal derivatives. It can be evaluated by numerical
differentiation, using a map of the function N . However, it is less suited for
practical application than (2–394) because it requires an extremely accurate
and detailed local geoidal map, which is hardly ever available; inaccuracies
of N are greatly amplified by forming the second derivatives.

Expression in terms of ξ and η

From equations (2–377), we find

∂N

∂ϕ
= −R ξ ,

∂N

∂λ
= −R η cos ϕ , (2–401)

so that
∂2N

∂ϕ2
= −R

∂ξ

∂ϕ
,

∂2N

∂λ2
= −R

∂η

∂λ
cos ϕ . (2–402)
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Substituting these relations into (2–400) yields

∂∆g

∂r
=

2γ0

R2
N +

γ0

R
ξ tan ϕ − γ0

R

∂ξ

∂ϕ
− γ0

R cos ϕ

∂η

∂λ
. (2–403)

Introducing local rectangular coordinates x, y in the tangent plane, we have

R dϕ = dsϕ = dx ,

R cos ϕ dλ = dsλ = dy ,
(2–404)

so that (2–403) becomes

∂∆g

∂r
=

2γ0

R2
N +

γ0

R
ξ tan ϕ − γ0

(
∂ξ

∂x
+

∂η

∂y

)
. (2–405)

The first two terms on the right-hand side can be shown to be very small in
comparison to the third term; hence, to a sufficient accuracy

∂∆g

∂r
= −γ0

(
∂ξ

∂x
+

∂η

∂y

)
(2–406)

may be used. These beautiful formulas express the vertical gradient of the
gravity anomaly in terms of the horizontal derivatives of the deflection of the
vertical. They can again be evaluated by means of numerical differentiation
if a map of ξ and η is available. They are somewhat better suited for practical
application than (2–400) because only first derivatives are required.

2.21 Practical evaluation of the integral formulas

Integral formulas such as Stokes’ and Vening Meinesz’ integrals must be
evaluated approximately by summations. The surface elements dσ are re-
placed by small but finite compartments q, which are obtained by suitably
subdividing the surface of the earth. Two different methods of subdivision
are used:

1. Templates (Fig. 2.20). The subdivision is achieved by concentric circles
and their radii. The template is placed on a gravity map of the same
scale so that the center of the template coincides with the computation
point P on the map. The natural coordinates for this purpose are polar
coordinates ψ, α with origin at P .

2. Grid lines (Fig. 2.21). The subdivision is achieved by the grid lines of
some fixed coordinate system, in particular of ellipsoidal coordinates
ϕ, λ. They form rectangular blocks – for example, of 10′×10′ or 1◦×1◦.
These blocks are also called squares, although they are usually not
squares as defined in plane geometry.
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P

Ã
Ã

=
1

Ã
Ã

=
2

q

®

®
=

1

® ®= 2

Fig. 2.20. A template

q

¸= 36°20' 30' 40' 36°50'

45°30'

20'

45°10''=

Fig. 2.21. Blocks formed by a grid of ellipsoidal coordinates

The template method is wonderfully easy to understand and to use for
theoretical considerations, but completely old-fashioned. Only the gridline
method has survived in the computer world.

As a simple and instructive example illustrating the principles of numer-
ical integration consider Stokes’ formula

N =
R

4π γ0

∫
σ

∫
∆g S(ψ) dσ (2–407)

with its explicit forms (2–310) for the template method and (2–317) for the
method that uses fixed blocks.
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For each compartment qk, the gravity anomalies are replaced by their
average value ∆gk in this compartment. Hence, the above equation becomes

N =
R

4π γ0

∑
k

∫
qk

∫
∆gk S(ψ) dσ =

R

4π γ0

∑
k

∆gk

∫
qk

∫
S(ψ) dσ (2–408)

or
N =

∑
k

ck ∆gk , (2–409)

where the coefficients

ck =
R

4π γ0

∫
qk

∫
S(ψ) dσ (2–410)

are obtained by integration over the compartment qk; they do not depend
on ∆g.

If the integrand – in our case, Stokes’ function S(ψ) – is reasonably
constant over the compartment qk, it may be replaced by its value S(ψk) at
the center of qk. Then we have

ck =
R

4π γ0
S(ψ)

∫
qk

∫
dσ =

S(ψk)
4π γ0 R

∫
qk

∫
R2 dσ . (2–411)

The final integral is simply the area Ak of the compartment and we obtain

ck =
Ak S(ψk)
4π γ0 R

. (2–412)

The advantage of the template method is its great flexibility. The influ-
ence of the compartments near the computation point P is greater than that
of the distant ones, and the integrand changes faster in the neighborhood
of P . Therefore, a finer subdivision is necessary around P . This can easily
be provided by templates. Yet, the method is completely old-fashioned and
thus obsolete.

The advantage of the fixed system of blocks formed by a grid of ellipsoidal
coordinates lies in the fact that their mean gravity anomalies are needed for
many different purposes. These mean anomalies of standard-sized blocks,
once they have been determined, can be easily stored and processed by a
computer. Also, the same subdivision is used for all computation points,
whereas the compartments defined by a template change when the template
is moved to the next computation point. The flexibility of the method of
standard blocks is limited; however, one may use smaller blocks (5′ × 5′, for
example) in the neighborhood of P and larger ones (1◦ × 1◦, for example)
farther away. With current electronic computation, this method is the only
one used in practice. The theoretical usefulness of polar coordinates will be
shown now.
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Effect of the neighborhood
This issue is interesting and instructive. In the innermost zone, even the
template method may pose difficulties if the integrand becomes infinite as
ψ → 0. This happens with Stokes’ formula, since

S(ψ) .=
2
ψ

(2–413)

for small ψ. This can be seen from the definition (2–305), because the first
term is predominant and is, for small ψ, given by

1
sin(ψ/2)

.=
1

(ψ/2)
=

2
ψ

. (2–414)

Vening Meinesz’ function becomes infinite as well, since to the same approx-
imation,

dS(ψ)
dψ

.= − 2
ψ2

. (2–415)

In the gradient formula (2–394), the integrand

1
l30

.=
1

R3 ψ3
(2–416)

behaves in a similar way.
Therefore, it may be convenient to split off the effect of this innermost

zone, which will be assumed to be a circle of radius ψ0 around the compu-
tation point. For instance, Stokes’ integral becomes in this way

N = Ni + Ne , (2–417)

where

Ni =
R

4π γ0

∫ 2π

α=0

∫ ψ0

ψ=0
∆g S(ψ) dσ ,

Ne =
R

4π γ0

∫ 2π

α=0

∫ π

ψ=ψ0

∆g S(ψ) dσ .

(2–418)

The radius ψ0 of the inner zone corresponds to a linear distance of a few
kilometers. Within this distance, we may treat the sphere as a plane, using
polar coordinates s, α, where

s
.= R ψ

.= R sin ψ
.= 2R sin

ψ

2
, (2–419)

so that the element of area becomes

R2 dσ = s ds dα . (2–420)
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It is consistent with this approximation to use (2–413) through (2–416),
putting

S(ψ) .=
2R
s

,
dS

dψ

.= −2R2

s2
,

1
l30

.=
1
s3

. (2–421)

In Stokes’ and Vening Meinesz’ functions as well, the relative error of these
approximations is about 1% for s = 10 km, and about 3% for s = 30 km.
In 1/l30 it is even less. Hence, the effect of this inner zone on our integral
formulas becomes

Ni =
1

2π γ0

∫ 2π

α=0

∫ s0

s=0

∆g

s
s ds dα , (2–422)

ξi = − 1
2π γ0

∫ 2π

α=0

∫ s0

s=0

∆g

s2
cos α s ds dα ,

ηi = − 1
2π γ0

∫ 2π

α=0

∫ s0

s=0

∆g

s2
sin α s ds dα ,

(2–423)

(
∂∆g

∂H

)
i

=
1
2π

∫ 2π

α=0

∫ s0

s=0

∆g − ∆gP

s3
s ds dα . (2–424)

In order to evaluate these integrals, we expand ∆g into a Taylor series at
the computation point P :

∆g = ∆gP + x gx + y gy +
1
2!
(
x2gxx + 2x y gxy + y2gyy

)
+ · · · . (2–425)

The rectangular coordinates x, y are defined by

x = s cos α , y = s sin α , (2–426)

so that the x-axis points north. We further have

gx =
(

∂∆g

∂x

)
P

, gxx =
(

∂2∆g

∂x2

)
P

, etc. (2–427)

This Taylor series may also be written as

∆g = ∆gP + s (gx cos α + gy sinα)

+
s2

2
(
gxx cos2α + 2gxy cos α sin α + gyy sin2α

)
+ · · · .

(2–428)
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Inserting this into the above integrals, we can easily evaluate them. Perform-
ing the integration with respect to α first and noting that∫ 2π

0 dα = 2π ,∫ 2π
0 sin α dα =

∫ 2π
0 cos α dα =

∫ 2π
0 sin α cos α dα = 0 ,

∫ 2π
0 sin2α dα =

∫ 2π
0 cos2α dα = π ,

(2–429)

we find

Ni =
1
γ0

∫ s0

0

[
∆gP +

s2

4
(gxx + gyy) + · · ·

]
ds , (2–430)

ξi = − 1
2γ0

∫ s0

0
(gx + · · ·) ds ,

ηi = − 1
2γ0

∫ s0

0
(gy + · · ·) ds ,

(2–431)

(
∂∆g

∂H

)
i

=
1
4

∫ s0

s=0
(gxx + gyy + · · ·) ds . (2–432)

We now perform the integration over s, retaining only the lowest nonvanish-
ing terms. The result is

Ni =
s0

γ0
∆gP , (2–433)

ξi = − s0

2γ0
gx , ηi = − s0

2γ0
gy , (2–434)(

∂∆g

∂H

)
i

=
s0

4
(gxx + gyy) . (2–435)

We see that the effect of the innermost circular zone on Stokes’ formula
depends, to a first approximation, on the value of ∆g at P ; the effect on
Vening Meinesz’ formula depends on the first horizontal derivatives of ∆g;
and the effect on the vertical gradient depends on the second horizontal
derivatives.

Note that the contribution of the innermost zone to the total deflection
of the vertical has the same direction as the line of steepest inclination of
the “gravity anomaly surface”, because the plane vector

ϑ = [ξi, ηi] (2–436)

is proportional to the horizontal gradient of ∆g,

grad ∆g = [gx, gy] . (2–437)
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Fig. 2.22. Lines of constant ∆g and lines of steepest descent

The direction of grad ∆g defines the line of steepest descent (Fig. 2.22).
The values of gx and gy can be obtained from a gravity map. They are the
inclinations of north-south and east-west profiles through P . Values for gxx

and gyy may be found by fitting a polynomial in x and y of second degree
to the gravity anomaly function in the neighborhood of P .

A remark on accuracy
Deflections of the vertical ξ, η, if combined with astronomical observations
of astronomical latitude Φ and astronomical longitude Λ, furnish positions
on the reference ellipsoid, expressed by ellipsoidal coordinates

ϕ = Φ − ξ ,

λ = Λ − η sec ϕ ,
(2–438)

just as vertical position is obtained by

h = H + N . (2–439)

Unfortunately, to get the same precision for horizontal as for vertical po-
sition, is much more difficult, keeping in mind the relation 1′′ ∼= 30m on
the earth’s surface. So to get an accuracy of 1 m, which is not too difficult
with Stokes’ formula, means an accuracy better than 0.03′′ in both Φ and ξ
(analogously to Λ and η), which is almost impossible to achieve practically.




