
11 Computational methods

11.1 The remove-restore principle

Let us start with gravity reduction according to the modern view of mea-
suring and calculating the gravity field in principle always at the earth’s
surface, or briefly, on the ground, or equivalently, at point level. This is used
in the sense of Sects. 8.9 and 8.14. More precisely, it is topographic-isostatic
reduction at ground level.

The most practical way to realize this idea is least-squares collocation,
because it automatically works in three-dimensional space, by simply putting
the desired topographic height h as parameters for input (measurements:
gravity anomalies, deflections of the vertical, etc.) and output (potential T
or its functionals to be computed). Symbolically, this means

T = L(�) (11–1)

or
output = L(input) , (11–2)

where L denotes the linear operation of least-squares collocation (not to be
confused with a linear functional L as used, e.g., in Eq. (10–13)).

In Sect. 8.9 we have introduced gravity reduction from the point of view
of the modern theory. To repeat, immediately specializing to topographic-
isostatic reduction, we have

• measured gravity anomalies ∆g at ground level,
• reduced topographic-isostatic anomalies ∆gc obtained by removing the

attraction of the topographic-isostatic masses δgTI,
• “co-potential” T c = L(∆gc) computed by collocation, and
• “real potential” T by restoring the “indirect effect” of the topographic-

isostatic masses δTTI.

Mathematically this may be written

T = L(∆g − δgTI) + δTTI . (11–3)

This is a reinterpretation of the gravity reduction of Sect. 8.9. It must
be correct since if

δTTI = L(δgTI) (11–4)
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then Eq. (11–3) gives
δT = L(∆g), (11–5)

as it should be.
The same principle works also with deflections of the vertical ξ, η at the

earth’s surface, both as input data and as output results (Sects. 8.14 and
10.2).

The underlying isostatic model is in principle arbitrary. For practical
purposes it should provide a good approximation (small residuals δT ) and
be computationally convenient.

We see, however, a change of perspective. Collocation is no longer applied
to the “real” anomalous gravity field as in (11–5) but to the residual field, re-
moving the field generated by the assumed topographic-isostatic model. The
model is arbitrary, but the derived quantities must be computed in a rigorous
consistent fashion. (Consistency for the quantities computed by collocation
as guaranteed by a correct covariance propagation; see Sect. 10.2.)

This change of perspective may not seem important because it is just
a change of nomenclature: what formerly was importantly called “isostatic
anomaly” is now degraded to a miserable “residual”. However, the remove-
restore principle permits also the use of other approximate fields to remove
trends; especially one of the numerous existing “earth (gravity) models” (EM
or EGM) consisting of spherical-harmonic expansions of the potential T up
to degree 180 or higher.

Therefore, we “remove” from the observations � – gravity anomalies,
gravity disturbances, deflections of the vertical, etc. – the effect �EM com-
puted from the earth model used, and after collocation “restore” the effect of
the EM on the result. The mathematics is the same as in (11–4) and (11–5):

δTEM = L(δ�EM) (11–6)

and
δT = L(�). (11–7)

We have only slightly generalized from ∆g to �.
Now we proceed an important step further. The remove-restore principle

has only two requirements:

1. the removed auxiliary potentials must be harmonic, precomputable,
and used in a mathematically consistent way: what is removed in the
input must be restored in the output;

2. in the usual case of linearity, two or more different auxiliary potentials
may be used (removed-restored) simultaneously.
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Thus, we use simultaneously the earth model EM for the longer wave-
lengths and the topographic-isostatic geological model TI for the shorter
wavelengths. Since the spherical-harmonic expansions are generalizations,
for the sphere, of Fourier series for the circle, we can speak of wavelengths.
Denoting the maximum degree of the spherical-harmonic expansion with N ,
this can be associated with a shortest resolvable wavelength λ according to

λ =
2π
N

=
360◦

N
. (11–8)

For an expansion to degree N = 180 (say), we have λ = 360◦/180 = 2◦,
which roughly corresponds to 200 km on a meridian or on the equator. In
many cases, the half wavelength λ/2 is considered (see Seeber 2003: p. 469).

Since EM (approximately) takes care of the long waves up to a certain
maximum degree N , it is resonable to represent the remaining short waves
from N to infinity. This sequence N + 1, N + 2, . . . ,∞ will be denoted by
CN , where CN is the abbreviation of the “complement” of the sequence
from 2 to N .

Thus, we may write for the residuals

δT = T − TN
EM − TCN

TI ,

δ� = � − �N
EM − �CN

TI .
(11–9)

The collocation procedure will be applied to these residuals.

Remark
As we have noted at the beginning of Sect. 10.2, the remove-restore process
aims at removing all known major trends:

• the local topography produces Bouguer anomalies,
• the regional features (i.e., their isostatic compensation), in addition to

the Bouguer effect, produce topographic-isostatic anomalies,
• the global irregularities are expressed by an earth model and lead to

what is modestly called the “residual anomalies”.

It is clear that what is “removed” before the computation, must be fully
“restored” after the computation.

11.2 Geoid in Austria by collocation

Austria is a nice country, and in spite of being small, it has all types of
topography: flat, hilly, and alpine, up to an elevation of 3800 m. Thus, beyond
being a pleasant place to live, it is an interesting geodetic test area.
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The pioneering work has been done by Sünkel (1983). Later work, espe-
cially by Sünkel et al. (1987), Kühtreiber (1998, 2002 a, 2002 b), and Erker
et al. (2003) has refined, extended and perfected the gravity field in Austria,
but the 1983 work is good for an introduction.

Sünkel (1983) used least-squares collocation to calculate the geoid for the
main part of Austria from a very good material of deflections of the vertical.
Gravity anomalies of a comparable quality were not yet available in 1983. In
addition to an isostatic reduction (Sect. 8.14) according to Airy–Heiskanen
(T = 30 km), he also removed a global trend by means of an earth gravity
model, represented by a spherical-harmonic expansion up to a certain degree
N . In particular, he used the model of Rapp (1981) with N = 180.

After removing the topographic-isostatic trend TTI and this global trend
TN

EM (remember, EM denotes earth model), there remains a residual anoma-
lous potential δT , given by

δT = T − TTI − TN
EM + TN

TI . (11–10)

Since the earth model potential TN
EM is represented by a spherical-harmonic

expansion up to degree N , it may be appropriate to consider, for the isostatic
reduction, only the effect for degrees N > 180 (or, say, N > 360), replacing
TTI by

TCN
TI = (TTI)N > 180 = TTI − TN

TI , (11–11)

where TN
TI represents a spherical-harmonic expansion for TTI truncated at

degree N = 180. This explains Eq. (11–11).
The observations �i = [ξ, η, ∆g], which represent linear functionals LiT ,

are reduced in the same way, obtaining

�i − LiTTI − LiT
N
EM + LiT

N
TI = LiδT . (11–12)

Adding the earth model reduction to the computational procedure outlined
at the end of the preceding section, we thus have the flow diagram of Ta-
ble 11.1.

Data
The topography in Austria is rather varied, with elevations up to 3800 m.
The density of astrogeodetic stations was 10 to 20 km; the total number of
deflections data used was 521. No gravity anomalies were used in this first
computation.

The topographic-isostatic reduction of the deflections of the vertical was
made using a rather crude digital terrain model consisting of mean elevations
for 20′′×20′′ rectangles. It has been obtained by digitizing a map 1 : 500 000.
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Table 11.1. From observations to the geoid

observations referred to(LiT )
Geodetic Reference System 1980

↓
reduction
TI, EM

−Li(TTI + TN
EM − TN

TI)

↓
(LiδT )

↓
collocation

↓
δT
↓

inverse reduction
TI, EM

+ (TTI + TN
EM − TN

TI)

↓
T
↓

N = (T/γ)0 , ζ = (T/γ)h

The standard error of this model is on the order of 100 m. Investigations have
shown that, in spite of its poor accuracy, the model is reasonably adequate for
reduction of deflections of the vertical; it is, however, totally inadequate for
gravity! In fact, the reduction error for ξ, η is approximately proportional
to the terrain inclination; it is thus very small if the deflection station is
situated in an area of inclination zero. This is the case not only if the station
lies in a horizontal plane but also if it lies on the top of a mountain, as most
deflection stations do.

Results

It turned out that almost all of the signal (T, N, ζ) comes from the topo-
graphic-isostatic model and the N = 180 gravity model used. This part,
TI + EM, lies between 41.5 m and 49.5 m. The contribution of collocation
(γ−1 T ) lies between −0.5 m and 1.5 m, after removal of a pronounced trend
on the order of 3m.

The efficiency of topographic-isostatic reduction can also be seen from
the fact that it has reduced the variance of the deflections of the vertical in
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Austria (the square of the average size of ξ and η) from 30 (arc second)2 to
5 (arc second)2.

So we may say that we can determine the Austrian geoid to 1–2 m without
measurements (deflections of the vertical) and without collocation, knowing
only a topographic map! This is even more surprising since Austria is not
particularly well isostatically compensated.

Of considerable interest is the effect of analytical continuation on the
isostatically (plus earth model) reduced anomalous potential TTI. It is ex-
pressed by the difference γ−1 T at the earth’s surface minus γ−1 T at sea
level. This difference reaches a maximum of 13 cm in the Central Alps and is
otherwise positive and negative. In the terminology of the present book, this
is the separation between the real geoid and the harmonic geoid (Sect. 8.15).

Of the same interest is the difference between the height anomalies ζ
(= γ−1 T at the earth’s surface) and the geoidal heights N (= γ−1 T at sea
level). The maximum of 35 cm for ζ − N is reached at the Grossglockner
mountain (the highest peak in Austria, H = 3797 m). The results are in
excellent agreement with the approximate formula

ζ − N = −(981 gal)−1 ∆gB H , (11–13)

where ∆gB is the Bouguer anomaly in gal and H is the elevation in the
same units as ζ and N . The agreement may easily be verified, since the
Bouguer anomalies in the investigated area range from 10 mgal to −170 mgal,
corresponding to topographic heights from 200 m to 3000 m (Sünkel 1983:
p. 140). In Sünkel et al. (1987: p. 69), the differences ζ −N for the whole of
Austria range between −2 cm and +56 cm.

All this has been computed only from the measured deflections of the
vertical. Gravity observations have been included by Kühtreiber (2002 a,
2002 b) and Erker et al. (2003), leading to what might be a “few-centimeter
geoid”.

Important: the astrogeodetic geoid and the gravimetric geoid are com-
pared and finally combined after systematic trends have been eliminated by
Kühtreiber (2002 b) and Erker et al. (2003).

11.3 Molodensky corrections

In Sect. 8.6 we have given a solutions of Molodensky’s problem by means of
a series obtained on the basis of analytical continuation. It can be written
in the form of Eqs. (8–68), (8–69), (8–67),

ζ = ζ0 + ζ1 + ζ2 + ζ3 + · · · , (11–14)
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ζi =
R

4π γ

∫
σ

∫
gi S(ψ) dσ , (11–15)

∆g∗ = ∆g + g1 + g2 + g3 + · · · . (11–16)

The correction terms gn are evaluated recursively by

gn = −
n∑

r=1

zr Lr(gn−r) , (11–17)

starting from
g0 = ∆g . (11–18)

Here the operator Ln is also defined recursively:

Ln(∆g) = n−1L1 [Ln−1(∆g)] (11–19)

starting with
L1 = L (11–20)

with the gradient operator L defined by the integral (8–60), that is,

L(f) =
R2

2π

∫
σ

∫
f − fQ

l30
dσ . (11–21)

This means: take g0 = ∆g , where ∆g is the free-air anomaly at ground level
in the sense of Molodensky, then compute g1 by (11–17) with n = 1, then
compute g2 by (11–17) with n = 2 and L2 by (11–19), then g3 by (11–17)
with n = 3 and L3 by (11–19), etc.

The operator L behaves like differentiation (L(f) = ∂∆g
∂r ) and, there-

fore, “roughens” the function f ; this means that each successive L becomes
rougher and rougher. This is not conducive to the convergence of Molodens-
ky’s series unless the original ∆g is very smooth, which cannot be assumed
in mountainous areas.

In such cases, some smoothing of ∆g is inevitable. Numerical analysis
is constantly confronted with problems of smoothing, so many techniques
of smoothing have been developed such as the sliding average. For evalu-
ating the integral L, fast Fourier methods are available. The problem is to
find an appropriate degree of smoothing which makes consecutive correc-
tions g1, g2, g3, . . . decrease in order to achieve practical convergence with-
out “oversmoothing”. At any rate, smoothing must ensure that g5, g6, . . .
are practically negligible since they cannot be meaningfully computed be-
cause of the inevitable accumulation of round-off errors, which finally tends
to producing pure noise.
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Table 11.2. Characteristic values in arc seconds for Molodensky cor-
rections ξi and ηi for deflections of the vertical until i = 4, computed
from free-air gravity anomalies

ξ1 η1 ξ2 η2 ξ3 η3 ξ4 η4

min −2.44 −1.94 −0.92 −0.84 −0.35 −0.24 −0.08 −0.12
max 2.36 3.654 0.88 0.86 0.21 0.20 0.05 0.09
mean 0.19 0.32 −0.02 −0.02 −0.01 −0.01 0.00 0.00
rms 0.90 0.96 0.29 0.27 0.06 0.06 0.02 0.02

Table 11.3. Characteristic values in arc seconds for Molodensky cor-
rections ξi and ηi for deflections of the vertical until i = 4, computed
from isostatic gravity anomalies

ξ1 η1 ξ2 η2 ξ3 η3 ξ4 η4

min −0.57 −0.36 −0.06 −0.07 −0.01 −0.02 0.00 0.00
max 0.33 0.46 0.09 0.05 0.01 0.01 0.00 0.00
mean −0.04 0.01 0.00 −0.01 0.00 0.00 0.00 0.00
rms 0.11 0.09 0.02 0.02 0.00 0.00 0.00 0.00

As Kühtreiber (1990) showed in his thorough work, there is no rough-
and-ready prescription for finding an optimal smoothing. Trial and error may
be the best approach.

Isostatic reduction might be considered a smoothing method on a geo-
physical basis, cf. Tables 11.2 and 11.3.

Just to give an idea of the order of magnitudes, we take some typical
sizes of the Molodensky corrections in high mountains.

We take two tables from Kühtreiber (1990): the following Tables 11.2 and
11.3 are Kühtreiber’s Tables (8-3) and (8-6). The gravity data are assumed to
be given in a rectangular grid of size 11.25′′ × 18.75′′. A suitable smoothing
is presupposed. Much better is, of course, the use of isostatic reduction,
which should provide a physically meaningful and efficient smoothing. This
is shown by Table 11.3.

To provide some contrast and to include also Molodensky corrections for
the height anomaly ζ, we quote also Table 11.4 of a somewhat earlier work
by Kraiger et al. (1987) (denoted as Table 6.1 there). The values are not
directly comparable because test areas and selected methods of integration,
smoothing, data density, etc., are different. Still, they lead to interesting



11.3 Molodensky corrections 387

Table 11.4. Comparison of direct numerical integration and fast
Fourier transform (FFT): maximum and (arithmetic) mean val-
ues of Molodensky corrections ζi, ξi, ηi for i = 1, 2; test area:
46.788◦ ≤ ϕ ≤ 46.512◦, 13.438◦ ≤ λ ≤ 14.646◦, 600 m ≤ topographic
height ≤ 2400 m

ζ1 [cm] ξ1 [′′] η1 [′′] ζ2 [cm] ξ2 [′′] η2 [′′]
maximum 40.8 2.0 2.0 0.8 0.2 0.2 direct int.

values 47.6 1.5 1.4 0.7 0.1 0.1 FFT
mean 31.3 0.4 0.4 0.2 0.03 0.03 direct int.
values 36.7 0.3 0.4 0.5 0.02 0.02 FFT

conclusions:

1. The method of Molodensky corrections depends very much on the de-
tails of numerical integration (data density, smoothing, etc.).

2. The corrections decrease for increasing i = 1, 2, 3, . . . . This is what
they have to do. Higher corrections may be expected finally to consist
of “pure noise” because of general roughening and increasing round-off
errors, so that the question of convergence becomes practically as well
as theoretically meaningless: higher terms must simply be put equal to
zero by higher force.

3. The Molodensky correction ζ1 may reach a few decimeters, ζ2 and
higher-order terms might frequently be negligible.

4. At the end of Sects. 2.21 and 8.8, we have remarked a curious phe-
nomenon. Using the same data, gravimetric methods seem to furnish
the vertical position (expressed by ζ or N) roughly by one order of
magnitude better than the horizontal position (as expressed by ξ, η).
If we take the old astronomer’s rule that 1′′ ∼= 30m in position, then
1m corresponds to 0.03′′. Assume that we get 1m in vertical position
and wish to get the same accuracy for horizontal position. This would
mean that we have to get the astronomical measurements Φ, Λ and
the deflections of the vertical ξ, η with better than 0.03′′. This also
seems to apply with the order of magnitude of the Molodensky correc-
tions, where a Molodensky correction ζ1 = 0.41m comes along with a
ξ1 = η1 = 2′′, which corresponds to 60 m.

In this sense, gravimetry is weaker by one order of magnitude in deter-
mining the horizontal than the vertical position. This is an admittedly
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one-sided perspective, but it was used against scientists who claimed,
still around 1960, that the gravimetric method was able to do every-
thing that satellite geodesy could. With GPS now we know better, and
without ideological scruples we combine satellite data with terrestrial
gravity.

(A second perspective of astronomical observations is the astrogeode-
tic geoid determination. Here the accuracy of astronomy is sufficient;
cf. Sec. 5.14.)

Final remark
The computation of Molodensky reductions is heavy work. So in mountain-
ous areas, least-squares collocation is definitely preferable to integration,
except for certain test computations (Sideris 1987, 1990).

Collocation also permits comparison and combination of astrogeodetic
and gravimetric data; a key paper is Kühtreiber (2002 b).

All this, however, builds on the fundamental ideas of M.S. Molodensky.
In his landmark publication (Krarup 1969) one clearly sees the transition
from Molodensky’s problem to least-squares collocation.

11.4 The geoid on the internet

The International Association of Geodesy (IAG) has a very active Interna-
tional Geoid Service (IGeS–IAG). Before you try to compute your own geoid,
look at www.iges.polimi.it to see what is available there. You can find global
and regional geoids, data, software, references, plans for future work, etc.
We particularly mention the geoid repositories:

• www.iges.polimi.it/index/geoid repo/global models.htm ,
• www.iges.polimi.it/index/geoid repo/regional models.htm .

In the latter file you can find:

• USA gravimetric Geoid 1996 (Dru Smith),
• European Geoid/Quasigeoid EGG97 (H. Denker),
• Austrian Geoid 1996 (H. Sünkel).

Other important internet addresses:

• International Gravity Bureau (Toulouse):
http://bgi.cnes.fr8110/bgi a.html ,

• International Association of Geodesy:
www.iag aig.org .




