
10 Least-squares collocation

10.1 Principles of least-squares collocation

The principle of collocation is very simple. The anomalous potential T out-
side the earth is a harmonic function, that is, it satisfies Laplace’s differential
equation

∆T =
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 . (10–1)

An approximate analytical representation of the external potential T is ob-
tained by

T (P ) .= f(P ) =
q∑

k=1

bk ϕk(P ) , (10–2)

a linear combination f of suitable base functions ϕ1, ϕ2, . . . , ϕq with appro-
priate coefficients bk. All these are functions of the space point P under
consideration.

As T is harmonic outside the earth’s surface, it is natural to choose base
functions ϕk which are likewise harmonic, so that

∆ϕk = 0 , (10–3)

in correspondence to (10–1).
There are many simple systems of functions satisfying the harmonicity

condition (10–3), and thus we have many possibilities for a suitable choice
of base functions ϕk. We might, for instance, choose spherical harmonics or
potentials of suitably distributed point masses, depending on whether we
emphasize global or local applications.

The coefficients bk may be chosen such that the given observational values
are reproduced exactly – for instance, all deflections of the vertical in a given
area. This means that the assumed approximating function f in (10–2) gives
the same deflections of the vertical at the observation stations as the actual
potential and hence may well be considered a suitable approximation for T .
Let us now try to put these ideas into a mathematical form.

Interpolation
Let errorless values of T be given at q spatial points P1, P2, . . . , Pq; these
points may lie on the earth’s surface or in space above the earth’s surface.
We put

T (Pi) = fi , i = 1, 2, . . . , q (10–4)
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and postulate that in approximating T (P ) by f(P ), the observations (10–4)
will be reproduced exactly. The condition for this is

q∑
k=1

bk ϕk(Pi) = T (Pi) = fi , (10–5)

which may be written as a system of linear equations
q∑

k=1

Aik bk = fi with Aik = ϕk(Pi) (10–6)

or in matrix notation
Ab = f . (10–7)

If the square matrix A is regular, then the coefficients bk are uniquely de-
termined by

b = A−1 f . (10–8)

This model is suitable, for instance, for a determination of the geoid by
satellite altimetry, since this method, rather directly, yields geoidal heights
Ni and hence, by Bruns’ theorem (2–236), T (Pi) = γi Ni. For the astro-
geodetic geoid determination, we must generalize this model, which leads us
to collocation.

Collocation
Here we wish to reproduce, by means of the approximation (10–2), q mea-
sured values which again are assumed to be errorless (this assumption is
not essential and will be dropped later). These measured values are assumed
to be linear functionals L1T,L2T, . . . , LqT of the anomalous potential T .
“Linear functional” means nothing else than a quantity LT that depends
linearly on T but need not be an ordinary function but may, say, also con-
tain a differentiation or an integral; essentially, it is the same as a “linear
operator”.

In fact, deflections of the vertical,

ξ = −1
γ

∂T

∂x
, η = −1

γ

∂T

∂y
, (10–9)

but also gravity anomalies,

∆g = −∂T

∂z
− 2

R
T , (10–10)

and gravity disturbances

δg = −∂T

∂z
(10–11)
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are such linear functionals of T ; here, x, y, z denotes a local coordinate sys-
tem in which the z-axis is vertical upwards and the x- and y-axes are directed
towards north and east, and R = 6371 km is a mean radius of the earth.
Equation (10–9) is a consequence of equations such as (2–377), with ∂s = ∂x
or ∂y; normal gravity γ may be considered constant with respect to horizon-
tal derivation. Equation (10–10) is the well-known fundamental equation of
physical geodesy in spherical approximation (2–263). Equations (10–9) and
(10–10) refer to the earth’s surface.

To repeat, by saying that deflections of the vertical and gravity distur-
bances and anomalies are linear functionals of T , we simply indicate the fact
that ξ, η, δg,∆g depend on T by the expressions (10–9) and (10–10), which
clearly are linear; they are the linear terms of a Taylor expansion, neglect-
ing quadratic and higher terms. In the above notation LiT , the symbol Li

denotes, for instance, the operation

Li =
1
γ

∂

∂x
(10–12)

applied to T at some point.
Putting

Lif = LiT = �i (10–13)

and substituting (10–2), we get

q∑
i=1

Bik bk = �i with Bik = Liϕk , (10–14)

where Liϕk denotes the number obtained by applying the operation Li to the
base function ϕk; the coefficient Bik obtained in this way does not depend
on the measured values. Equation (10–14) is a linear system of q equations
for q unknowns, which is quite similar to (10–6). This method of fitting an
analytical approximating function to a number of given linear functionals is
called collocation and is frequently used in numerical mathematics.

It is clear that interpolation is a simple special case of collocation in
which

Lif = f(Pi) (10–15)

is the “evaluation functional”, giving the value of f at a point Pi. Thus
we see that in both interpolation and collocation the coefficients bk require
the solution of a linear system of equations (which in general will not be
symmetric).
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Least-squares interpolation
Let us consider a function

K = K(P,Q) , (10–16)

in which two points P and Q are the independent variables. Let this function
K be

• symmetric with respect to P and Q,
• harmonic with respect to both points, everywhere outside a certain

sphere, and
• positive-definite (the positive definitiveness of a function is defined

similarly as in the case of a matrix).

Then the function K(P,Q) is called a (harmonic) kernel function (Moritz
1980 a: p. 205). A kernel function K(P,Q) may serve as “building material”
from which we can construct base functions. Taking for the base functions
the form

ϕk(P ) = K(P,Pk) , (10–17)

where P denotes the variable point and Pk is a fixed point in space, we obtain
least-squares interpolation already treated by a quite different approach in
Chap. 9.

This name originates from the statistical interpretation of the kernel
function as a covariance function (Sect. 9.2); then least-squares interpola-
tion has some minimum properties (least-error variance, similarly as in least-
squares adjustment). This interpretation is not essential, however; one may
also work with arbitrary analytical kernel functions, considering the proce-
dure as a purely analytical mathematical approximation technique. Normally
one tries to combine both aspects in a reasonable way.

Substituting (10–17) into (10–6), we get

Aik = K(Pi, Pk) = Cik ; (10–18)

this square matrix now is symmetric (in the general case, Aik is not sym-
metric!) and positive definite because of the corresponding properties of the
function K(P,Q). Then the coefficients bk follow from (10–8) and may be
substituted into (10–2). With the notation

ϕk(P ) = K(P,Pk) = CPk , (10–19)

the result may be written in the form

f(P ) =
[
CP1 CP2 . . . CPq

]
⎡⎢⎢⎢⎣

C11 C12 . . . C1q

C21 C22 . . . C2q
...

...
...

Cq1 Cq2 . . . Cqq

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

f1

f2
...
fq

⎤⎥⎥⎥⎦ , (10–20)
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formally identical with Eq. (9–67) obtained in a completely different way.

Least-squares collocation
Here we again derive the base functions from a kernel function K(P,Q), but
in a way slightly different from (10–17): we put

ϕk(P ) = LQ
k K(P,Q) , (10–21)

where LQ
k means that the functional Lk is applied to the variable Q; the

result no longer depends on Q (since the application of a functional results
in a definite number). Thus, in (10–14) we must put

Bik = LP
i LQ

k K(P,Q) = Cik , (10–22)

which gives a matrix which again is symmetric. Solving (10–14) for bk and
substituting into (10–2) gives with

ϕk(P ) = LQ
k K(P,Q) = CPk (10–23)

the formula

f(P ) =
[
CP1 CP2 . . . CPq

]
⎡⎢⎢⎢⎣

C11 C12 . . . C1q

C21 C22 . . . C2q
...

...
...

Cq1 Cq2 . . . Cqq

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

�1

�2
...
�q

⎤⎥⎥⎥⎦ . (10–24)

This is formally the same expression as (10–20), but with fi replaced by
�i and with “covariances” Cik and CPi defined by “covariance propagation”
(10–22) and (10–23). The concept of covariance propagation is a straight-
forward generalization of the formal structure of error propagation known
from adjustment computations. However, this structure as such is purely
mathematical rather than statistical. We know that a “linear functional” is
the continuous analogue (in infinite-dimensional Hilbert space) to the usual
concept of a linear function in n-dimensional vector space. We try not to bur-
den the reader with too much mathematical formalism, but this is treated in
great detail in Moritz (1980 a) and in Moritz and Hofmann-Wellenhof (1993:
Chap. 10). We cannot, however, resist the temptation to compare the struc-
ture

bi = Lj
iaj (10–25)

leading to
cov(bi, bj) = Lk

i L
l
j cov(ak, al) (10–26)
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for finite-dimensional vectors a and matrix L using the usual summation
over two equal indices, and Ni = LP

i ∆gP leading to

cov(NP , NQ) = LP
i LQ

j cov(∆gP ,∆gQ) , (10–27)

where Ni denotes the geoidal height at point i and ∆g is the gravity anomaly
at point P , and L denotes the Stokes formula. Explicit expressions are found
in Moritz (1980 a: Sect. 15).

In this statistical interpretation, we take the kernel function K(P,Q)
as the covariance function C(P,Q). Then f(P ) is an optimal estimate (in
the sense of least variance) for the anomalous potential T and hence for
the height anomaly ζ = T/γ, on the basis of arbitrary measurement data.
For geoid determination in mountainous areas, relevant terrestrial measure-
ment data primarily are ξ, η, and ∆g. The covariances Cik and CPi are
given by known analytical expressions, see Tscherning and Rapp (1974) or
Moritz (1980 a: Sect. 15). A general computer program for collocation is
described in Sünkel (1980).

Least-squares collocation may easily be generalized to observational data
affected by random errors; systematic effects may also be taken into consid-
eration. In addition to the estimated quantities (f in our present case) we
may also compute their standard error by a formula similar to (10–24). A
comprehensive presentation of a least-squares collocation may be found in
Moritz (1980 a). You cannot learn collocation from this slight chapter only!

Harmonicity of the covariance functions.
In three-dimensional space, the covariance functions, being kernel functions
and their linear functional transformations L, are always harmonic. If we
have (9–25),

C(ψ) =
∞∑

n=2

cnPn(cos ψ) (10–28)

on the sphere, then in space there will be

C(r, r′, ψ) =
∞∑

n=2

cn

(
R2

r r′

)n+2

Pn(cos ψ) (10–29)

(Moritz 1980 a: Sect. 23, Eq. (32-1)). The point P (r, θ, λ) is the computation
point, and Q(r′, θ′, λ′) is a current data point; ψ is the spherical distance
between (θ, λ) and (θ′, λ′), and R is the mean radius of the earth. The de-
pendence on r is given by the factor

r−(n+2) (10–30)
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because r∆g is harmonic, and similarly for r′. The factor(
R2

r r′

)
(10–31)

is chosen to become equal to 1 if both points P and Q lie on sea level; in
this case, Eq. (10–29) reduces to (10–28).

So, each of the terms of (10–29) is harmonic, that is, it satisfies Laplace’s
equation. Thus, the whole series (10–29) is harmonic (if it converges), being
a linear combination of harmonic terms. This is a well-known consequence
of the linearity of Laplace’s equation: the linear combination of solutions of
any linear equation is itself a solution of this equation.

Thus, also the spherical harmonics series of T = r∆g is harmonic down
to the reference sphere r = R, with respect both to r and r′. Harmonic
functions, by their very definition, are regular analytic functions down to
r = R, so T and all its linear combinations are regular and thus admit
downward continuation down to the reference sphere (cf. Sect. 8.6).

10.2 Application of collocation to geoid
determination

It is well known that the direct interpolation of free-air gravity anomalies,
which essentially are surface gravity anomalies (8–128) in high mountains,
e.g., by least-squares interpolation, leads to relatively poor results because
of the correlation of the free-air anomalies with elevation (Sect. 9.7). This
correlation with elevation constitutes a considerable trend which must be
removed before the interpolation. Bouguer anomalies take care of the de-
pendence on the local irregularities of elevation; isostatic anomalies are, in
addition, also largely independent on the regional features of topography; in
Sect. 11.1 we shall consider, in addition, also the removal of global trends
by spherical-harmonic earth gravity models (e.g., EGM 96, see www.iges
.polimi.it/index/geoid repo/global models.htm) obtainable from the inter-
net.

In exactly the same way we must remove the main trend of the vertical
deflections ξ, η and the gravity anomalies ∆g by an isostatic reduction be-
fore applying collocation. Thus, isostatic reduction, pragmatically regarded
as trend removal, is essential for the practical application of least-squares
collocation in mountainous regions (Forsberg and Tscherning 1981).

Physically speaking, we transport the topographic masses to the interior
of the geoid in such a way that the isostatic mass deficiencies are filled. The
observation point P remains in its position on the earth’s surface. In this way,
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not only the harmonic character of the anomalous potential T outside the
earth’s surface is preserved, but in addition, the computational removal of
the topographic masses above sea level makes the function T harmonic down
to sea level. Hence, the collocation formula (10–24) can be applied also at
sea level, giving cogeoid heights N c. By applying the inverse reduction (the
indirect effect) to the computed height anomalies ζc and cogeoid heights N c,
we get actual ζ and N . It can be expected that errors in the isostatic model
used (e.g., an Airy–Heiskanen model) will largely cancel in this combined
procedure of reduction and “anti-reduction” (remove-restore technique; see
Sect. 11.1).

The procedure is theoretically optimal and practically well suited for
computer use. The integrability conditions, which in Helmert integration
are represented by the closures of the individual triangles (see Sect. 5.14),
are automatically taken into account. The fact that the deflections of the
vertical are given only in a certain region has the effect that the geoid can
only be computed in that region. Since, even by collocation, differences in
geoidal heights between two neighboring stations A and B depend essentially
only on the deflections in those two stations, the lack of data outside the
region under consideration will hardly cause a noticeable distortion. Note,
however, that the addition of a constant to all geoidal heights N will not
affect the deflections of the vertical; hence, astrogeodetic data determine
the geoidal heights only up to an additive constant. This constant may be
chosen such that the average value of the computed N is zero, and the result
of collocation comes near to this case.

To get immediately almost geocentric geoidal heights, it is appropriate to
take into consideration a global trend which mainly affects ζ and N itself, by
subtracting the effect of a suitable global gravity field, e.g., the gravity earth
model given as a spherical-harmonic expansion up to degree 180◦ × 180◦ of
Rapp (1981), say, following Sünkel (1983). This will be described in the next
section; in the present section we limit ourselves to the isostatic reduction.

Computational procedure
The computational procedure consists of the following steps:

1. Transformation of the astrogeodetic surface deflections ξ, η from the
local datum used for the geocentric Geodetic Reference System 1980
by the well-known differential formulas of Vening Meinesz (see Heiska-
nen and Moritz 1967: Eq. (5-59)). This is necessary since collocation
requires a reference system which is as realistic as possible.

2. Application of the normal plumb line curvature (8–137) to the “geo-
metric” surface deflections ξ, η gives the “dynamic” surface deflections
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ξ̄, η̄ by (8–136).

3. Computation of the gravity anomalies ∆g, also referred to the earth’s
surface according to (8–128).

4. The topographic-isostatic reduction of ξ̄, η̄, ∆g by (8–154) and (8–101)
gives values ξc, ηc, ∆gc which continue to refer to the surface point P .

5. The application of collocation to ξc, ηc, ∆g gives height anomalies ζc

and cogeoid heights N c, by simply varying the elevation parameter (h
and zero, respectively) in the collocation program (see Sünkel 1983).

6. By applying the indirect effect (10–2) and (8–153), we get actual height
anomalies ζ and geoidal heights N .




