
1 Fundamentals of potential
theory

1.1 Attraction and potential

The purpose in this preparatory chapter is to present the fundamentals of
potential theory, including spherical and ellipsoidal harmonics, in sufficient
detail to assure a full understanding of the later chapters. Our intent is to
explain the meaning of the theorems and formulas, avoiding long derivations
that can be found in any textbook on classical (before 1950) potential theory;
we recommend Kellogg (1929). A simple rather than completely rigorous
presentation is offered in our book.

Nevertheless, the reader might consider this chapter perhaps more diffi-
cult and abstract than other parts of the book. Since later practical appli-
cations will give concrete meaning to the topics of the present chapter, the
reader may wish to read it only cursorily at first and return to it later when
necessary.

According to Newton’s law of gravitation, two points with masses m1,m2,
separated by a distance l, attract each other with a force

F = G
m1m2

l2
. (1–1)

This force is directed along the line connecting the two points; G is Newton’s
gravitational constant. In SI units (Système International d’unités) based on
meter [m], kilogram [kg], and second [s], the gravitational constant has the
value

G = 6.6742 · 10−11 m3 kg−1 s−2 . (1–2)

The Newtonian gravitational constant G is somewhat of a scandal in
measuring physics. It is on the one hand one of the most important physi-
cal constants, and at the same time one of the least accurately determined
ones. The international authority in this field is the Committee on Data
for Science and Technology (CODATA), see under www.codata.org. In July
2002, CODATA recommended the value of G mentioned above, more pre-
cisely it assigned the value G = (6.6742 ± 0.0010) · 10−11 m3 kg−1 s−2. The
symbol ± denotes the standard uncertainty, also called standard deviation
or standard error. This corresponds to a relative standard uncertainty of
1.5 · 10−4 or 150 ppm which is a deplorably high inaccuracy for such an
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important constant, see http://physics.nist.gov/cuu/constants. (For other
constants we have a relative accuracy of 10−7 and better.) For comparison
of experimental results see the internet.

Although the masses m1,m2 attract each other in a completely symmet-
rical way, it is convenient to call one of them the attracting mass and the
other the attracted mass. For simplicity we set the attracted mass equal to
unity and denote the attracting mass by m. The formula

F = G
m

l2
(1–3)

expresses the force exerted by the mass m on a unit mass located at P at a
distance l from m.

We now introduce a rectangular coordinate system xyz and denote the
coordinates of the attracting mass m by ξ, η, ζ and the coordinates of the
attracted point P by x, y, z. The force may be represented by a vector F
with magnitude F (Fig. 1.1). The components of F are given by
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Fig. 1.1. The components of the gravitational force; upper figure
shows y-component
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X = −F cos α = −Gm

l2
x − ξ

l
= −Gm

x − ξ

l3
,

Y = −F cos β = −Gm

l2
y − η

l
= −Gm

y − η

l3
,

Z = −F cos γ = −Gm

l2
z − ζ

l
= −Gm

z − ζ

l3
,

(1–4)

where
l =

√
(x − ξ)2 + (y − η)2 + (z − ζ)2 . (1–5)

We next introduce a scalar function

V =
Gm

l
, (1–6)

called the potential of gravitation. The components X,Y,Z of the gravita-
tional force F are then given by

X =
∂V

∂x
, Y =

∂V

∂y
, Z =

∂V

∂z
, (1–7)

as can be easily verified by differentiating (1–6), since

∂

∂x

(
1
l

)
= − 1

l2
∂l

∂x
= − 1

l2
x − ξ

l
= −x − ξ

l3
, . . . . (1–8)

In vector notation, Eq. (1–7) is written

F = [X, Y, Z] = grad V ; (1–9)

that is, the force vector is the gradient vector of the scalar function V .
It is of basic importance that according to (1–7) the three components

of the vector F can be replaced by a single function V . Especially when we
consider the attraction of systems of point masses or of solid bodies, as we
do in geodesy, it is much easier to deal with the potential than with the three
components of the force. Even in these complicated cases the relations (1–7)
are applied; the function V is then simply the sum of the contributions of
the respective particles.

Thus, if we have a system of several point masses m1,m2, . . . ,mn, the
potential of the system is the sum of the individual contributions (1–6):

V =
Gm1

l1
+

Gm2

l2
+ · · · + Gmn

ln
= G

n∑
i=1

mi

li
. (1–10)
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1.2 Potential of a solid body

Let us now assume that point masses are distributed continuously over a
volume v (Fig. 1.2) with density

� =
dm

dv
, (1–11)

where dv is an element of volume and dm is an element of mass. Then the
sum (1–10) becomes an integral (Newton’s integral),

V = G

∫∫
v

∫
dm

l
= G

∫∫
v

∫
�

l
dv , (1–12)

where l is the distance between the mass element dm = � dv and the at-
tracted point P . Denoting the coordinates of the attracted point P by x, y, z
and of the mass element m by ξ, η, ζ, we see that l is again given by (1–5),
and we can write explicitly

V (x, y, z) = G

∫∫
v

∫
�(ξ, η, ζ)√

(x − ξ)2 + (y − η)2 + (z − ζ)2
dξ dη dζ , (1–13)

since the element of volume is expressed by

dv = dξ dη dζ . (1–14)

This is the reason for the triple integrals in (1–12).
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Fig. 1.2. Potential of a solid body
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The components of the force of attraction are given by (1–7). For in-
stance,

X =
∂V

∂x
= G

∂

∂x

∫∫
v

∫
�(ξ, η, ζ)

l
dξ dη dζ

= G

∫∫
v

∫
�(ξ, η, ζ)

∂

∂x

(
1
l

)
dξ dη dζ .

(1–15)

Note that we have interchanged the order of differentiation and integration.
Substituting (1–8) into the above expression, we finally obtain

X = −G

∫∫
v

∫
x − ξ

l3
� dv . (1–16)

Analogous expressions result for Y and Z.
The potential V is continuous throughout the whole space and vanishes at

infinity like 1/l for l → ∞. This can be seen from the fact that for very large
distances l the body acts approximately like a point mass, with the result
that its attraction is then approximately given by (1–6). Consequently, in
celestial mechanics the planets are usually considered as point masses.

The first derivatives of V , that is, the force components, are also contin-
uous throughout space, but not so the second derivatives. At points where
the density changes discontinuously, some second derivatives have a discon-
tinuity. This is evident because the potential V may be shown to satisfy
Poisson’s equation

∆V = −4π G� , (1–17)

where

∆V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
. (1–18)

The symbol ∆, called the Laplacian operator, has the form

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1–19)

From (1–17) and (1–18) we see that at least one of the second derivatives of
V must be discontinuous together with �.

Outside the attracting bodies, in empty space, the density � is zero and
(1–17) becomes

∆V = 0 . (1–20)

This is Laplace’s equation. Its solutions are called harmonic functions. Hence,
the potential of gravitation is a harmonic function outside the attracting
masses but not inside the masses: there it satisfies Poisson’s equation.
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1.3 Harmonic functions

Earlier we have defined the harmonic functions as solutions of Laplace’s
equation

∆V = 0 . (1–21)

More precisely, a function is called harmonic in a region v of space if it
satisfies Laplace’s equation at every point of v. If the region is the exterior
of a certain closed surface S, then it must in addition vanish like 1/l for
l → ∞. It can be shown that every harmonic function is analytic (in the
region where it satisfies Laplace’s equation); that is, it is continuous and
has continuous derivatives of any order and can be developed into a Taylor
series.

The simplest harmonic function is the reciprocal distance

1
l

=
1√

(x − ξ)2 + (y − η)2 + (z − ζ)2
(1–22)

between two points P (ξ, η, ζ) and P (x, y, z). It is the potential of a point
mass m = 1/G, situated at the point P (ξ, η, ζ); compare (1–5) and (1–6).

It is easy to show that 1/l is harmonic. We form the following partial
derivatives with respect to x, y, z in the fashion of (1–8):

∂

∂x

(
1
l

)
= −x − ξ

l3
,

∂

∂y

(
1
l

)
= −y − η

l3
,

∂

∂z

(
1
l

)
= −z − ζ

l3
;

∂2

∂x2

(
1
l

)
=

−l2 + 3(x − ξ)2

l3
,

∂2

∂y2

(
1
l

)
=

−l2 + 3(y − η)2

l3
,

∂2

∂z2

(
1
l

)
=

−l2 + 3(z − ζ)2

l3
.

(1–23)

Adding the last three equations and recalling the definition of ∆, we find

∆
(

1
l

)
= 0 ; (1–24)

that is, 1/l is harmonic.
The point P (ξ, η, ζ), where l is zero and 1/l is infinite, is the only point

to which we cannot apply the above derivation; 1/l is not harmonic at this
singular point.

As a matter of fact, the slightly more general potential (1–6) of an ar-
bitrary point mass m is also harmonic except at P (ξ, η, ζ), because (1–24)
remains unchanged if both sides are multiplied by Gm.
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Not only the potential of a point mass but also any other gravitational
potential is harmonic outside the attracting masses. Consider the potential
(1–12) of an extended body. Interchanging the order of differentiation and
integration, we find from (1–12)

∆V = G∆
[ ∫∫

v

∫
�

l
dv

]
= G

∫∫
v

∫
�∆

(
1
l

)
dv = 0 ; (1–25)

that is, the potential of a solid body is also harmonic at any point P (x, y, z)
outside the attracting masses.

If P lies inside the attracting body, the above derivation breaks down,
since 1/l becomes infinite for that mass element dm(ξ, η, ζ) which coincides
with P (x, y, z), and (1–24) does not apply. This is the reason why the po-
tential of a solid body is not harmonic in its interior but instead satisfies
Poisson’s differential equation (1–17).

1.4 Laplace’s equation in spherical coordinates

The most important harmonic functions are the spherical harmonics. To find
them, we introduce spherical coordinates: r (radius vector; note that this is
a standard notation, although it does not represent a vector in the con-
temporary sense), ϑ (polar distance), λ (geocentric longitude), see Fig. 1.3.
Spherical coordinates are related to rectangular coordinates x, y, z by the
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Fig. 1.3. Spherical and rectangular coordinates
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equations
x = r sinϑ cos λ ,

y = r sinϑ sin λ ,

z = r cos ϑ ;

(1–26)

or inversely by

r =
√

x2 + y2 + z2 ,

ϑ = tan−1

√
x2 + y2

z
,

λ = tan−1 y

x
.

(1–27)

To get Laplace’s equation in spherical coordinates, we first determine the
element of arc (element of distance) ds in these coordinates. For this purpose
we form

dx =
∂x

∂r
dr +

∂x

∂ϑ
dϑ +

∂x

∂λ
dλ ,

dy =
∂y

∂r
dr +

∂y

∂ϑ
dϑ +

∂y

∂λ
dλ ,

dz =
∂z

∂r
dr +

∂z

∂ϑ
dϑ +

∂z

∂λ
dλ .

(1–28)

By differentiating (1–26) and substituting it into the elementary formula

ds2 = dx2 + dy2 + dz2 , (1–29)

we obtain

ds2 = dr2 + r2 dϑ2 + r2 sin2ϑ dλ2 . (1–30)

We might have found this well-known formula more simply by geometrical
considerations, but the approach used here is more general and can also be
applied to ellipsoidal (harmonic) coordinates.

In (1–30) there are no terms with dr dϑ, dr dλ, and dϑ dλ. This expresses
the evident fact that spherical coordinates are orthogonal: the spheres r =
constant, the cones ϑ = constant, and the planes λ = constant intersect each
other orthogonally.

The general form of the element of arc in arbitrary orthogonal coordinates
q1, q2, q3 is

ds2 = h2
1 dq2

1 + h2
2 dq2

2 + h2
3 dq2

3 . (1–31)
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It can be shown that Laplace’s operator in these coordinates is

∆V =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂V

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂V

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂V

∂q3

)]
.

(1–32)
For spherical coordinates we have q1 = r, q2 = ϑ, q3 = λ. Comparison of

(1–30) and (1–31) shows that

h1 = 1 , h2 = r , h3 = r sin ϑ . (1–33)

Substituting these relations into (1–32) yields

∆V =
1
r2

∂

∂r

(
r2 ∂V

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sin ϑ

∂V

∂ϑ

)
+

1
r2 sin2ϑ

∂2V

∂λ2
. (1–34)

Performing the differentiations we find

∆V ≡ ∂2V

∂r2
+

2
r

∂V

∂r
+

1
r2

∂2V

∂ϑ2
+

cot ϑ

r2

∂V

∂ϑ
+

1
r2 sin2ϑ

∂2V

∂λ2
= 0 , (1–35)

which is Laplace’s equation in spherical coordinates. An alternative expres-
sion is obtained when multiplying both sides by r2:

r2 ∂2V

∂r2
+ 2r

∂V

∂r
+

∂2V

∂ϑ2
+ cot ϑ

∂V

∂ϑ
+

1
sin2ϑ

∂2V

∂λ2
= 0 . (1–36)

This form will be somewhat more convenient for our subsequent develop-
ment.

1.5 Spherical harmonics

We attempt to solve Laplace’s equation (1–35) or (1–36) by separating the
variables r, ϑ, λ using the trial substitution

V (r, ϑ, λ) = f(r) Y (ϑ, λ) , (1–37)

where f is a function of r only and Y is a function of ϑ and λ only. Performing
this substitution in (1–36) and dividing by f Y , we get

1
f

(r2f ′′ + 2r f ′) = − 1
Y

(
∂2Y

∂ϑ2
+ cot ϑ

∂Y

∂ϑ
+

1
sin2ϑ

∂2Y

∂λ2

)
, (1–38)

where the primes denote differentiation with respect to the argument (r, in
this case). Since the left-hand side depends only on r and the right-hand side
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only on ϑ and λ, both sides must be constant. We can therefore separate the
equation into two equations:

r2f ′′(r) + 2r f ′(r) − n(n + 1) f(r) = 0 (1–39)

and
∂2Y

∂ϑ2
+ cot ϑ

∂Y

∂ϑ
+

1
sin2ϑ

∂2Y

∂λ2
+ n(n + 1)Y = 0 , (1–40)

where we have denoted the constant by n(n + 1).
Solutions of (1–39) are given by the functions

f(r) = rn and f(r) = r−(n+1) ; (1–41)

this should be verified by substitution. Denoting the still unknown solutions
of (1–40) by Yn(ϑ, λ), we see that Laplace’s equation (1–35) is solved by the
functions

V = rn Yn(ϑ, λ) and V =
Yn(ϑ, λ)

rn+1
. (1–42)

These functions are called solid spherical harmonics, whereas the functions
Yn(ϑ, λ) are known as (Laplace’s) surface spherical harmonics. Both kinds
are called spherical harmonics; the kind referred to can usually be judged
from the context.

Note that n is not an arbitrary constant but must be an integer 0, 1, 2, . . .
as we will see later. If a differential equation is linear, and if we know several
solutions, then, as is well known, the sum of these solutions is also a solution
(this holds for all linear equation systems!). Hence, we conclude that

V =
∞∑

n=0

rn Yn(ϑ, λ) and V =
∞∑

n=0

Yn(ϑ, λ)
rn+1

(1–43)

are also solutions of Laplace’s equation ∆V = 0; that is, harmonic functions.
The important fact is that every harmonic function – with certain restrictions
– can be expressed in one of the forms (1–43).

1.6 Surface spherical harmonics

Now we have to determine Laplace’s surface spherical harmonics Yn(ϑ, λ).
We attempt to solve (1–40) by a new trial substitution

Yn(ϑ, λ) = g(ϑ) h(λ) , (1–44)
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where the functions g and h individually depend on one variable only. Per-
forming this substitution in (1–40) and multiplying by sin2ϑ/g h, we find

sin ϑ

g

[
sin ϑ g′′ + cos ϑ g′ + n(n + 1) sin ϑ g

]
= −h′′

h
, (1–45)

where the primes denote differentiation with respect to the argument: ϑ in
g and λ in h. The left-hand side is a function of ϑ only, and the right-hand
side is a function of λ only. Therefore, both sides must again be constant;
let the constant be m2. Thus, the partial differential equation (1–40) splits
into two ordinary differential equations for the functions g(ϑ) and h(λ):

sin ϑ g′′(ϑ) + cos ϑ g′(ϑ) +
[
n(n + 1) sin ϑ − m2

sin ϑ

]
g(ϑ) = 0 ; (1–46)

h′′(λ) + m2h(λ) = 0 . (1–47)

Solutions of Eq. (1–47) are the functions

h(λ) = cos mλ and h(λ) = sin mλ , (1–48)

as may be verified by substitution. Equation (1–46), Legendre’s differential
equation, is more difficult. It can be shown that it has physically meaningful
solutions only if n and m are integers 0, 1, 2, . . . and if m is smaller than or
equal to n. A solution of (1–46) is the Legendre function Pnm(cos ϑ), which
will be considered in some detail in the next section. Therefore,

g(ϑ) = Pnm(cos ϑ) (1–49)

and the functions

Yn(ϑ, λ) = Pnm(cos ϑ) cos mλ and Yn(ϑ, λ) = Pnm(cos ϑ) sin mλ (1–50)

are solutions of the differential equation (1–40) for Laplace’s surface spherical
harmonics.

Since these solutions are linear, any linear combination of the solutions
(1–50) is also a solution. Such a linear combination has the general form

Yn(ϑ, λ) =
n∑

m=0

[anmPnm(cos ϑ) cos mλ + bnmPnm(cos ϑ) sin mλ] , (1–51)

where anm and bnm are arbitrary constants. This is the general expression
for the surface spherical harmonics Yn(ϑ, λ).



14 1 Fundamentals of potential theory

Substituting this relation into equations (1–43), we see that

Vi(r, ϑ, λ) =
∞∑

n=0

rn
n∑

m=0

[anmPnm(cos ϑ) cos mλ + bnmPnm(cos ϑ) sin mλ] ,

(1–52)

Ve(r, ϑ, λ) =
∞∑

n=0

1
rn+1

n∑
m=0

[anmPnm(cos ϑ) cos mλ + bnmPnm(cos ϑ) sin mλ]

(1–53)
are solutions of Laplace’s equation ∆V = 0; that is, harmonic functions.
Furthermore, as we have mentioned, they are very general solutions indeed:
every function which is harmonic inside a certain sphere can be expanded
into a series (1–52), where the subscript i indicates the interior, and every
function which is harmonic outside a certain sphere (such as the earth’s
gravitational potential) can be expanded into a series (1–53), where the
subscript e indicates the exterior. Thus, we see how spherical harmonics can
be useful in geodesy.

1.7 Legendre’s functions

In the preceding section we have introduced Legendre’s function Pnm(cos ϑ)
as a solution of Legendre’s differential equation (1–46). The subscript n
denotes the degree and the subscript m the order of Pnm.

It is convenient to transform Legendre’s differential equation (1–46) by
the substitution

t = cos ϑ . (1–54)

In order to avoid confusion, we use an overbar to denote g as a function of
t. Therefore,

g(ϑ) = ḡ(t) ,

g′(ϑ) =
dg

dϑ
=

dg

dt

dt

dϑ
= −ḡ′(t) sin ϑ ,

g′′(ϑ) = ḡ′′(t) sin2ϑ − ḡ′(t) cos ϑ .

(1–55)

Inserting these relations into (1–46), dividing by sinϑ, and then substituting
sin2ϑ = 1 − t2, we get

(1 − t2) ḡ′′(t) − 2t ḡ′(t) +
[
n(n + 1) − m2

1 − t2

]
ḡ′(t) = 0 . (1–56)

The Legendre function ḡ(t) = Pnm(t), which is defined by

Pnm(t) =
1

2n n!
(1 − t2)m/2 dn+m

dtn+m
(t2 − 1)n , (1–57)
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satisfies (1–56). Apart from the factor (1 − t2)m/2 = sinm ϑ and from a
constant, the function Pnm is the (n + m)th derivative of the polynomial
(t2 − 1)n. It can, thus, be evaluated. For instance,

P11(t) =
(1 − t2)1/2

2 · 1
d2

dt2
(t2 − 1) =

1
2

√
1 − t2 · 2 =

√
1 − t2 = sin ϑ . (1–58)

The case m = 0 is of particular importance. The functions Pn0(t) are often
simply denoted by Pn(t). Then (1–57) gives

Pn(t) = Pn0(t) =
1

2n n!
dn

dtn
(t2 − 1)n . (1–59)

Because m = 0, there is no square root, that is, no sinϑ. Therefore, the
Pn(t) are simply polynomials in t. They are called Legendre’s polynomials.
We give the Legendre polynomials for n = 0 through n = 5:

P0(t) = 1 , P3(t) = 5
2 t3 − 3

2 t ,

P1(t) = t , P4(t) = 35
8 t4 − 15

4 t2 + 3
8 ,

P2(t) = 3
2 t2 − 1

2 , P5(t) = 63
8 t5 − 35

4 t3 + 15
8 t .

(1–60)

Remember that
t = cos ϑ . (1–61)

The polynomials may be obtained by means of (1–59) or more simply by the
recursion formula

Pn(t) = −n − 1
n

Pn−2(t) +
2n − 1

n
t Pn−1(t) , (1–62)

by which P2 can be calculated from P0 and P1, P3 from P1 and P2, etc.
Graphs of the Legendre polynomials are shown in Fig. 1.4.

The powers of cos ϑ can be expressed in terms of the cosines of multiples
of ϑ, such as

cos2ϑ = 1
2 cos 2ϑ + 1

2 , cos3ϑ = 1
4 cos 3ϑ + 3

4 cos ϑ . (1–63)

Therefore, we may also express the Pn(cos ϑ) in this way, obtaining

P2(cos ϑ) = 3
4 cos 2ϑ + 1

4 ,

P3(cos ϑ) = 5
8 cos 3ϑ + 3

8 cos ϑ ,

P4(cos ϑ) = 35
64 cos 4ϑ + 5

16 cos 2ϑ + 9
64 ,

P5(cos ϑ) = 63
128 cos 5ϑ + 35

128 cos 3ϑ + 15
64 cos ϑ ,

· · · = · · · .

(1–64)
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Fig. 1.4. Legendre’s polynomials as functions of t = cosϑ: n even (top)
and n odd (bottom)

If the order m is not zero – that is, for m = 1, 2, . . . , n – Legendre’s functions
Pnm(cos ϑ) are called associated Legendre functions. They can be reduced to
the Legendre polynomials by means of the equation

Pnm(t) = (1 − t2)m/2 dmPn(t)
dtm

, (1–65)

which follows from (1–57) and (1–59). Thus, the associated Legendre func-
tions are expressed in terms of the Legendre polynomials of the same degree
n. We give some Pnm, writing t = cos ϑ,

√
1 − t2 = sinϑ:

P11(cos ϑ) = sin ϑ , P31(cos ϑ) = sin ϑ
(

15
2 cos2ϑ − 3

2

)
,

P21(cos ϑ) = 3 sin ϑ cos ϑ , P32(cos ϑ) = 15 sin2ϑ cos ϑ ,

P22(cos ϑ) = 3 sin2ϑ , P33(cos ϑ) = 15 sin3ϑ .

(1–66)

We also mention an explicit formula for any Legendre function (polynomial
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or associated function):

Pnm(t) = 2−n(1 − t2)m/2
r∑

k=0

(−1)k
(2n − 2k)!

k! (n − k)! (n − m − 2k)!
tn−m−2k ,

(1–67)
where r is the greatest integer ≤ (n−m)/2; i.e., r is (n−m)/2 or (n−m−1)/2,
whichever is an integer. This formula is convenient for programming.

As this useful formula is seldom found in the literature, we show the
derivation, which is quite straightforward. The necessary information on fac-
torials may be obtained from any collection of mathematical formulas. The
binomial theorem gives

(t2 − 1)n =
n∑

k=0

(−1)k
(

n

k

)
t2n−2k =

n∑
k=0

(−1)k
n!

k! (n − k)!
t2n−2k . (1–68)

Thus, (1–57) becomes

Pnm(t) =
1
2n

(1 − t2)m/2
n∑

k=0

(−1)k
1

k! (n − k)!
dn+m

dtn+m
(t2n−2k) , (1–69)

the quantity n! having been cancelled out. The rth derivative of the power
ts is

dr

dtr
(ts) = s(s − 1) · · · (s − r + 1) ts−r =

s!
(s − r)!

ts−r . (1–70)

Setting r = n + m and s = 2n − 2k, we have

dn+m

dtn+m
(t2n−2k) =

(2n − 2k)!
(n − m − 2k)!

tn−m−2k . (1–71)

Inserting this into the above expression for Pnm(t) and noting that the lowest
possible power of t is either t or t0 = 1, we obtain (1–67).

The surface spherical harmonics are Legendre’s functions multiplied by
cos mλ or sin mλ:

degree 0 P0(cos ϑ) ;

degree 1 P1(cos ϑ) ,

P11(cos ϑ) cos λ , P11(cos ϑ) sinλ ;

degree 2 P2(cos ϑ) ,

P21(cos ϑ) cos λ , P21(cos ϑ) sinλ ,

P22(cos ϑ) cos 2λ , P22(cos ϑ) sin 2λ ;

(1–72)
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and so on.

The geometrical representation of these spherical harmonics is useful.
The harmonics with m = 0 – that is, Legendre’s polynomials – are polyno-
mials of degree n in t, so that they have n zeros. These n zeros are all real
and situated in the interval −1 ≤ t ≤ +1, that is, 0 ≤ ϑ ≤ π (Fig. 1.4).
Therefore, the harmonics with m = 0 change their sign n times in this inter-
val; furthermore, they do not depend on λ. Their geometrical representation
is therefore similar to Fig. 1.5 a. Since they divide the sphere into zones, they
are also called zonal harmonics.

The associated Legendre functions change their sign n − m times in the
interval 0 ≤ ϑ ≤ π. The functions cos mλ and sin mλ have 2m zeros in the
interval 0 ≤ λ < 2π, so that the geometrical representation of the harmonics
for m �= 0 is similar to that of Fig. 1.5 b. They divide the sphere into com-
partments in which they are alternately positive and negative, somewhat like
a chess board, and are called tesseral harmonics. “Tessera” means a square
or rectangle, or also a tile. In particular, for n = m, they degenerate into
functions that divide the sphere into positive and negative sectors, in which
case they are called sectorial harmonics, see Fig. 1.5 c.

(a)

(b) (c)

P6(cos )#

P12,6(cos )cos 6# ¸ P6,6(cos )cos 6# ¸

Fig. 1.5. The kinds of spherical harmonics: (a) zonal, (b) tesseral, (c) sectorial
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1.8 Legendre’s functions of the second kind

The Legendre function Pnm(t) is not the only solution of Legendre’s differ-
ential equation (1–56). There is a completely different function which also
satisfies this equation. It is called Legendre’s function of the second kind, of
degree n and order m, and denoted by Qnm(t).

Although the Qnm(t) are functions of a completely different nature, they
satisfy relationships very similar to those satisfied by the Pnm(t).

The “zonal” functions

Qn(t) ≡ Qn0(t) (1–73)

are defined by

Qn(t) =
1
2

Pn(t) ln
1 + t

1 − t
−

n∑
k=1

1
k

Pk−1(t)Pn−k(t) , (1–74)

and the others by

Qnm(t) = (1 − t2)m/2 dmQn(t)
dtm

. (1–75)

Equation (1–75) is completely analogous to (1–65); furthermore, the func-
tions Qn(t) satisfy the same recursion formula (1–62) as the functions Pn(t).

If we evaluate the first few Qn, from (1–74) we find

Q0(t) =
1
2

ln
1 + t

1 − t
= tanh−1t ,

Q1(t) =
t

2
ln

1 + t

1 − t
− 1 = t tanh−1t − 1 ,

Q2(t) =
(

3
4

t2 − 1
4

)
ln

1 + t

1 − t
− 3

2
t =

(
3
2

t2 − 1
2

)
tanh−1t − 3

2
t .

(1–76)

These formulas and Fig. 1.6 show that the functions Qnm are really
quite different from the functions Pnm. From the singularity ±∞ at t = ±1
(i.e., ϑ = 0 or π), we see that it is impossible to substitute Qnm(cos ϑ) for
Pnm(cos ϑ) if ϑ means the polar distance, because harmonic functions must
be regular.

However, we will encounter them in the theory of ellipsoidal harmon-
ics (Sect. 1.16), which is applied to the normal gravity field of the earth
(Sect. 2.7). For this purpose we need Legendre’s functions of the second
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–1.0
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Q3

Q5

Q0

Q2

Q4

Fig. 1.6. Legendre’s functions of the second kind: n even (top) and n odd (bottom)

kind as functions of a complex argument. If the argument z is complex, we
must replace the definition (1–74) by

Qn(z) =
1
2

Pn(z) ln
z + 1
z − 1

−
n∑

k=1

1
k

Pk−1(z) Pn−k(z) , (1–77)

where Legendre’s polynomials Pn(z) are defined by the same formulas as in
the case of a real argument t. Therefore, the only change as compared to
(1–74) is the replacement of

1
2

ln
1 + t

1 − t
= tanh−1t (1–78)

by
1
2

ln
z + 1
z − 1

= coth−1z . (1–79)
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In particular, we have

Q0(z) =
1
2

ln
z + 1
z − 1

= coth−1z ,

Q1(z) =
z

2
ln

z + 1
z − 1

− 1 = z coth−1z − 1 ,

Q2(z) =
(

3
4

z2 − 1
4

)
ln

z + 1
z − 1

− 3
2

z =
(

3
2

z2 − 1
2

)
coth−1z − 3

2
z .

(1–80)

1.9 Expansion theorem and orthogonality relations

In (1–52) and (1–53), we have expanded harmonic functions in space into
series of solid spherical harmonics. In a similar way an arbitrary (at least in
a very general sense) function f(ϑ, λ) on the surface of the sphere can be
expanded into a series of surface spherical harmonics:

f(ϑ, λ) =
∞∑

n=0

Yn(ϑ, λ) =
∞∑

n=0

n∑
m=0

[anmRnm(ϑ, λ) + bnmSnm(ϑ, λ)] , (1–81)

where we have introduced the abbreviations

Rnm(ϑ, λ) = Pnm(cos ϑ) cos mλ ,

Snm(ϑ, λ) = Pnm(cos ϑ) sin mλ .
(1–82)

The symbols anm and bnm are constant coefficients, which we will now
determine. Essential for this purpose are the orthogonality relations. These
remarkable relations mean that the integral over the unit sphere of the prod-
uct of any two different functions Rnm or Snm is zero:∫

σ

∫ Rnm(ϑ, λ) Rsr(ϑ, λ) dσ = 0∫
σ

∫ Snm(ϑ, λ) Ssr(ϑ, λ) dσ = 0

⎫⎪⎬⎪⎭ if s �= n or r �= m or both ;

∫
σ

∫ Rnm(ϑ, λ) Ssr(ϑ, λ) dσ = 0 in any case .

(1–83)

For the product of two equal functions Rnm or Snm, we have∫
σ

∫
[Rn0(ϑ, λ)]2 dσ =

4π
2n + 1

;

∫
σ

∫
[Rnm(ϑ, λ)]2 dσ =

∫
σ

∫
[Snm(ϑ, λ)]2 dσ =

2π
2n + 1

(n + m)!
(n − m)!

(m �= 0) .

(1–84)
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Note that there is no Sn0, since sin 0λ = 0. In these formulas we have used
the abbreviation ∫

σ

∫
=
∫ 2π

λ=0

∫ π

ϑ=0
(1–85)

for the integral over the unit sphere. The expression

dσ = sin ϑ dϑ dλ (1–86)

denotes the surface element of the unit sphere.
Now we turn to the determination of the coefficients anm and bnm in

(1–81). Multiplying both sides of the equation by a certain Rsr(ϑ, λ) and
integrating over the unit sphere gives∫

σ

∫
f(ϑ, λ) Rsr(ϑ, λ) dσ = asr

∫
σ

∫
[Rsr(ϑ, λ)]2 dσ , (1–87)

since in the double integral on the right-hand side all terms except the one
with n = s, m = r will vanish according to the orthogonality relations (1–
83). The integral on the right-hand side has the value given in (1–84), so
that asr is determined. In a similar way we find bsr by multiplying (1–81)
by Ssr(ϑ, λ) and integrating over the unit sphere. The result is

an0 =
2n + 1

4π

∫
σ

∫
f(ϑ, λ) Pn(cos ϑ) dσ ;

anm =
2n + 1

2π
(n − m)!
(n + m)!

∫
σ

∫
f(ϑ, λ) Rnm(ϑ, λ) dσ

bnm =
2n + 1

2π
(n − m)!
(n + m)!

∫
σ

∫
f(ϑ, λ) Snm(ϑ, λ) dσ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(m �= 0) .

(1–88)

The coefficients anm and bnm can, thus, be determined by integration.
We note that the Laplace spherical harmonics Yn(ϑ, λ) in (1–81) may

also be found directly by the formula

Yn(ϑ, λ) =
2n + 1

4π

∫ 2π

λ′=0

∫ π

ϑ′=0
f(ϑ′, λ′)Pn(cos ψ) sin ϑ′ dϑ′ dλ′ , (1–89)

where ψ is the spherical distance between the points P , represented by ϑ, λ,
and P ′, represented by ϑ′, λ′ (Fig. 1.7), so that

cos ψ = cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(λ′ − λ) . (1–90)

Later, when being acquainted with Sect. 1.11, Eq. (1–89) may be verified by
straightforward computation, substituting Pn(cos ψ) from the decomposition
formula (1–105).
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Fig. 1.7. Spherical distance ψ

1.10 Fully normalized spherical harmonics

The formulas of the preceding section for the expansion of a function into a
series of surface spherical harmonics are somewhat inconvenient to handle.
If we look at equations (1–84) and (1–88), we see that there are different
formulas for m = 0 and m �= 0; furthermore, the expressions are rather
complicated and difficult to remember.

Therefore, it has been proposed that the “conventional” harmonics Rnm

and Snm, defined by (1–82) together with (1–57), be replaced by other func-
tions which differ by a constant factor and are easier to handle. We consider
here only the fully normalized harmonics, which seem to be the most conve-
nient and the most widely used.

The “fully normalized” harmonics are simply “normalized” in the sense
of the theory of real functions; we have to use this clumsy expression because
the term “normalized spherical harmonics” has already been used for other
functions, unfortunately often for some that are not “normalized” at all in
the mathematical sense.

We denote the fully normalized harmonics by R̄nm and S̄nm; they are
defined by

R̄n0(ϑ, λ) =
√

2n + 1 Rn0(ϑ, λ) ≡ √
2n + 1 Pn(cos ϑ) ;

R̄nm(ϑ, λ) =

√
2(2n + 1)

(n − m)!
(n + m)!

Rnm(ϑ, λ)

S̄nm(ϑ, λ) =

√
2(2n + 1)

(n − m)!
(n + m)!

Snm(ϑ, λ)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(m �= 0) .

(1–91)

The orthogonality relations (1–83) also apply for these fully normalized har-
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monics, whereas Eqs. (1–84) are thoroughly simplified: they become

1
4π

∫
σ

∫
R̄2

nm dσ =
1
4π

∫
σ

∫
S̄ 2

nm dσ = 1 . (1–92)

This means that the average square of any fully normalized harmonic is
unity, the average being taken over the sphere (the average corresponds to
the integral divided by the area 4π). This formula now applies for any m,
whether it is zero or not.

If we expand an arbitrary function f(ϑ, λ) into a series of fully normalized
harmonics, analogously to (1–81),

f(ϑ, λ) =
∞∑

n=0

n∑
m=0

[ānmR̄nm(ϑ, λ) + b̄nmS̄nm(ϑ, λ)] , (1–93)

then the coefficients ānm, b̄nm are simply given by

ānm =
1
4π

∫
σ

∫
f(ϑ, λ) R̄nm(ϑ, λ) dσ ,

b̄nm =
1
4π

∫
σ

∫
f(ϑ, λ) S̄nm(ϑ, λ) dσ ;

(1–94)

that is, the coefficients are the average products of the function and the
corresponding harmonic R̄nm or S̄nm.

The simplicity of formulas (1–92) and (1–94) constitutes the main ad-
vantage of the fully normalized spherical harmonics and makes them useful
in many respects, even though the functions R̄nm and S̄nm in (1–91) are a
little more complicated than the conventional Rnm and Snm. We have

R̄nm(ϑ, λ) = P̄nm(cos ϑ) cos mλ ,

S̄nm(ϑ, λ) = P̄nm(cos ϑ) sin mλ ,
(1–95)

where

P̄n0(t) =
√

2n + 12−n
r∑

k=0

(−1)k
(2n − 2k)!

k! (n − k)! (n − 2k)!
tn−2k (1–96)

for m = 0, and

P̄nm(t) =

√
2(2n + 1)

(n − m)!
(n + m)!

2−n (1 − t2)m/2 ·

r∑
k=0

(−1)k
(2n − 2k)!

k! (n − k)! (n − m − 2k)!
tn−m−2k

(1–97)
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for m �= 0. This corresponds to (1–67); here, as in (1–67), r is the greatest
integer ≤ (n − m)/2.

There are relations between the coefficients ānm and b̄nm for fully normal-
ized harmonics and the coefficients anm and bnm for conventional harmonics
that are inverse to those in (1–91):

ān0 =
an0√
2n + 1

;

ānm =

√
1

2(2n + 1)
(n + m)!
(n − m)!

anm

b̄nm =

√
1

2(2n + 1)
(n + m)!
(n − m)!

bnm

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(m �= 0) .

(1–98)

1.11 Expansion of the reciprocal distance into zonal

harmonics and decomposition formula

The distance l between two points with spherical coordinates

P (r, ϑ, λ), P ′(r′, ϑ′, λ′) (1–99)

is given by
l2 = r2 + r′2 − 2r r′ cos ψ , (1–100)

where ψ is the angle between the radius vectors r and r′ (Fig. 1.8), so that,
from (1–90),

cos ψ = cos ϑ cos ϑ′ + sin ϑ sin ϑ′ cos(λ′ − λ) (1–101)

P

P'

Ã
r'

r

O

l

Fig. 1.8. The spatial distance l
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results. Assuming r′ < r, we may write

1
l

=
1√

r2 − 2r r′ cos ψ + r′2
=

1
r
√

1 − 2α u + α2
, (1–102)

where we have put α = r′/r and u = cos ψ. If r′ < r, this can be expanded
into a power series with respect to α. It is remarkable that the coefficients
of αn are the (conventional) zonal harmonics, or Legendre’s polynomials
Pn(u) = Pn(cos ψ):

1√
1 − 2α u + α2

=
∞∑

n=0

αn Pn(u) = P0(u)+αP1(u)+α2P2(u)+ · · · . (1–103)

Hence, we obtain
1
l

=
∞∑

n=0

r′n

rn+1
Pn(cos ψ) , (1–104)

which is an important formula.
It would still be desirable in this equation to express Pn(cos ψ) in terms of

functions of the spherical coordinates ϑ, λ and ϑ′, λ′ of which ψ is composed
according to (1–90). This is achieved by the decomposition formula

Pn(cos ψ) = Pn(cos ϑ)Pn(cos ϑ′) +

2
n∑

m=1

(n − m)!
(n + m)!

[Rnm(ϑ, λ)Rnm(ϑ′, λ′) + Snm(ϑ, λ)Snm(ϑ′, λ′)] .

(1–105)
Substituting this into (1–104), we obtain

1
l

=
∞∑

n=0

{
Pn(cos ϑ)

rn+1
r′n Pn(cos ϑ′) + 2

n∑
m=1

(n − m)!
(n + m)!

·

[Rnm(ϑ, λ)
rn+1

r′n Rnm(ϑ′, λ′) +
Snm(ϑ, λ)

rn+1
r′n Snm(ϑ′, λ′)

]}
.

(1–106)

The use of fully normalized harmonics simplifies these formulas. Replacing
the conventional harmonics in (1–105) and (1–106) by fully normalized har-
monics by means of (1–91), we find

Pn(cos ψ) =
1

2n + 1

n∑
m=0

[R̄nm(ϑ, λ)R̄nm(ϑ′, λ′) + S̄nm(ϑ, λ)S̄nm(ϑ′, λ′)
]
;

(1–107)
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1
l

=
∞∑

n=0

n∑
m=0

1
2n + 1

·

[R̄nm(ϑ, λ)
rn+1

r′n R̄nm(ϑ′, λ′) +
S̄nm(ϑ, λ)

rn+1
r′n S̄nm(ϑ′, λ′)

]
.

(1–108)

The last formula will be fundamental for the expansion of the earth’s gravi-
tational field in spherical harmonics.

1.12 Solution of Dirichlet’s problem by means of
spherical harmonics and Poisson’s integral

We define Dirichlet’s problem, or the first boundary-value problem of potential
theory, as follows: Given is an arbitrary function on a surface S, to determine
is a function V which is harmonic either inside or outside S and which
assumes on S the values of the prescribed function.

If the surface S is a sphere, then Dirichlet’s problem can be solved by
means of spherical harmonics. Let us take first the unit sphere, r = 1, and
expand the prescribed function, given on the unit sphere and denoted by
V (1, ϑ, λ), into a series of surface spherical harmonics (1–81):

V (1, ϑ, λ) =
∞∑

n=0

Yn(ϑ, λ) , (1–109)

the Yn(ϑ, λ) being determined by (1–89). (This series converges for very
general functions V .) The functions

Vi(r, ϑ, λ) =
∞∑

n=0

rn Yn(ϑ, λ) (1–110)

and

Ve(r, ϑ, λ) =
∞∑

n=0

Yn(ϑ, λ)
rn+1

(1–111)

assume the given values V (1, ϑ, λ) on the surface r = 1. The series (1–109)
converges, and we have for r < 1

rn Yn < Yn (1–112)

and for r > 1
Yn

rn+1
< Yn . (1–113)
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Hence, the series (1–110) converges for r ≤ 1, and the series (1–111) con-
verges for r ≥ 1; furthermore, both series have been found to represent
harmonic functions. Therefore, we see that Dirichlet’s problem is solved by
Vi(r, ϑ, λ) for the interior of the sphere r = 1, and by Ve(r, ϑ, λ) for its exte-
rior.

For a sphere of arbitrary radius r = R, the solution is similar. We expand
the given function

V (R,ϑ, λ) =
∞∑

n=0

Yn(ϑ, λ) . (1–114)

The surface spherical harmonics Yn are determined by

Yn(ϑ, λ) =
2n + 1

4π

∫ 2π

λ′=0

∫ π

ϑ′=0
V (R,ϑ′, λ′)Pn(cos ψ) sin ϑ′ dϑ′ dλ′ . (1–115)

Then the series

Vi(r, ϑ, λ) =
∞∑

n=0

( r

R

)n
Yn(ϑ, λ) (1–116)

solves the first boundary-value problem for the interior, and the series

Ve(r, ϑ, λ) =
∞∑

n=0

(
R

r

)n+1

Yn(ϑ, λ) (1–117)

solves it for the exterior of the sphere r = R.
Thus, we see that Dirichlet’s problem can always be solved for the sphere.

It is evident that this is closely related to the possibility of expanding an
arbitrary function on the sphere into a series of surface spherical harmonics
and a harmonic function in space into a series of solid spherical harmonics.

Dirichlet’s boundary-value problem can be solved not only for the sphere
but also for any sufficiently smooth boundary surface. An example is given
in Sect. 1.16.

The solvability of Dirichlet’s problem is also essential to Molodensky’s
problem (Sect. 8.3). See also Kellogg (1929: Chap. XI).

Poisson’s integral
A more direct solution is obtained as follows. We consider only the exterior
problem, which is of greater interest in geodesy. Substituting Yn(ϑ, λ) from
(1–89) into (1–117), we obtain

Ve(r, ϑ, λ) =

∞∑
n=0

(
R

r

)n+1 2n + 1
4π

∫ 2π

λ′=0

∫ π

ϑ′=0
V (R,ϑ′, λ′)Pn(cos ψ) sin ϑ′ dϑ′ dλ′ .

(1–118)
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We can rearrange this as

Ve(r, ϑ, λ) =
1
4π

∫ 2π

λ′=0

∫ π

ϑ′=0
V (R,ϑ′, λ′) ·

[ ∞∑
n=0

(2n + 1)
(

R

r

)n+1

Pn(cos ψ)

]
sin ϑ′ dϑ′ dλ′ .

(1–119)

The sum in the brackets can be evaluated. We denote the spatial distance
between the points P (r, ϑ, λ) and P ′(R,ϑ′, λ′) by l. Then, using (1–104),

1
l

=
1√

r2 + R2 − 2R r cos ψ
=

1
R

∞∑
n=0

(
R

r

)n+1

Pn(cos ψ) (1–120)

results. Differentiating with respect to r, we get

−r − R cos ψ

l3
= − 1

R

∞∑
n=0

(n + 1)
Rn+1

rn+2
Pn(cos ψ) . (1–121)

Multiplying this equation by −2R r, multiplying the expression for 1/l by
−R, and then adding the two equations yields

R(r2 − R2)
l3

=
∞∑

n=0

(2n + 1)
(

R

r

)n+1

Pn(cos ψ) . (1–122)

The right-hand side is the bracketed expression in (1–119). Substituting the
left-hand side, we finally obtain

Ve(r, ϑ, λ) =
R(r2 − R2)

4π

∫ 2π

λ′=0

∫ π

ϑ′=0

V (R,ϑ′, λ′)
l3

sin ϑ′ dϑ′ dλ′ , (1–123)

where
l =

√
r2 + R2 − 2R r cos ψ . (1–124)

This is Poisson’s integral. It is an explicit solution of Dirichlet’s problem for
the exterior of the sphere, which has many applications in physical geodesy.

1.13 Other boundary-value problems

There are other similar boundary-value problems. In Neumann’s problem, or
the second boundary-value problem of potential theory, the normal derivative
∂V/∂n is given on the surface S, instead of the function V itself. The normal
derivative is the derivative along the outward-directed surface normal n to
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S. In the third boundary-value problem, a linear combination of V and of its
normal derivative

hV + k
∂V

∂n
(1–125)

is given on S.
For the sphere, the solution of these boundary-value problems is also

easily expressed in terms of spherical harmonics. We consider the exterior
problems only, because these are of special interest to geodesy.

In Neumann’s problem, we expand the given values of ∂V/∂n on the
sphere r = R into a series of surface spherical harmonics:(

∂V

∂n

)
r=R

=
∞∑

n=0

Yn(ϑ, λ) . (1–126)

The harmonic function which solves Neumann’s problem for the exterior of
the sphere is then

Ve(r, ϑ, λ) = −R

∞∑
n=0

(
R

r

)n+1 Yn(ϑ, λ)
n + 1

. (1–127)

To verify it, we differentiate with respect to r, getting

∂Ve

∂r
=

∞∑
n=0

(
R

r

)n+2

Yn(ϑ, λ) . (1–128)

Since for the sphere the normal coincides with the radius vector, we have(
∂V

∂n

)
r=R

=
(

∂V

∂r

)
r=R

, (1–129)

and we see that (1–126) is satisfied.
The third boundary-value problem is particularly relevant to physical

geodesy, because the determination of the undulations of the geoid from
gravity anomalies is just such a problem. To solve the general case, we again
expand the function defined by the given boundary values into surface spher-
ical harmonics:

hV + k
∂V

∂n
=

∞∑
n=0

Yn(ϑ, λ) . (1–130)

The harmonic function

Ve(r, ϑ, λ) =
∞∑

n=0

(
R

r

)n+1 Yn(ϑ, λ)
h − (k/R)(n + 1)

(1–131)
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solves the third boundary-value problem for the exterior of the sphere r = R.
The straightforward verification is analogous to the case of (1–127).

In the determination of the geoidal undulations, the constants h, k have
the values

h = − 2
R

, k = −1 , (1–132)

so that

Ve(r, ϑ, λ) = R
∞∑

n=0

(
R

r

)n+1 Yn(ϑ, λ)
n − 1

(1–133)

solves the boundary-value problem of physical geodesy.
As we have seen in the preceding section, the first boundary-value prob-

lem can also be solved directly by Poisson’s integral. Similar integral formulas
also exist for the second and the third problem. The integral formula that
corresponds to (1–133) for the boundary-value problem of physical geodesy
is Stokes’ integral, which will be considered in detail in Chap. 2.

Remark on inverse problems
Boundary-value problems give the potential outside the earth, where there
are no masses and where the potential, satisfying Laplace’s equation, is har-
monic. The determination of the potential inside the earth is of a quite
different character since the earth is filled by masses, and the interior po-
tential satisfies Poisson’s rather than Laplace’s equation, as we have seen in
Sect. 1.2. Unfortunately, the density � inside the earth is generally unknown.

To see the difficulties of the problem, let us consider Newton’s integral
(1–12). If the interior masses were known, we could easily use this formula
to compute the potential inside (and outside) the earth, in a direct and
straightforward way. The determination of the potential from the masses is
a “direct” problem. The “inverse” problem is to determine the masses from
the potential, finding a solution of Newton’s integral for the density �, which
is essentially more difficult.

In fact, it is impossible to determine uniquely the generating masses
from the external potential. This inverse problem of potential theory has no
unique solution. Such inverse problems occur in geophysical prospecting by
gravity measurements: underground masses are inferred from disturbances
of the gravity field. To determine the problem more completely, additional
information is necessary, which is furnished, for example, by geology or by
seismic measurements.

Generally, nowadays we know that many problems in geophysics and
other sciences including medicine (e.g., seismic and medical tomography) are
inverse problems. We cannot pursue this interesting problem here and refer
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only to the extensive literature, e.g., the book by Moritz (1995), the inter-
net page www.inas.tugraz.at/forschung/InverseProblems/AngerMoritz.html
or Anger and Moritz (2003).

1.14 The radial derivative of a harmonic function

For later application to problems related with the vertical gradient of gravity,
we will now derive an integral formula for the derivative along the radius
vector r of an arbitrary harmonic function which we denote by V . Such a
harmonic function satisfies Poisson’s integral (1–123):

V (r, ϑ, λ) =
R(r2 − R2)

4π

∫ 2π

λ′=0

∫ π

ϑ′=0

V (R,ϑ′, λ′)
l3

sin ϑ′ dϑ′ dλ′ . (1–134)

Forming the radial derivative ∂V/∂r, we note that V (R,ϑ′, λ′) does not
depend on r. Thus, we need only to differentiate (r2 − R2)/l3, obtaining

∂V (r, ϑ, λ)
∂r

=
R

4π

∫ 2π

λ′=0

∫ π

ϑ′=0
M(r, ψ)V (R,ϑ′, λ′) sin ϑ′ dϑ′ dλ′ , (1–135)

where

M(r, ψ) ≡ ∂

∂r

(
r2 − R2

l3

)
=

1
l5

(5R2r−r3−R r2 cos ψ−3R3 cos ψ) . (1–136)

Applying (1–135) to the special harmonic function V1(r, ϑ, λ) = R/r, where

∂V1

∂r
= −R

r2
and V1(R,ϑ′, λ′) =

R

R
= 1 , (1–137)

we obtain

−R

r2
=

R

4π

∫ 2π

λ′=0

∫ π

ϑ′=0
M(r, ψ) sinϑ′ dϑ′ dλ′ . (1–138)

Multiplying both sides of this equation by V (r, ϑ, λ) and subtracting it from
(1–135) gives

∂V

∂r
+

R

r2
VP =

R

4π

∫ 2π

λ′=0

∫ π

ϑ′=0
M(r, ψ) (V − VP ) sinϑ′ dϑ′ dλ′ , (1–139)

where
VP = V (r, ϑ, λ) , V = V (R,ϑ′, λ′) . (1–140)

In order to find the radial derivative at the surface of the sphere of radius
R, we must set r = R. Then l becomes (Fig. 1.9)
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Fig. 1.9. Spatial distance between two points on a sphere

l0 = 2R sin
ψ

2
, (1–141)

and the function M takes the simple form

M(R,ψ) =
1

4R2 sin3 ψ
2

=
2R
l30

. (1–142)

For ψ → 0 we have M(R,ψ) → ∞, and we cannot use the original formula
(1–135) at the surface of the sphere r = R. In the transformed equation
(1–139), however, we have V − VP → 0 for ψ → 0, and the singularity of
M for ψ → 0 will be neutralized (provided V is differentiable twice at P ).
Thus, we obtain the gradient formula

∂V

∂r
= − 1

R
VP +

R2

2π

∫ 2π

λ′=0

∫ π

ϑ′=0

V − VP

l30
sinϑ′ dϑ′ dλ′ . (1–143)

This equation expresses ∂V/∂r on the sphere r = R in terms of V on this
sphere; thus, we now have

VP = V (R,ϑ, λ) , V = V (R,ϑ′, λ′) . (1–144)

Solution in terms of spherical harmonics
We may express VP as

VP =
∞∑

n=0

(
R

r

)n+1

Yn(ϑ, λ) . (1–145)

Differentiation yields

∂V

∂r
= −

∞∑
n=0

(n + 1)
Rn+1

rn+2
Yn(ϑ, λ) . (1–146)
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For r = R, this becomes

∂V

∂r
= − 1

R

∞∑
n=0

(n + 1)Yn(ϑ, λ) . (1–147)

This is the equivalent of (1–143) in terms of spherical harmonics. From this
equation, we get an interesting by-product. Writing (1–147) as

∂V

∂r
= − 1

R
VP − 1

R

∞∑
n=0

n Yn(ϑ, λ) (1–148)

and comparing this with (1–143), we see that

R2

2π

∫ 2π

λ′=0

∫ π

ϑ′=0

V − VP

l30
sin ϑ′ dϑ′ dλ′ = − 1

R

∞∑
n=0

n Yn(ϑ, λ) . (1–149)

This equation is formulated entirely in terms of quantities referred to the
spherical surface only. Furthermore, for any function prescribed on the sur-
face of a sphere, one can find a function in space that is harmonic outside
the sphere and assumes the values of the function prescribed on it. This is
done by solving Dirichlet’s exterior problem. From these facts, we conclude
that (1–149) holds for any (reasonably) arbitrary function V defined on the
surface of a sphere. These developments will be used in Sect. 2.20.

1.15 Laplace’s equation in ellipsoidal-harmonic

coordinates

Spherical harmonics are most frequently used in geodesy because they are
relatively simple and the earth is nearly spherical. Since the earth is more
nearly an ellipsoid of revolution, it might be expected that ellipsoidal har-
monics, which are defined in a way similar to that of the spherical harmonics,
would be even more suitable. The whole matter is a question of mathematical
convenience, since both spherical and ellipsoidal harmonics may be used for
any attracting body, regardless of its form. As ellipsoidal harmonics are more
complicated, however, they are used only in certain special cases which nev-
ertheless are important, namely, in problems involving rigorous computation
of normal gravity.

We introduce ellipsoidal-harmonic coordinates u, ϑ, λ (Fig. 1.10). In a
rectangular system, a point P has the coordinates x, y, z. Now we pass
through P the surface of an ellipsoid of revolution whose center is the origin
O, whose rotation axis coincides with the z-axis, and whose linear eccentric-
ity has the constant value E. The coordinate u is the semiminor axis of this
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Fig. 1.10. Ellipsoidal-harmonic coordinates: view from the front (top)
and view from above (bottom)

ellipsoid, ϑ is the complement of the “reduced latitude” β of P with respect
to this ellipsoid (the definition is seen in Fig. 1.10), i.e., ϑ = 90◦ − β, and λ
is the geocentric longitude in the usual sense.

It should be carefully noted that in spherical harmonics ϑ is the polar
distance, which is nothing but the complement of the geocentric latitude,
whereas in ellipsoidal-harmonic coordinates ϑ is the complement of the re-
duced latitude denoted by β.

The ellipsoidal-harmonic coordinates u, ϑ, λ are related to x, y, z by

x =
√

u2 + E2 sin ϑ cos λ ,

y =
√

u2 + E2 sin ϑ sinλ ,

z = u cos ϑ ,

(1–150)
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which can be read from Fig. 1.10, considering that
√

u2 + E2 is the semi-
major axis of the ellipsoid whose surface passes through P . Because of
ϑ = 90◦ − β, we may equivalently write

x =
√

u2 + E2 cos β cos λ ,

y =
√

u2 + E2 cos β sin λ ,

z = u sin β .

(1–151)

Taking u = constant, we find

x2 + y2

u2 + E2
+

z2

u2
= 1 , (1–152)

which represents an ellipsoid of revolution. For ϑ = constant, we obtain

x2 + y2

E2 sin2ϑ
− z2

E2 cos2ϑ
= 1 , (1–153)

which represents a hyperboloid of one sheet, and for λ = constant, we get
the meridian plane

y = x tan λ . (1–154)

The constant focal length E, i.e., the distance between the coordinate origin
O and one of the focal points F1 or F2, which is the same for all ellipsoids
u = constant, characterizes the coordinate system. For E = 0 we have the
usual spherical coordinates u = r and ϑ, λ as a limiting case.

To find ds, the element of arc, in ellipsoidal-harmonic coordinates, we
proceed in the same way as in spherical coordinates, Eq. (1–30), and obtain

ds2 =
u2 + E2 cos2ϑ

u2 + E2
du2+(u2+E2 cos2ϑ) dϑ2+(u2+E2) sin2ϑ dλ2 . (1–155)

The coordinate system u, ϑ, λ is again orthogonal: the products du dϑ, etc.,
are missing in the equation above. Setting u = q1, ϑ = q2, λ = q3, we have
in (1–31)

h2
1 =

u2 + E2 cos2ϑ
u2 + E2

, h2
2 = u2 + E2 cos2ϑ , h2

3 = (u2 + E2) sin2ϑ .

(1–156)
If we substitute these relations into (1–32), we obtain

∆V =
1

(u2 + E2 cos2ϑ) sin ϑ

{
∂

∂u

[
(u2 + E2) sin ϑ

∂V

∂u

]
+

∂

∂ϑ

(
sin ϑ

∂V

∂ϑ

)
+

∂

∂λ

[
u2 + E2 cos2ϑ

(u2 + E2) sin ϑ

∂V

∂λ

]}
.

(1–157)
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Performing the differentiations and cancelling sinϑ, we get

∆V ≡ 1
u2 + E2 cos2ϑ

[
(u2 + E2)

∂2V

∂u2
+ 2u

∂V

∂u
+

∂2V

∂ϑ2
+

cot ϑ
∂V

∂ϑ
+

u2 + E2 cos2ϑ
(u2 + E2) sin2ϑ

∂2V

∂λ2

]
= 0 ,

(1–158)

which is Laplace’s equation in ellipsoidal-harmonic coordinates. An alterna-
tive expression is obtained by omitting the factor (u2 + E2 cos2ϑ)−1:

(u2 + E2)
∂2V

∂u2
+ 2u

∂V

∂u
+

∂2V

∂ϑ2
+ cot ϑ

∂V

∂ϑ
+

u2 + E2 cos2ϑ

(u2 + E2) sin2ϑ

∂2V

∂λ2
= 0 .

(1–159)
In the limiting case, E → 0, these equations reduce to the spherical expres-
sions (1–35) and (1–36).

1.16 Ellipsoidal harmonics

To solve (1–158) or (1–159), we proceed in a way which is analogous to
the method used to solve the corresponding equation (1–36) in spherical
coordinates. What we did there may be summarized as follows. By the trial
substitution

V (r, ϑ, λ) = f(r) g(ϑ)h(λ) , (1–160)

we separated the variables r, ϑ, λ, so that the original partial differential
equation (1–36) was decomposed into three ordinary differential equations
(1–39), (1–46), and (1–47).

In order to solve Laplace’s equation in ellipsoidal coordinates (1–159),
we correspondingly make the ansatz (trial substitution)

V (u, ϑ, λ) = f(u) g(ϑ)h(λ) . (1–161)

Substituting and dividing by f g h, we get

1
f

[(u2 +E2) f ′′+2u f ′]+
1
g
(g′′+g′ cot ϑ)+

u2 + E2 cos2ϑ

(u2 + E2) sin2ϑ

h′′

h
= 0 . (1–162)

The variable λ occurs only through the quotient h′′/h, which consequently
must be constant. One sees this more clearly by writing the equation in the
form

−(u2 + E2) sin2ϑ

u2 + E2 cos2ϑ

{
1
f

[(u2 + E2) f ′′ + 2u f ′] +
1
g
(g′′ + g′ cot ϑ)

}
=

h′′

h
.

(1–163)
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The left-hand side depends only on u and ϑ, the right-hand side only on λ.
The two sides cannot be identically equal unless both are equal to the same
constant. Therefore,

h′′

h
= −m2 . (1–164)

The factor by which h′′/h is to be multiplied, i.e., the inverse of the main
factor on the left-hand side of (1–163), can be decomposed as follows:

u2 + E2 cos2ϑ

(u2 + E2) sin2ϑ
=

1
sin2ϑ

− E2

u2 + E2
. (1–165)

Substituting (1–164) and (1–165) into (1–163) and combining functions of
the same variable, we obtain

1
f

[(u2 +E2) f ′′ +2u f ′]+
E2

u2 + E2
m2 = −1

g
(g′′ + g′ cot ϑ)+

m2

sin2ϑ
. (1–166)

The two sides are functions of different independent variables and must there-
fore be constant. Denoting this constant by n(n + 1), we finally get

(u2 + E2) f ′′(u) + 2u f ′(u) −
[
n(n + 1) − E2

u2 + E2
m2

]
f(u) = 0 ; (1–167)

sin ϑ g′′(ϑ) + cos ϑ g′(ϑ) +
[
n(n + 1) sin ϑ − m2

sin ϑ

]
g(ϑ) = 0 ; (1–168)

h′′(λ) + m2h(λ) = 0 . (1–169)

These are the three ordinary differential equations into which the partial
differential equation (1–159) is decomposed by the separation of variables
(1–161).

The second and third equations are the same as in the spherical case,
Eqs. (1–46) and (1–47); the first equation is different. The substitutions

τ = i
u

E
(where i =

√−1) and t = cos ϑ (1–170)

transform the first and second equations into

(1 − τ2) f̄ ′′(τ) − 2τ f̄ ′(τ) +
[
n(n + 1) − m2

1 − τ2

]
f̄(τ) = 0 ,

(1 − t2) ḡ′′(t) − 2t ḡ′(t) +
[
n(n + 1) − m2

1 − t2

]
ḡ(t) = 0 ,

(1–171)

where the overbar indicates that the functions f and g are expressed in terms
of the new arguments τ and t. From spherical harmonics we are already
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familiar with the substitution t = cos ϑ and the corresponding equation for
ḡ(t).

Note that f̄(τ) satisfies formally the same differential equation as ḡ(t),
namely, Legendre’s equation (1–56). As we have seen, this differential equa-
tion has two solutions: Legendre’s function Pnm and Legendre’s function of
the second kind Qnm. For ḡ(t), where t = cos ϑ, the Qnm(t) are ruled out for
obvious reasons, as we have seen in Sect. 1.8. For f̄(τ), however, both sets of
functions Pnm(τ) and Qnm(τ) are possible solutions; they correspond to the
two different solutions f = rn and f = r−(n+1) in the spherical case. Finally,
(1–169) has as before the solutions cos mλ and sinmλ.

We summarize all individual solutions:

f(u) = Pnm

(
i

u

E

)
or Qnm

(
i

u

E

)
;

g(ϑ) = Pnm(cos ϑ) ;

h(λ) = cos mλ or sin mλ .

(1–172)

Here n and m < n are integers 0, 1, 2, . . ., as before. Hence, the functions

V (u, ϑ, λ) = Pnm

(
i

u

E

)
Pnm(cos ϑ)

{
cos mλ
sin mλ

}
,

V (u, ϑ, λ) = Qnm

(
i

u

E

)
Pnm(cos ϑ)

{
cos mλ
sin mλ

} (1–173)

are solutions of Laplace’s equation ∆V = 0, that is, harmonic functions.
From these functions we may form by linear combination the series

Vi(u, ϑ, λ) =
∞∑

n=0

n∑
m=0

Pnm

(
i

u

E

)
Pnm

(
i

b

E

) ·

[anmPnm(cos ϑ) cos mλ + bnmPnm(cos ϑ) sin mλ] ;

Ve(u, ϑ, λ) =
∞∑

n=0

n∑
m=0

Qnm

(
i

u

E

)
Qnm

(
i

b

E

) ·

[anmPnm(cos ϑ) cos mλ + bnmPnm(cos ϑ) sin mλ] .

(1–174)

Here b is the semiminor axis of an arbitrary but fixed ellipsoid which may
be called the reference ellipsoid (Fig. 1.11). The division by Pnm(ib/E) or
Qnm(ib/E) is possible because they are constants; its purpose is to simplify
the expressions and to make the coefficients anm and bnm real.
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Fig. 1.11. Reference ellipsoid and ellipsoidal-harmonic coordinates

If the eccentricity E reduces to zero, the ellipsoidal-harmonic coordinates
u, ϑ, λ become spherical coordinates r, ϑ, λ; the ellipsoid u = b becomes the
sphere r = R because then the semiaxes a and b are equal to the radius R;
and we find

lim
E→0

Pnm

(
i

u

E

)
Pnm

(
i

b

E

) =
(u

b

)n
=
( r

R

)n
, lim

E→0

Qnm

(
i

u

E

)
Qnm

(
i

b

E

) =
(

R

r

)n+1

,

(1–175)
so that the first series in (1–174) becomes (1–116), and the second series in
(1–174) becomes (1–117). Thus, we see that the function Pnm(iu/E) corre-
sponds to rn and Qnm(iu/E) corresponds to r−(n+1) in spherical harmonics.

Hence, the first series in (1–174) is harmonic in the interior of the ellipsoid
u = b, and the second series in (1–174) is harmonic in its exterior; this case
is relevant to geodesy. For u = b, the two series are equal:

Vi(b, ϑ, λ) = Ve(b, ϑ, λ)

=
∞∑

n=0

n∑
m=0

[anmPnm(cos ϑ) cos mλ + bnmPnm(cos ϑ) sin mλ] .
(1–176)

Thus, the solution of Dirichlet’s boundary-value problem for the ellipsoid
of revolution is easy. We expand the function V (b, ϑ, λ), given on the ellip-
soid u = b, into a series of surface spherical harmonics with the following
arguments: ϑ = complement of reduced latitude, λ = geocentric longitude.
Then the first series in (1–174) is the solution of the interior problem and
the second series in (1–174) is the solution of the exterior Dirichlet problem.



1.16 Ellipsoidal harmonics 41

Formula (1–176) shows that not only functions that are defined on the
surface of a sphere can be expanded into a series of surface spherical har-
monics. Such an expansion is even possible for rather arbitrary functions
defined on a convex surface.

A remark on terminology
The ellipsoidal-harmonic coordinates u, ϑ (or β), λ are the generalization of
spherical coordinates for the sole use of getting closed solutions of Laplace’s
equation, in particular, for the gravity field of the reference ellipsoid in
Sect. 2.7. The brief name “ellipsoidal coordinates” frequently used for u, β, λ
might lead to a confusion with the ellipsoidal coordinates ϕ, λ, h. In the
present book, “ellipsoidal coordinates” will always denote “ellipsoidal ge-
ographic coordinates”, frequently also called “geodetic coordinates”, being
represented by ϕ, λ, h.




