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Chapter 1 - Coordinate Systems and Time Systems

1.1 Introduction

To develop an understanding and a basic description of any dynamical system, a physical model 
of that system must be constructed which is consistent with observations. The fundamentals of 
orbital mechanics, as we know them today, have evolved over centuries and have continued to 
require improvements in the dynamical models, coordinate systems and systems of time. The 
underlying theory for planetary motion has evolved from spheres rolling on spheres to precision 
numerical integration of the equations of motion based on general relativity. Time has evolved 
from using the motion of the Sun to describe the fundamental unit of time to the current use of 
atomic clocks to define the second. As observational accuracy has increased, models have 
generally increased in complexity to describe finer and finer detail.

To apply the laws of motion to a dynamical system or orbital mechanics problem, appropriate 
coordinate and time systems must first be selected. Most practical problems involve numerous 
reference frames and the transformations between them. For example, the equations of motion of 
a satellite of Mars are normally integrated in a system where the equator of the Earth at the 
beginning of year 2000 is the fundamental plane. But to include the Mars non-spherical
gravitational forces (Section 5.4) requires the satellite position in the current Mars equatorial 
system. Planetary ephemerides (Section 2.5) are usually referred to the ecliptic, so inclusion of 
solar or Jovian gravitational forces require transformations between the ecliptic and the equator. 
The correct development of these transformations is tedious and a prime candidate for 
implementation errors.

Likewise, there are usually numerous time systems in a problem. Spacecraft events might be time 
tagged by an on board clock or tagged with the universal time that the telemetry is received at the 
tracking station. In the latter case, tracking station clocks must be synchronized and the time 
required for the telemetry signal to travel from the s/c to the tracking station must be calculated 
using the s/c orbit. Depending on the precision desired, this time difference might require special 
and general relativistic corrections. The independent variable for the equations of motion is called 
ephemeris time or dynamical time which is offset from universal time. By international 
agreement, atomic time is the basis of time and is obtained by averaging and correcting numerous 
atomic clocks around the world. Finally, the location of the zero or prime meridian and the 
equator are defined by averaging observations of specified Earth "fixed" stations. The 
understanding of these and other coordinate systems and time systems is fundamental to 
practicing orbital mechanics.

In this chapter only first order effects will be discussed. This book will also limit coverage to the 
classical mechanics approach, i.e. special and general relativistic effects might be mentioned but 
will not be included in any mathematical developments. Calculation for precise orbital mechanics 
and spacecraft tracking must however include many of these neglected effects. The definitive 
reference for precise definitions of models and transformations is the Explanatory Supplement to 
the Astronomical Almanac [Reference 1].
1 - 1
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1.2 Coordinate Systems

The first issue that must be addressed in any dynamics problem is to define the relevant 
coordinate systems. To specify the complete motion of a spacecraft, a coordinate system fixed in 
the spacecraft at the center of mass is usually selected to specify orientation and a coordinate 
system fixed in some celestial body is used to specify the trajectory of the center of mass of the 
spacecraft. The interest here is primarily in the latter system.

Coordinate systems are defined by specifying
1. the location of the origin, 

2. the orientation of the fundamental plane, and 

3. the orientation of the fundamental direction or line in the fundamental plane.

The origin is the (0,0,0) point in a rectangular coordinate system. The fundamental plane passes 
through the origin and is specified by the orientation of the positive normal vector, usually the z-
axis. The fundamental direction is a directed line in the fundamental plane, usually specifying 
the +x-axis. The origin, fundamental plane and fundamental line are defined either relative to 
some previously defined coordinate system or in operational terms. The definitions are usually 
specified in a seemingly clear statement like: “The origin is the center of mass of the Earth, the 
fundamental plane (x-y) is the Earth equator and the x-axis points to the vernal equinox.”   Left as 
details are subtle issues like the fact that the center of mass of the Earth “moves” within the Earth, 
that the Earth is not a rigid body and the spin axis moves both in space and in the body, and that 
the vernal equinox is not a fixed direction. Some of these details are handled by specifying the 
epoch at which the orientation is defined, i.e. Earth mean equator of 2000.0 is frequently used. 
Further, it must be recognized that there is no fundamental inertial system to which all motion can 
be referred. Any system fixed in a planet, the Sun, or at the center of mass of the solar system is 
undergoing acceleration due to gravitational attraction from bodies inside and outside the solar 
system. The extent to which these accelerations are included in the dynamical model depends on 
accuracy requirements and is a decision left to the analyst.

Like many other fields, conventions and definitions are often abused in the literature and this 
abuse will continue in this text. So "the equator" is jargon for the more precise statement "the 
plane through the center of mass with positive normal along the spin axis." Likewise, angles 
should always be defined as an angular rotation about a specified axis or as the angle between two 
vectors. The angle between a vector and a plane (e.g. latitude) is to be interpreted as the 
complement of the angle between the vector and the positive normal to the plane. The angle 
between two planes is defined as the angle between the positive normals to each plane. The more 
precise definitions often offer computational convenience. For example, after checking the 
orthogonality of the direction cosines of the positive unit normal (usually +z axis) and the 
direction cosines of the fundamental direction in the plane (usually +x), the direction cosines of 
the +y axis can be obtained by a vector cross product. Thus, the entire transformation or rotation 
matrix is defined by orthogonal x and z unit vectors.

Exercise 1-1. Given vectors a=(3,4,-6) and b=(1,-3,8) in the (x,y,z) system. Define the (ξ,η,ζ) 
system such that the fundamental plane (normal to ζ) contains both a and b, the ζ axis such that a 
right hand rotation of less than π takes a into b, and the fundamental direction (ξ axis) is along a. 
1 - 2
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Develop, symbolically and numerically, the 3 by 3 transformation matrix Φ from the (ξ,η,ζ)

system to the (x,y,z) system. For example, the first column of Φ is    

Common origins for coordinate systems of interest in astrodynamics include:

1. Topocentric:  at an observer fixed to the surface of a planet, 

2. Heliocentric, Geocentric, Areocentric, Selenocentric, etc.:  at the center of mass of the 
Sun, Earth, Mars, Moon, etc.

3. Barycentric:  at the center of mass of a system of bodies, i.e. the solar system, Earth-
Moon system, etc.

Astronomical observations were traditionally referred to topocentric coordinates since the local 
vertical and the direction of the spin axis could be readily measured at the site. For dynamics 
problems, topocentric coordinates might be used for calculating the trajectory of a baseball or a 
launch vehicle. For the former case, the rotation of the Earth and the variation in gravity with 
altitude can be ignored because these effects are small compared the errors introduced by the 
uncertainty in the aerodynamic forces acting on a spinning, rough sphere. For the latter case, these 
effects cannot be ignored; but, gravitational attraction of the Sun and Moon might be ignored for 
approximate launch trajectory calculations. The decision is left to the analyst and is usually base 
on "back of the envelope" calculations of the order of magnitude of the effect compared to the 
desired accuracy.

Heliocentric, areocentric, etc. coordinates are traditionally used for calculating and specifying the 
orbits of both natural and artificial satellites when the major gravitational attraction is due to the 
body at the origin. During calculation of lunar or interplanetary trajectories, the origin is shifted 
from one massive body to another as the relative gravitational importance changes; however, the 
fundamental plane is often kept as the Earth equator at some epoch. Often in what follows only 
Earth geocentric systems are discussed, but the definitions and descriptions generally apply to 
planets and moons. Geocentric systems are either terrestrial or celestial. Terrestrial systems are 
fixed to the rotating Earth and can be topocentric, geocentric, or geodetic. Celestial systems have 
either the equator or the ecliptic as the fundamental plane and the vernal equinox as the 
fundamental direction.

1.2.1 Spherical trigonometry

Transformations of position and velocity vectors between coordinate systems are represented in 
matrix notation and developed by vector outer and inner products as mentioned above. However, 
the understanding of the basic concepts of spherical trigonometry is also a necessity when dealing 
with orbital mechanics. It is convenient to introduce the concept of the celestial sphere. The 
celestial sphere is a spherical surface of infinite radius. The location of the center of the celestial 
sphere is therefore unimportant. For example, one can think of the center as being simultaneously 
at the center of the Earth and Sun and observer. Any unit vector or direction can thus be 
represented as a point on the sphere and vice versa. For example, the Earth to Sun line and Sun to 

a
a
-----

0.3841
0.5151
0.7682–

=
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Earth lines could be represented by two points 180 degrees apart. Two distinct points on the 
sphere can be connected by a great circle formed by the intersection on the sphere of the plane 
formed by the two points and the center of the sphere. If the points are not coincident or 180° 
apart, the great circle is unique.

The distance or length between two points on 
the surface is the central angle subtended by 
the points, which is also the shorter arc length 
on the great circle connecting the points. Three 
points, not on the same great circle, form the 
vertices of a spherical triangle. The three 
sides are the great circle arcs connecting each 
pair of vertices (0<a,b,c<π in Figure 1-1). The 
length of a side of a spherical triangle is often 
referred to as simply the “side.” With each 
vertex is associated an “angle” 
( ) that is, the angle between the 
planes that form the adjacent sides. A spherical 
triangle has the following properties:

Exercise 1-2. Draw a spherical triangle where both a+b+c is nearly zero and α+β+γ is nearly π. 
Draw a spherical triangle where both a+b+c is nearly 2π and α+β+γ is nearly 3π. Check 
equation (1-5) using the latter triangle.

Like plane trigonometry, spherical trigonometry relations involve four parts of the triangle. When 
three parts are known, the following four formulae are generally sufficient to obtain a solution for 
the fourth part (refer to Figure 1-1).

As in plane trigonometry there is the law of sines:  

  (1-1)

For spherical triangles there are two laws of cosines. The first is used when three sides and one 
angle are involved

(1-2)

and the second is used when three angles and one side are involved

(1-3)

When four adjacent parts are involved, there is the four-part formula:

(1-4)

α

β

γ

a

b

c

Figure 1-1. Spherical triangle

0 α β γ, , π< <

π α β γ 3π<+ +<
0 a b c+ + 2π< <

a b c, etc.>+

asin
αsin

----------- bsin
βsin

----------- csin
γsin

----------= =

acos bcos ccos bsin csin αcos+=

αcos βcos– γcos βsin γsin acos+=

IS( )cos IA( )cos IS( ) OS( )cotsin IA( )sin OA( )cot–=
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where I and O stand for “inner” and “outer”, while A and S stand for “angle” and “side” 
respectively. For example, with c, α, b and γ: cos(b)cos(α)=sin(b)cot(c)-sin(α)cot(γ). There are 
three variations for each of the laws of cosines and six variations of the four-part formula. Danby
[2] provides proofs of some spherical trigonometry formulae using vector analysis.

The solid angle subtended by the triangle is α+β+γ-π steradian, so if the sphere has radius R, the 
area of the spherical triangle is given by 

(1-5)

A right spherical triangle has either a side or 
an angle of 90o and equations (1-1) to (1-4) can 
be reduced to two rules and Napier's Circle. 
Consider the latter case and wolog assume γ = 
90o. Napier's Circle, shown in Figure 1-2, is 
created by putting the side opposite to the 90° 
angle at the top and proceeding around the 
triangle in the same direction to fill in the four 
remaining parts of the circle. The upper three 
parts are subtracted from 90°. Now consider 
any three parts of the triangle. The three parts 
will either be (1) “adjacent” parts, e.g. b, α and 
c in which case α would be called the “middle” part, or (2) two parts will be opposite the third 
part, e.g. b, α and β and β would be called the “opposite” part. Napier's Rules of Circular Parts
are then:

1. The sine of the middle part equals the product of the tangents of the adjacent parts.

2. The sine of the middle part equals the product of the cosines of the opposite parts.

As stated above, the first equation is used when the three parts of interest in the triangle are 
adjacent, e.g. a, β and c are related by cos(β)=tan(a)cot(c), which can be verified using 
equation (1-4). The second equation is used when one of the parts is opposite the other two, e.g. 
with b, α, and β: cos(β)=cos(b)sin(α), which can be verified using equation (1-3). Note that the 
quadrant is not always determined from the basic equation. Since all parts are less than π, 
quadrant can not be determined from sine but can be determined from tangent or cosine. 
Therefore, care must be exercised in determining the quadrant.

Visit http://mathworld.wolfram.com/SphericalTrigonometry.html for additional spherical 
trigonometry relations.

1.2.2 Celestial coordinate systems

The two conventional celestial coordinate system [1,95], projected onto the celestial sphere, are 
shown in Figure 1-3. The two great circles or fundamental planes of interest are the equator of the 
Earth and the ecliptic, i.e. the Earth-Moon barycenter-Sun orbital plane (often called the Earth-
Sun plane). The line of intersection where the Sun, moving along the ecliptic, passes from the 

Area R2 α β γ π–+ +( )=

α

β

90o

a

b

c

90 − c

β90 −α90 −

ab

Figure 1-2. Napier’s circle.
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southern to the northern hemisphere, as seen by a geocentric observer, is called the first point of 
Aries or the vernal equinox and is denoted γ. The vernal equinox is the fundamental direction for 
celestial systems. The positive direction is from the center of the Earth to the center of the Sun at 
the time of the vernal equinox. This convention is one of the few remaining concepts from 
Ptolemy. The angle between the equator and the ecliptic is known as the obliquity (ε). The 
obliquity for the Earth is approximately 23.45o [1,171] and changes about 0.013o per century. The 
two intersections of the ecliptic and the equator on the celestial sphere are known as the 
equinoctial points. When the Sun appears to move southward through the node, it is the autumnal 
equinox. The vernal equinox occurs within a day of March 21 and the autumnal occurs within a 
day of September 21. At either equinox, the length of the day and night are equal at all points on 
the Earth and the Sun rises (sets) due east (west). When the Sun has maximum northerly 
declination it is summer solstice in the northern hemisphere and winter solstice in the southern 
hemisphere, and conversely. At summer solstice in the northern hemisphere, the longest day 
occurs and the Sun rises and sets at maximum northerly azimuth. Nevertheless, due to the 
eccentricity of the orbit of the Earth, neither the earliest sunrise nor latest sunset occurs at summer 
solstice. A fact that, when properly phrased, has won small wagers from non-celestial 
mechanicians.

It must be recognized that neither the ecliptic nor the equator are fixed planes. Variations in the 
vernal equinox due to the motion of these planes are termed precession and nutation. Precession
[1,99] is the secular component that produces a westward change in the direction of γ that is 
linear with time. Nutation [1,109] is the quasi-periodic residual that averages to zero over many 
years. The mean equator or ecliptic refers to the position that includes only precession. The true
equator or ecliptic refers to the position that includes both precession and nutation. The Earth 
equator is not fixed in space primarily due to lunar and solar gravitational torques applied to the 
non-spherical Earth. The luni-solar precession causes the mean pole of the Earth to move about 
50" of arc per year and luni-solar nutation has an amplitude of about 9" of arc over an 18.6 year 

Figure 1-3. Celestial coordinate systems.
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cycle. The cycle of 18.6 years is how long it takes for the orbital planes of the Earth-Moon and the 
Earth-Sun to return to the same relative configuration. Variations in the ecliptic are primarily due 
to planetary gravitational forces producing changes in the orbit of Earth-Moon barycenter about 
the Sun. If the equator was fixed, the planetary precession of the ecliptic would cause γ to move 
along the equator about 12" of arc per century and the obliquity would decrease by 47" per 
century. To eliminate the need to consider precession and nutation in dynamics problems, the 
coordinate system is usually specified at some epoch, i.e. mean equator and mean equinox of 
2000.0, otherwise, known as J2000. In this case, Earth based observations must be corrected for 
precession and nutation. Transformations between the J2000 coordinates and the true or 
apparent systems are then required [1,145]. 

Another plane that is use in the celestial system is the invariant plane. The positive normal to the 
invariant plane is along the total angular momentum (i.e. rotational plus orbital) of the solar 
system. In Newtonian mechanics, only gravitational attraction from the distant stars and 
unmodeled masses can cause this plane to change orientation.

Consider some point P in the geocentric 
reference system of Figure 1-4. The position of 
point P is projected onto each fundamental plane. 
In the equatorial system the angle from γ to this 
projection is call right ascension ( ) 
and the angle between the point P and the equator 
is called the declination ( ). In 
the ecliptic system the corresponding angles are 
the celestial longitude ( ) and celestial 
latitude ( ). The “celestial” 
qualifier is to assure no confusion with traditional 
terrestrial longitude and latitude. When the 
context is clear, the qualifier is often omitted. 
“Celestial” is also sometimes replaced with 
“ecliptic.” The rotation matrix from the ecliptic 
system to the equatorial system is a single 
rotation about the x axis by the obliquity ε. As the following example illustrates, solving 
spherical trigonometry problems often involves drawing numerous spherical triangle 
combinations until the proper combination of knowns and unknowns appears.

Exercise 1-3. Develop the transformations from one celestial system to the other by first drawing 
the spherical triangle νNγ. Notation: [xy] is the side from vertex x to vertex y and <xyz> is the 
angle at vertex y between sides [xy] and [yz]. Confirm that [Nγ]=[νγ]=π/2, [Nν]=ε, <Nγν>=ε, 
<γνN>=<γNν>=π/2. Draw the spherical triangle νNP and confirm that [NP]=π/2-δ, [νP]=π/2-β, 
[Nν]=ε, <PνΝ>=π/2−λ, and <νNP>=π/2+α. In this triangle three sides and two angles are 
identified, so it is possible to write α and δ as functions of only λ and β, and vice versa. Use the 
law of cosines and the four part formula to show

λ

β

α

δ

γ

ε

N
ν

P

Figure 1-4. Transforming between celestial 
coordinate systems

0 α 2π<≤

π 2⁄– δ π 2⁄≤ ≤

0 λ 2π<≤
π 2⁄– β π 2⁄≤ ≤
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(1-6)

As a check, (1) notice that the second line can be obtained from the first line by switching 
equatorial and ecliptic variables and replacing ε with −ε, (2) if ε=0 then α=λ and β=δ, (3) if α=π/
2 (3π/2) then λ=π/2 (3π/2) and β=δ+ε (δ−ε). Since parts of spherical triangles are by definition 
less than π, determine the validity of the transformations when α or λ are greater than π. Develop 
tests or new equations to eliminate any quadrant ambiguities or singularities.

1.2.3 Terrestrial coordinate systems

Astrodynamics problems are generally framed in either the ecliptic or equatorial celestial 
coordinate system. The locations of observers, receivers, transmitters, and observation targets are 
usually specified in one of the terrestrial coordinate systems. A terrestrial coordinate system
[1,199] is “fixed” in the rotating Earth and is either geocentric or topocentric. Transformations 
between terrestrial and celestial coordinates are an essential part of orbital mechanics problems 
involving Earth based observations. These transformations are defined by the physical 
ephemeris (Section 1.4), that is, the definition of the pole location and the rotational orientation 
of the Earth. Precise definitions must include elastic deviations [1,237] in the solid Earth, plate 
tectonics [1,249], motion of the spin axis in the Earth [1,238], and numerous other effects. The 
largest of these effects is polar motion which produces deviations between the instantaneous and 
mean spin axis of order 10 meters. Pole location is determined by numerous observation stations 
and published by international agreement. Irregularities in the rotational rate of the Earth can 
change the length of the day by a few milli-seconds over time scales of interest for orbital 
mechanics and astronomy problems. One  meters in longitude at the 
equator. Rotational variations are also monitored and included in the definition of universal time 
to be discussed later. Specific effect to be included depend on the desired accuracy and the choice 
is left to the analyst.

The fundamental terrestrial coordinate system has the origin at the center of mass and the 
equator as the fundamental plane. The intersection of the reference meridian with the equator is 
the fundamental direction. The origin, the equator, and reference meridian [1,223] are defined 
operationally by measurements made at a number of “fixed” stations on the surface. In the 
past, the prime meridian was the Greenwich meridian and was defined by the center of a plaque at 
Greenwich. The phrase “reference meridian” is used to clearly distinguish the fundamental 
difference in definitions. Nevertheless, the reference meridian is often referred to as the 
Greenwich meridian, and that practice will be used herein. For remote solid planets, prime 
meridians are still defined by easily observed sharp surface features. An observer’s local 
meridian is defined by the plane through the observer that also contains the spin axis of the Earth. 
An observer's longitude (λ) is the angle between the reference meridian and the local meridian, 
more precisely referred to as “terrestrial longitude.” Since the spin axis moves in the Earth, an 
observers true longitude deviates from the mean longitude.
 
Latitude is specified as either geodetic latitude (φ) or geocentric latitude ( ) (Figure 1-5.) 
Geocentric latitude, often called latitude, is the angle between the equator and the observer. In 

βsin εcos δsin εsin δcos αsin–=

δsin εcos βsin εsin βcos λsin+=

λtan εcos αsin εsin δtan+
αcos

------------------------------------------------------=

αtan εcos λsin εsin βtan–
λcos

-----------------------------------------------------=

milli ondsec– 0.46≈

φ'
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the geocentric system, the location of a point is specified by the radius from the center of the 
Earth, geocentric latitude and longitude. To satisfy the right hand rule convention for rotations 
about the pole, longitude should be measured east; but, is often measured west. To be safe, always 
specify the convention. For example, 75oW = 285oE longitude. Colatitude is the angle between 
the position vector and the normal to the equator and is unambiguous, but latitude is sometimes 
specified by using a sign convention e.g. -37.5°=37.5°S. Also note that geocentric latitude is often 
denoted by φ, i.e. the “prime” is omitted when the meaning is clear.

Geodetic coordinates are generally limited 
to points near the surface of the Earth. 
Geodetic latitude is the angle between the 
local vertical and the equator. The local 
vertical is determined by the local “gravity” 
force which is the combination of gravity and 
a centrifugal contribution due to rotation. An 
equipotential surface for the two terms is 
nearly an ellipsoid of revolution. Hence it is 
convenient to define a reference ellipsoid
(spheroid) for the mean equipotential surface 
of the Earth which is approximately the mean 
sea level. This ellipsoid, which is symmetric 
about the equator and has rotational 
symmetry about the pole, is defined by the 
equatorial radius (a) and the flattening (f). The polar radius is given by b =a(1-f). Reference 
values [1,223] are a=6378137m and 1/f=298.25722. Figure 1-5 shows a cross section of the 
reference ellipsoid with greatly exaggerated flattening. For the figure, it is assumed that the cross 
section contains the x-axis, so the equation of the elliptical cross-section is 

(1-7)

Exercise 1-4. The gradient of f, , when evaluated at a point on the surface of the reference 
ellipsoid (h=0 in Figure 1-5) is a vector normal to the surface (B-2) and pointing outward. From 
this vector develop the following relationship between geodetic and geocentric latitude [3,78]

 (EE) (1-8)

Geodetic longitude and geocentric longitude are equal. For a point above the reference ellipsoid, 
the geodetic altitude (h in Figure 1-5) is defined as the closest distance to the reference ellipsoid 
and the geodetic latitude (φ in Figure 1-5) is defined as the angle between the normal to the 
ellipsoid and the equator at this closest point. Points with the same geodetic altitude are nearly on 
the same equipotential surface. Global atmospheric models, often used to calculate drag on a 
satellite Section 5.5.1, generally assume hydrostatic equilibrium and geodetic altitude is often an 
independent variable in the model. Determining the geodetic altitude and latitude from geocentric 
position (ρ, ) is not straight forward but can be done exactly [1,206] or approximately. The basis 
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Figure 1-5. Geodetic and geocentric latitude
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of most methods is to start with the location of a point P in both systems and introduce the 
auxiliary angle ψ leading to the three equations

(1-9)

These equations can be solved by Newton-Raphson iteration or successive substitution for 
geodetic altitude and geodetic latitude and ψ, noting that η is a known function of ψ. Or ψ can be 
eliminated by noting that ηcosψ=aCcosφ and ηsinψ=a(1-f)2Csinφ=aSsinφ, where 

 and S=(1-f)2*C. The transformation from geodetic to 
geocentric is obtained directly from equations (1-9).

Topocentric coordinate systems are also of 
interest. The origin of the system is fixed on the 
surface of the planet. For example, the location 
of a satellite relative to a ground based tracking 
system utilizes this frame. The fundamental 
plane for topocentric coordinates is either 
normal to the geocentric radius (geocentric 
topocentric) or tangent to the reference 
ellipsoid (geodetic topocentric). In both cases 
the fundamental plane is called the horizon. 
The points directly overhead and directly 
beneath the origin or observer are called the 
zenith and the nadir, respectively. The plane, 
formed by zenith and the north pole, is called 
the meridian and where it intersects the 
horizon is usually the fundamental line. 
Coordinates of points in the topocentric frame 
are specified by range (ρ), azimuth (A) and 
elevation (a). Range is the distance from the 
origin to the point. Azimuth is specified as 
either east or west of North. Sometimes “east” is taken as the fundamental direction and azimuth 
is given as north or south of east. It is best to be explicit, e.g. 32.5° E of N. The elevation angle is 
zero for points on the horizon and 90° for points at zenith. The zenith angle is the complement of 
the elevation. Be aware that astronomers call elevation “altitude” and in Sonnet 116, Shakespeare 
calls it “height.”

1.3 Time Systems

The above descriptions of the various spatial coordinate systems may initially leave the reader in 
a confused state of mind. The situation is only slightly better for time systems. St. Augustine 
wrote, “If you don't ask me what time is, then I know; but, if you ask me, I don't know.” After 
reading this section you will probably appreciate his statement. Nevertheless, understanding the 

x r= φ′cos η ψcos h φcos+=
z r= φsin ′ η ψsin h φsin+=

ψtan 1 f–( )2 φtan=

C φ2cos 1 f–( )2 φ2sin+[ ]
1 2⁄–

=

Figure 1-6. Topocentric coordinate system. 
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relevant time systems is essential to any orbital mechanics application. Time is generally thought 
of as a linearly increasing scalar. So a time system is defined by: (1) the unit of constant duration
and (2) the zero value or epoch i.e. like any well defined line, a slope and an intercept. In celestial 
mechanics problems, three time systems are used. These are

Universal time or civil clock time which accounts for both the rotation and orbital motion of 
the Earth with respect to the Sun and is generally the independent variable for measurements.

Sidereal time which is a measure of the rotation of the Earth relative to the vernal equinox 
and locates the Earth based observer in the celestial coordinate system.

Ephemeris time or dynamical time which is the independent variable for orbit calculations 
and locates spacecraft, planets, etc. in the celestial coordinate system.

All of these times are related to the atomic time which is fundamental by international agreement. 
The following description of these four systems are short versions of and in some places 
approximations to the detailed descriptions given in Reference 1.

1.3.1 Atomic time

The fundamental unit of atomic time [1,40] is the Système International second or SI second. 
This is defined as the duration of 9,192,631,770 periods of the radiation from the transition 
between two levels of the ground state of the cesium-133 atom. This duration was adopted to be 
consistent with ephemeris time (Section 1.3.3). Within our current understanding of physics, the 
SI second is a fixed number. However, the definition is operational so measurements are required 
to determine atomic time. Further, relativistic corrections must be made to these Earth based 
measurements. The time standard that most closely follows the definition is the International 
Atomic Time or Temps Atomique International (TAI). TAI is supplied by the Bureau 
International des Poids et Measures in Sèveres, France. To obtain TAI an intermediate time scale 
is determined by combining data from a number of high-precision atomic standard clocks. This 
intermediate time scale is available in real time. After the fact, corrections are made for known 
effects to achieve a time as close as possible to atomic time. This adjusted time scale is published 
as the TAI.

1.3.2 Dynamical time

The independent variable in the equations of planetary motion [1,41] is dynamical time. Theories 
of relativity states that this value depends upon the reference coordinate system as well as the 
particular theory. To reduce periodic contributions and produce a nearly constant duration, the 
origin of the reference system is taken at the barycenter of the solar system and is called 
barycentric dynamical time (TDB). On the other hand, terrestrial dynamical time (TDT) is a 
theoretical time scale constructed from apparent geocentric ephemerides of bodies in the solar 
system. Dynamic time in other systems are then available by transformations and conversely. 

With respect to TAI: TDT=TAI+32.184s. The offset between TAI and TDT is set to provide 
continuity with ephemeris time which was the independent variable in the EOM until dynamical 
1 - 11
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time was introduced. The offset is equal to the estimate of the difference between ET and TAI 
when TDT was introduced.

1.3.3 Ephemeris time

Ephemeris time (ET) was developed as the independent variable for Newton’s laws of motion 
and theory of gravitation. ET is a uniform time scale to depict observations of bodies in the solar 
system. There are three different forms of ET (ET0, ET1, and ET2), each based on more complex 
models of lunar motion. There is no detectable rate difference between ET and UTC 
(Section 1.3.6), but the epoch difference is updated with leap seconds. Although ephemeris time 
has been formally replaced by dynamical time the two are often used synonymously.

1.3.4 Julian date

The Julian date is simply a means of continuously counting the number of days from an epoch 
sufficiently far in the past to precede the historical record of astronomical observations. This 
continuous count is done with Julian day numbers. The first Julian day number (0) is defined as 
Greenwich mean noon on January 1, 4713 BC in the Julian proleptic calendar or Nov. 24, 4713 
BC in the modern calendar. Note: JD starts at noon! Julian dates can be expressed in UT or 
dynamical time. For celestial reference coordinate systems, the epoch is defined in TDB. Thus, 
J2000.0 is 2000 January 1.5 TDB, which is JD 2451545.0 TDB. A Julian century is 36525 days. 
For convenience, the modified Julian date (MJD) was defined as the value of JD minus 
2400000.5. MJD starts at midnight! There are a number of formula for converting from a 
Gregorian date to Julian date. The issue is of course how to handle the leap years. A year is a leap 
year if it not a century year and is divisible by 4. If the year is a century year, it is a leap year only 
if it is divisible by 400 (e.g. 1600 and 2000 are leap years while 1700, 1800, 1900 are not).The 
algorithm[3,61]

(1-10)

is valid for all positive JD, Y is Gregorian year, M is month (3 to 14), D is day of the month 
including any fractional part. Note that month is increased by 12 for January and February and 
year is decreased by one. The 0.5 on the last term accounts for JD starting at noon and the 0.0001 
addition is to assure largest integer operator performance. The symbol  is the largest integer 
operator which is the largest integer less than or equal to x. In MATLAB use the “floor” operator. 
The following inverse transformation is valid only for JD>2299161.

  (1-11)

A Y 100⁄〈 〉= B 2 A– A 4⁄〈 〉+=
JD 365.25 Y 4716+( )〈 〉 30.6001 M 1+( )〈 〉 D B 1524.5–+ + +=

x〈 〉

z JD 0.5+〈 〉= f JD 0.5 z–+=
a z 1867216.25–( ) 36524.25⁄〈 〉= b z a a 4⁄〈 〉– 1525+ +=

c b 122.1–( ) 365.25⁄〈 〉= d 365.25c〈 〉= e b d–( ) 30.6001⁄〈 〉=
D b d 30.6001e〈 〉 f+––=

If e < 14,           M e 1–= else M e 13–=
If M > 2,        Y c 4716–=  else Y c 4715–=
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The more general algorithm is given in [3,63]. It is common to give time as year, day of year and 
seconds into the day (YY,DOY,S). Given month (M) and day of the month (D), the day number 
(DOY) can be calculated from

(1-12)

Other useful algorithms on time transformations can be found in Reference 3 (Note that this 
reference is not without typographical error.)

1.3.5 Sidereal time

Sidereal time [1,48] is defined as the hour angle of the vernal equinox. An observers hour angle
is the angle from the vernal equinox, measured eastward, to the observers meridian. As such, 
sidereal time is a measure of the diurnal rotation of the Earth. Apparent sidereal time is the hour 
angle of the true equinox as defined by the true equator and true ecliptic of date, i.e. apparent 
sidereal time includes the nutation in γ and therefore includes periodic inequalities. Mean 
sidereal time is the hour angle of the mean equinox and includes only the precession of γ and 
therefore only secular inequalities. Apparent sidereal time minus mean sidereal time is the 
equation of the equinoxes.

Sidereal time on the Greenwich meridian is called Greenwich sidereal time (Section 1.3.8). 
Local sidereal time is the Greenwich sidereal time added to the local east longitude. Sidereal 
time is traditionally stated in hours, minutes, and seconds with one hour corresponding to fifteen 
degrees of rotation relative to the vernal equinox. A sidereal day is defined as the period of 
consecutive passes of the equinox. Due to precession in γ the mean sidereal day is shorter than the 
period of rotation of the Earth by about 0.0084 seconds. The sidereal day begins with the first 
transit of the vernal equinox (sidereal noon) and ends with the second transit.

1.3.6 Universal time

The basis for all civil time-keeping [1,50] is known as Universal Time (UT). Universal Time is 
derived from the mean diurnal motion of the Sun and incorporates the rotational and orbital 
motion of the Earth with respect to the Sun. UT0 is determined directly from measurements of 
fixed stellar radio sources and depends on the observer location. UT0 accounts for variations in 
pole location and non-uniform rotation. These effects must be considered in precision orbital 
mechanics problems requiring tracking station location or any other geo-location to a few meters.

UT1 is obtained when UT0 is corrected for the shift in longitude caused by the motion of the pole 
relative to the surface of the Earth. UT1 is global because it is based on a mean pole location. UT1 
is not a uniform time scale due to variations in the rotational rate of the Earth. The current 
definition of UT1 was created to fulfill the following conditions [1,51]: 

1. UT1 is proportional to the angle of rotation of the Earth in space, reckoned around the true 
position of the rotation axis,

2. the rate of UT1 is chosen so that the day of UT1 is close to the mean duration of the solar 
day, and

DOY 275M( ) 9⁄〈 〉 2 M 9+( ) 12⁄〈 〉– D 30–+= non leap– year–
DOY 275M( ) 9⁄〈 〉 M 9+( ) 12⁄〈 〉– D 30–+= leap year–
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3. the phase of UT1 is chosen so that 12h UT1 corresponds approximately with the instant 
when the Sun crosses the Greenwich meridian.

UT2 is UT1 corrected for variations in the Earth rotation rate and has a uniform rate but not the 
same as TAI. The final form of universal time, Coordinated Universal Time (UTC) is used by 
broadcast time services. UTC differs from TAI by an integer number of seconds and is kept 
within 0.9 seconds of UT1 by the use of leap seconds generally at the end of June or December. 
By definition, UTC and TAI run at the same rate.

Figure 1-7 shows a graphical description of the 
relevant times scales. The reference is TAI on the x-
axis. TAI vs. TAI has a slope of 1 and intercept at 
zero. TDT or ephemeris time has an observed slope 
of one but an offset of 32.184 seconds. UT1 on 
average has a slope less than 1 because of a rate 
difference between the rotation of the Earth and TAI. 
UTC is kept within 0.9 seconds of UT1 by 
introduction of a “leap second” (http://
hpiers.obspm.fr/webiers/general/earthor/utc/
UTC.html) as appropriate. There was a “leap 
second” at the beginning of 1999 and during the rest 
of the year there was a constant offset between TDT 
and UTC of 64.184 seconds. This is a critical 
number in celestial mechanics problems because 
the ephemerides are integrated in TDT 
(ephemeris time) and observations are time tagged in UTC.

1.3.7 UT1, UTC and Pole Location for 1998

Recall that UT1 is determined operationally by 
satellite tracking, lunar laser ranging and very 
long baseline radio interferometry (VLBI) data 
averaged over the globe. VLBI provides the 
most accurate measurements with an accuracy 
of about 0.00005 seconds when averaged over 
one day [1, 62]. Figure 1-8 shows the measured 
difference between UT1 and UTC during 1998. 
Since the difference between UT1 and UTC 
did not approach 0.9 seconds, there was no 
“leap second” in 1998. Recent leap seconds 
were Jan. 1, 1999, July 1, 1997, Jan. 1, 1996. 
There have been 22 leap seconds from 1972 
through 2005 or about every 18 months. Leap 
seconds were included every year since 1972 
except for 1984, 1986, 1987, 1989, 1995 and 1998-2005. A leap second will occur at the 
beginning of 2006.

TAI

TAI
TDT

TDT=TAI+32.184s

UTC

UT1

In 1999 TDT=UTC+64.184s

Figure 1-7. Summary of time scales.
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Figure 1-9 shows the pole location during 1998. 
The difference between UT0 and UT1 is prima-
rily due to the location of the pole, but continen-
tal drift and other small effects contribute to the 
time difference. If the surface features of the 
Earth at some instant of time are considered 
fixed, then the instantaneous axis of rotation of 
this surface defines the pole of the Earth. Even if 
there were no external torques on the Earth, the 
pole would move with respect the surface due to 
natural precession of a torque free, rotationally 
symmetric, rigid body, as discussed in most 
dynamics book. For the Earth this motion is 
called the Chandler wobble after the person who 
provided an explanation in 1891 of the observed 
variation in latitude. If there were no external torques, the amplitude of this motion would be 
expected to damp to zero over long periods of time due to friction in the oceans and the elastic 
Earth. However continual excitation is provided by external torques due to lunar and solar gravity 
and internal motions of the Earth due to seasonal variations in atmospheric and ocean mass distri-
butions, earthquakes, and any other phenomena that change planetary moments of inertia. The 
data were taken from http://hpiers.obspm.fr/webiers/general/earthor/polmot/PMOT.html.

Exercise 1-5. Visit http://maia.usno.navy.mil and http://hpiers.obspm.fr. Write a two page paper 
on what you discovered about UT1-UTC, pole location and anything else related to this chapter. 
E.g. make a plot of x vs. y pole location in meters and/or UT1-UTC for the last full year. Check 
the figures above.

1.3.8 Greenwich and local mean sidereal time

Greenwich mean sidereal time (GMST) is the angle between the Greenwich meridian and the 
mean vernal equinox and would be sensitive to the same variations in rotation as UT1. Due to the 
three conditions above, there is now a defined relationship between the two at midnight: 

(1-13)

where in the first equation the coefficients are in seconds of time, T = d/36525 is the number of 
Julian centuries and d {±0.5, ±1.5...} is the number of days of UT elapsed since Julian Date 
2451545.0 UT1 (Jan. 1, 12h, 2000). In the second form of the equation, GMST1 has been 
converted to degrees of rotation from γ to the Greenwich meridian by multiplying the first 
equation by 360/86400. The “1” at the end of GMST notates that the value is based on UT1 and 
correction to UT0 may be required for local observers.

Some consequences of these relationship are discussed in Reference 1. It is readily shown that the 
ratio of mean sidereal rate to UT1 rate is r'=1.002737909350795 plus secular terms that affect the 
eleventh decimal place per century. From this it follows that the mean sidereal day is 
23h56m04s.090524 of UT.
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along the Greenwich meridian, y is west. 
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The information for calculating the 
Greenwich and local mean sidereal time is 
now in place. Refer to Figure 1-7 where 
“GM” represents the Greenwich meridian 
and “LM” represents the local meridian. 

Given year, month, day and clock time or 
UTC in hours h, e.g. h=17.5678395 hrs:

1. Correct UTC to UT1 if necessary. 
This is only required if geographic 
locations to better than a few meters 
are required.

2. Use equation (1-11) to calculate the 
Julian date (JD) at 0 hours.

3. Calculate  = 

Julian centuries from noon of Jan. 1, 2000.

4. Calculate the GMST10° at 0 hours using equation (1-13).

5. Calculate the change in GMST1 since 0 hours using ∆GMST1°=15r'h.

6. Finally GMST1°=GMST0° + ∆GMST1° gives the angle from the mean equinox to the 
Greenwich mean meridian.

The local mean sidereal time at east longitude λ is MST(λ°) = GMST1° + λ°; thereby providing 
the final information necessary to transform between the mean celestial and geocentric, Earth 
fixed coordinate systems. Transformations to J2000 [1,99] would have to include precession 
(50.290966"/year) and nutation.

1.4 Physical Ephemerides 

Using the celestial and terrestrial coordinate systems and the time systems defined above, it is 
possible to transform from terrestrial coordinates at any time to celestial coordinates. It is 
necessary to have the same capability for the Moon, the planets, planetary moons, and other 
bodies in the solar system. The means for making such transformation is through the physical 
ephemeris. The physical ephemeris of a body defines a body centered, body fixed coordinate 
system relative to a celestial system. The parameters that define this system are called the
rotational elements for the body and consist of the direction of the rotational pole, the rotation 
rate, and the location of the prime meridian at some epoch. The prime meridian for bodies without 
solid visible surfaces is generally taken as the central meridian as seen by a geocentric observer at 
some epoch. For such bodies, the rotational rate may be latitude dependent. For bodies with solid 
surfaces, the prime meridian is generally associated with a sharp surface feature, e.g. the central 
peak in a crater. The table below gives the physical ephemeris for the terrestrial planets. The pole 
location is given by the right ascension and declination referred to J2000. Locations with asterisks 
indicate that a secular variation is included in the model and the secular precession values are 
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given in [1,401]. The location of the prime meridian  is measured along the 
planet equator from the line of intersection of the planet equator with the Earth equator of J2000, 
with W=0 corresponding to the point where the equator of the planet passes into the northern 
hemisphere of the Earth, i.e. the ascending node of the planet equator with respect to the Earth 
equator.

1.5 Problems

1-1. Given the latitude and longitude of two cities, derive one equation from spherical 
trigonometry to determine the distance between the cities. Apply the equation to find the 
distance (km) from Washington, DC to Chicago, IL. 

1-2. Given the latitude and longitude of two cities, derive one equation from spherical 
trigonometry to determine the departure azimuth for a great circle flight between the 
cities. Apply the equation to find the azimuth (deg) from Chicago to DC.

1-3. For an observer at latitude φ, determine the azimuth of sunrise and sunset in terms of the 
declination of the Sun using one equation from spherical trigonometry. Assume the Sun is 
an infinite distance from the Earth. Evaluate the equation for an observer at Washington, 
DC and at both equinoxes and solstices.

1-4. Why is the sidereal day shorter than the day based on universal time? Develop two 
approximate estimates of r' (Section 1.3.6) based on (1) the number of days in the year and 
(2) the number of days in a Julian century. Compare with precise value.

1-5. Does the vernal equinox occur earlier or later in a leap year than in non-leap years? Why?

1-6. Perform a manual calculation to determine the mean sidereal time of 1300 EST July 4, this 
year in Washington DC.

1.6 Astronautics Toolbox

1. Write a function [φ’, r]=Geod2Geoc(h, φ, a, f, ichk) that converts geodetic altitude and lati-
tude to geocentric radius and latitude. The output variables and the first two input variables 
are n by 1 arrays while a and f are scalars. Test the function at a variety of altitudes using the 
supplied test program (TestGeod2Geoc) and the supplied function Geoc2Geod.

Table 1-1. Physical Ephemerides for the Terrestrial Planets

Pole location Prime meridian
Equatorial
radius, km

Flattening
        fαo, deg δo, deg Wo, deg , °/day

Mercury 281.01* 61.45* 329.71 6.1385025 2439.7 0.00

Venus 272.72 67.15 160.26 -1.4813596 6501.9 0.00

Mars 317.68* 52.89* 176.868 350.8919830 3397. 0.0065

W W0 W·
0t+=

W
·

o

1 - 17



MAE 589C Space Flight Mechanics a.k.a Astrodynamics August 24, 2005 9:42 pm
2. Write a procedure JD=Ymd2JD(ymdhms, ichk) where 
ymdhms=[YYYY,MM,DD,HH,MM,SS.SSS], an n by 6 array and JD an n by 1 output array. 
Write a test procedure (TestYmd2JD) that test the function using the supplied JD2Ymd.

3. Write a procedure Gmst=Ymd2Gmst(ymdhms,ichk), where 
ymdhm=[YYYY,MM,DD,HH,MM,SS.SSS] as above and Greenwich mean sidereal time as n 
by 1 array output. Include range testing, fatal errors, and test procedure. Use Ymd2JD.m if 
necessary.

4. Write a procedure R=J2k2Planet(JD, αo, δo, Wo, , ichk), where JD is Julian day (1 by 1), 
and the other parameters are taken from Table 1-1. R is the 3 by 3 rotation matrix (B-1) from 
J2000 to the planet equator, prime meridian system.

1.7 References

In the text, references are identified in general by [n; m; etc.]. However, if a specific page is 
identified then the notation is [reference number, page], i.e. [3,47]. The reference number is 
generally a hyperlink.

1. Seidelmann, K. Explanatory Supplement to the Astronomical Almanac, University 
Science Books, Mill Valley, CA, 1992.

2. Danby, J.M.A., Fundamentals of Celestial Mechanics, Willmann-Bell, Richmond, Va., 
1989.

3. Meeus, John, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, Va., 1991.

1.8 Naval Academy Pledge response to being asked for the time

xxxx-1977
Sir, I am greatly embarrassed and deeply humiliated, but due to circumstances beyond my control, 
the inner workings and hidden mechanisms of my chronometer are in such in accord with the 
great sidereal movement by which time is recorded, that I can not with any degree of certainty 
state the exact time. However, I will estimate that the current eastern standard time is 31 minutes, 
44 seconds, and 1 tick past the hour of 14.

1977-
Sir, I am greatly embarrassed and deeply humiliated, but due to circumstances beyond my control, 
the printed circuit board in my chronometer is in such a chaotic state compared to the atomic 
clocks by which time is recorded, that I can not with any degree of certainty state the exact time. 
However, I will estimate that the current eastern standard time is 1F minutes, 2C seconds, and 1 
bit past the hour of E.

Wo
·
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Chapter 2 - N-Body Problem

2.1 Introduction

The description of the motion of a system of n bodies due to their mutual gravitational attraction 
is the fundamental problem in orbital mechanics. Applications range from the stability of the solar 
system to the formation of galaxies. No closed form solution exists for the general n-body 
problem when n is greater than two. However, it was shown by Lagrange that solutions do exist 
for special cases of the three-body problem, all of which require that the motion of the bodies 
takes place in the same plane. These special cases will be discussed in Chapter 4.

Before discussing the n-body problem, some of the fundamental principles of mechanics will be 
reviewed. Among these are: Newton’s laws of motion, the concepts of work and energy, and the 
concept of angular momentum. It is also useful to be aware of the theory of general relativity 
equations of motion for the n-body problem.

2.2 Newtonian Mechanics

Newton formalized the physical laws which determine the dynamics of massive bodies. Based on 
earlier work of Galileo, Kepler and others, he established three laws of mechanics and one for 
gravitational attraction. These laws were adequate to predict the dynamical motion of the planets 
and terrestrial objects for hundreds of years. Only after significant increases in observational 
precision was it necessary to seek modifications. The laws were formulated for particles and 
integration over the volume is required for application to finite bodies. The laws are only valid in 
an inertial frame. It is often said that such a frame is at “rest” or moving with constant velocity. 
Such a statement implies the existence of some absolute frame to which such motion can be 
referred. It might be said that an inertial system is at rest or moving with uniform velocity relative 
to the fixed stars. The problem has now been transformed to defining the “fixed” stars. An equally 
acceptable definition is to say a system is inertial if Newton's laws of motion are valid in that 
system. For practical applications, the analyst can pick a system moving through space with 
origin at the center of mass of the solar system or perhaps one whose origin coincides with the 
center of the Earth. It may even be reasonable to regard a system of coordinates attached to the 
Earth's surface as inertial, provided the accelerations resulting from the translation and rotation of 
the system are negligible compared with the acceleration of the body under consideration. The 
choice of coordinate systems is purely an issue of the accuracy desired in the prediction of the 
motion, there is no system that is exact and the choice is left to the analyst.

2.2.1 Laws of motion

Newton’s three classic laws can be stated as follows:

First Law: If there are no forces acting on a particle, the particle will move in a straight line with 
constant velocity.
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In Newtonian mechanics, a particle is a point mass. This is a fundamental concept requiring no 
further definition. In practice, a finite body can be shown to behave like a particle in some cases 
or can be considered to be a particle if the physical dimensions are small compared to the distance 
to other bodies. In Newtonian mechanics, force and position are also fundamental notions 
requiring no definition. Denote by f the force vector and by v the velocity (i.e. the time derivative 
of position) in an inertial space.

Second Law: A particle acted upon by a force moves so that the force is equal to the mass times 
the time rate of change of the velocity.

In equation form 

(2-1)

If “force” is fundamental, then “mass” is just the proportionally constant and conversely. Force 
and mass can not be defined independently. The first law, which Galileo discovered by rolling 
spheres down incline planes, is a special case of the second law. 

Third Law: When two particles exert forces upon one another, the forces are of equal magnitude 
and in opposite directions.

This law is often called the law of action and reaction. Denoting by fij the force exerted by 
particle j upon particle i, then the law states fij = -fji.

2.2.2 Law of universal gravitation

Newton's law of universal gravitation was based on Kepler's laws of planetary motion 
[Section 3.2] and is the force model required to satisfy the condition that the orbital period is 
proportional to the 3/2 power of the semi major axis. The universal gravitation law is stated as:
two particles of mass m1 and m2 attract each other with a force along the line joining the two 
particles and with a magnitude proportional to the product of the masses and inversely 
proportional to the square of the distance between the particles. Following the notation above, 
this is mathematically

(2-2)

Where eij and rij are the unit vector and position vector from mj to mi, and G is the universal 
gravitational constant (6.672×10-11 m3/kg/s2). The law is known as the inverse square law. In 
practice G is almost never used because observations determine the product GM to much higher 
precision than G can be determined. For the Earth GM=398600.5 km3/s2.

Though the inverse square law is formulated for point masses, it also holds for bodies with a 
spherically symmetric distribution of density. It is sufficient to show that the attraction between an 
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exterior particle of mass m1 and a thin spherical shell of constant density and mass m2 satisfies the 
inverse square law.

As shown in Figure 2-1, the mass m1 is at a 
distance R from the shell center. From 
equation (2-2), m1 is attracted with a force

Due to the symmetry of the problem, all 
components of f normal to the line between m1
and the center of the shell will cancel, so the 
direction of the resulting force is along the line 
between m1 and the center of m2. By 
integration it can be shown that the magnitude is

(2-3)

Thus, the inverse square law holds for homogeneous spheres as well as for particles. This is one 
example where a finite mass can be considered a particle.

Exercise 2-1. Fill in the steps to verify equation (2-3).

2.2.3 Kinetic and potential energy

The concepts of work, kinetic energy and potential energy are also important in celestial 
mechanics. Work is a scalar quantity defined as the line integral of force along a particular path

(2-4)

between positions r1 and r2. Note that the definition has nothing to do with dynamics, particles or 
time, and implicit in the definition is the assumption that f depends only on position. The concept 
can be extended to work performed by the force that produces the motion of a particle by using 
Newton’s second law to eliminate f in the integral and set dr=vdt. In this case, it can be shown 
that the work done on particle m is just the change in kinetic energy between the end points

(2-5)

Exercise 2-2. Starting with equation (2-4), verify equation (2-5) showing that the change in 
kinetic energy is the work done by the external forces.
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A force f(r) is conservative if  when taken about any closed path. For such a force, 

the work defined by equation (2-4) is independent of the path from r1 and r2. The work and 
change in kinetic energy are functions of the end points only. 

Exercise 2-3. Using only the definition, show that for a conservative force the work performed in 
moving between two points is independent of the path taken to get from one point to the other.

The concept of potential energy at a point V(r) can now be introduced as the negative of the 
work done by a conservative force in going from a reference point ro to an arbitrary point r

(2-6)

Within an additive constant, a scalar potential can therefore be uniquely associated with every 
point in space. So that the work done in going from r1 to r2 given by equation (2-5) can be 
expressed in terms of the potential as

This implies that

or since r1 and r2 are arbitrary 

which permits the force to be expressed as the negative gradient (B-2) of the potential

(2-7)

The force is called a conservative force because total energy is conserved during the motion due 
to such a force. That is, if along the trajectory ri and vi are the position and velocity at time ti and 
Ti and Vi are the corresponding kinetic and potential energies, then

Given f(x,y,z), the operational test to determine if f is conservative comes from the theorem (B-2): 
f is conservative if and only if . The potential function can then be determined in 
principle from equation (2-7) and boundary conditions. For example, the force f(x,y,z) = (-2xy, 
z2-x2, 2yz) = -2xyex + (z2-x2)ey + 2yzez is derivable from a potential function since 
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 is readily shown to vanish. From 

equation (2-7)  implies that V=x2y + g(y,z), where g is any arbitrary function of y 

and z. Also  so that  or g = - yz2 + h(z), where h(z) is an arbitrary 

function of z. Now V=x2y - yz2 + h(z). This form of V identically satisfies the final term in the 

gradient  so that h is a constant and wolog select the boundary condition so that h=0.

Exercise 2-4. Show that the force f(x,y,z)=(2xz/r4, 2yz/r4, 2z2/r4-1/r2) is conservative and derive 
the potential function. As usual r2 = x2 + y2 + z2.

2.2.4 Linear and angular momentum

The linear momentum of a particle is the mass times the velocity 

p=mv. (2-8)

Newton’s second law is often stated as the time rate of change of linear momentum equals the 
force. The moment of momentum or angular momentum is another important concept in 
mechanics. For a particle of mass m at position r and with linear momentum p=mv. The angular 
momentum about the origin from which r is measured is defined by

(2-9)

Often no distinction is make between angular momentum and specific angular momentum, i.e. 
angular momentum per unit mass. Even though two satellites of the Earth can have significantly 
different masses, if they are in the same orbit they will be said to have the same angular 
momentum. This is done because, as will be seen in Section 3.3, the orbital characteristics are 
determined by the sum of the masses of the Earth and the satellite and the latter is generally of 
negligible mass compared to the former.

2.3 Equations of Motion

While the two body problem discussed in Chapter 3 can be applied to many cases, and has the 
advantage of having a closed form solution, certain problems cannot be modeled with sufficient 
accurately using this assumption, and must be solved as a general system of n bodies. Consider a 
system of n bodies where each body is either spherical symmetry or sufficiently far from other 
bodies that each can be regarded as a point mass. It will be assumed that the only forces acting 
upon the system are due to the mutual Newtonian gravitational attraction. Let the mass and the 
position of each body in the system be denoted by mass mi and ri and the vector from mass mj to 
mass mi by rij=ri-rj. From Newton's second law and law of universal gravitation, for each mass
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(2-10)

where the notation j≠i means the sum over all values of j excluding i.

2.4 Integrals of the Motion

Equations (2-10) are a set of n second order, non-linear, coupled, ordinary differential equations 
and the solution will require 6n independent constants of integration. The constants of integration 
are usually determined from the n position vectors and the n velocity vectors at some epoch. Of 
the 6n required integrals of the motion only 10 are known. The relationships between these 
integrals and the physical assumptions are 

1. No external forces and "action and reaction" assures conservation of total linear momen-
tum,

2. Mutual force along the line between bodies and no external torques assures conservation 
of total angular momentum, and

3. Conservative force field and no external energy transfer assures conservation of total sys-
tem mechanical energy.

Each of these conservation laws will now be demonstrated from the equations of motion (EOM).

2.4.1 Conservation of total linear momentum

The location of the center of mass (CM) of the system is given by

where M is the total mass. Since this equation is true for any time, it can be differentiated with 
respect to time to get the EOM of the CM location. Performing this operation and eliminating the 

 using equation (2-10) yields . Integrating twice yields

Thus the CM of the system or barycenter of the system moves with constant linear velocity Vo. 
The vectors Vo and Ro represent six integrals of the equations of motion.

The total linear momentum, P is defined as the sum of all the individual linear momenta, i.e. 

. So that the total system linear momentum is conserved. 

Exercise 2-5. Fill in the steps to verify the motion of the center of mass and the conservation of 
linear momentum.
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2.4.2 Conservation of total angular momentum

The total angular momentum, H is the sum of the individual angular momenta. As usual, to test 
for conservation of angular momentum, each EOM is pre-crossed with the corresponding position 

vector and the result is summed over all bodies. Since ,  and 

, the result is

(2-11)

which represents the statement of the conservation of the total angular momentum. The three 
constant components of H constitute three additional integrals of the motion. Equation (2-11)
implies that both the magnitude and direction of vector H are constant. The constant direction of 
H can be used to define a plane through the center of mass of the system. This plane was called 
the invariant plane by Laplace. For the solar system the invariant plane is inclined at about 1º35' 
with respect to the ecliptic, between the orbital planes of the two most massive planets Jupiter and 
Saturn. Except for the attraction of mass outside the solar system, the invariant plane is inertial in 
Newtonian mechanics. 

Exercise 2-6. Fill in the steps to verify equation (2-11).

2.4.3 Conservation of energy

The total mechanical energy, E is the sum of the individual kinetic and potential energies. To test 
for conservation of energy, use the equations of motion to form an expression that looks like the 
rate at which the forces are doing work. This is accomplished by forming the dot product of  
with each EOM and summing the results over all bodies to get the total rate at which work is 

being done. Since , the sum can be written as

(2-12)

Where the first term is recognized as the total kinetic energy and the second term as the total 
potential energy. Thus total mechanical energy is conserved, i.e. T+V=E=constant.

Exercise 2-7. Fill in the steps to verify equation (2-12).

The energy integral is the tenth and last known constant of the motion for the n-body problem. 
The ten constants are Vo, Ro, H, and E. The existence of additional integrals has been investigated 
extensively and summarized in Moulton [1]. Brun has shown that the 10 known integrals are the 
only independent integrals in rectangular coordinates that are algebraic and Poincare has shown 
that if the orbital elements [Section 3.3] are used as generalized coordinates there are no 
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independent uniform transcendental integrals. Jacobi has also shown that if all but two of the 
integrals exist it is always possible to get the last two integrals. Hence, the ten integrals above plus 
Jacobi’s theorem assures a solution of the two body problem.

2.5 Planetary Ephemerides

An ephemeris is a tabular representation of the motion of some body. A planetary ephemeris is 
a tabulation of the motion or trajectory of a planet and a satellite ephemeris is a tabulation of the 
motion or orbit of a satellite. Prior to modern computer technology and the GPS constellation, the 
planetary ephemerides were published annually as a listing of the position of the planets 
throughout the year. This information was very useful to astronomers and navigators. These tables 
were of sufficient accuracy for most optical observations. Early tables were recorded on paper and 
generally included the position and difference tables at uniform time intervals. Lagrange or other 
interpolation polynomials were used to determine intermediate positions. Current ephemerides 
are in a similar format but of course recorded on computer compatible media. Ephemerides can be 
defined with various levels of accuracy. The most accurate ephemerides are generated using the 
equations of motion from general relativity. Less accurate ephemerides are generated by omitting 
various terms from the equations of motion.

2.5.1 General relativity

The theory of general relativity is thought to completely describe the gravitational interaction of 
bodies [2]. However, the interaction is so complicated that even the one body problem, i.e. a 
particle with negligible mass being attracted by a body of finite mass, has not been solved. 
Approximations must be made to even write the equations of motion. For a body in the solar 
system the equation of motion is given to order 1/c2 as:

(2-13)

where the last term includes the Newtonian effects of the five largest asteroids. Note that the 
acceleration depends on the position, velocity and acceleration of the other bodies. Observe that 
most of the general relativistic terms are of the form (v/c)2. Also note that the right hand side 
includes accelerations, a phenomena that can not occur in Newtonian mechanics. This equation is 
included just to demonstrate the complexity of calculating precision ephemerides.

2.5.2 Approximate ephemerides
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The simplest ephemerides are often given as a set of Keplerian orbital elements (Chapter 3). 
The next level of precision would also include simple time dependent variations in these 
elements. Over a century, errors in these simple models can be millions of kilometers for the outer 
planets and somewhat less for the terrestrial planets. Nevertheless, they are generally adequate for 
mission analysis studies and optical observations. Listed below are the orbital elements for 
Venus, Earth and Mars at J2000. The complete listing is given in [3,316].

The orbits elements are from left to right, semi-major axis in astronomical units [3,696] (1 AU= 
149,597,870.66 km), eccentricity, inclination to the mean ecliptic (Section 1.2.2) of J2000, 
longitude of the ascending node relative to the mean equinox of J2000, longitude of perihelion, 
and mean longitude at J2000=JED 2451545.0 (Section 1.3.4). The argument of perihelion is ω 
and  where Mo is the mean anomaly at J2000. The four angles are in degrees. Note 
that the ephemeris is for the Earth-Moon barycenter. The gravitational constant for the Sun 
[3,700] is 1.327124 x 1011   km3/s2.

2.6 Problems

2-1. Show that the gravitational force on a particle inside a homogeneous spherical shell 
vanishes.

2-2. Find a mistake in equation (2-13)

2.7 Astronautics Toolbox

1. Write a function OE=PlanetOE(JD,PlanetNum), that returns the six orbital elements(OE) at 
the Julian date=JD. Use PlanetNum=1..9 to identify the planet and include the centennial 
rates. Return kilometers and radians. Get the elements from the  table of Mean Orbital Ele-
ments at http://ssd.jpl.nasa.gov/

2.8 References
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Table 2-1. Planetary Orbital Elements

Planet  a     e  i Ω

Venus 0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973

Earth-Moon 
Barycenter 1.00000011 0.01671022 0.00005 -11.26064 102.94719 100.46435

Mars 1.52366231 0.09341233 1.85061 49.57854 336.04084 355.45332

ϖ ω Ω+= λo

λo Mo ϖ+=
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Chapter 3 - Two Body Problem

3.1 Introduction

The relative motion of two particles under their mutual gravitational attraction is the corner stone 
of the planetary ephemerides, lunar motion, the motions of planetary moons, and artificial satellite 
theories. Almost all interpretations of the effects of other forces, such as non-spherical gravity 
fields (Section 5.4.2), N-body gravitational attraction (Section 2.3), atmospheric drag 
(Section 5.5.1), and solar pressure (Section 5.4.5), are described in terms of perturbations, i.e. 
small or slowly varying changes to the two body solution [Chapter 5].

3.2 Kepler’s Laws

Using the relatively precise measurements of his mentor, Tycho Brahe, the essentials of two body 
motion were determined empirically by Kepler and captured in the three simple laws:

1. Elliptic motion law: The heliocentric orbit of each planet is in a fixed plane and elliptical 
with the Sun at one focus (1609).

2. Equal area law: The line from the sun to the planet sweeps out equal area in equal time 
(1609).

3. Orbital period law: The square of a planetary period is proportional to the cube of the mean 
distance from the Sun (1619).

Kepler tried for a number of years to fit variations of moving circles and ovals to the observations 
of Mars, at that time the only planet with an observable eccentric orbit. It was on the verge of 
quitting that he tried an ellipse with the Sun at a focus [1,141].

3.3 Integrals of the Two Body Problem

The equations of motion for two particles are given by equations (2-10) with n=2

where r = r1 - r2 defines the relative position of m1 with respect to m2. With M=m1+m2, the 

equation of relative motion of m1 with respect to m2 is obtained by forming  and substituting 
from the equations above to obtain the fundamental equation of motion for the two body 
problem

(3-1)

In the two body problem GM is often represented by µ. It is noted that relative motion depends 
only on the total mass of the two bodies. Also the equation is symmetric, that is, the equation of 
motion is independent of the reference body. For many problems one of the masses is much 
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greater than the other and there is a tendency to forget that the more massive body is also orbiting 
the less massive body. Equations (3-1) are a set of three second order, coupled, non-linear, 
homogeneous, autonomous, ordinary differential equations. The solution therefore requires six 
independent integrals or constants. Since the equations are non-linear, a closed form solution in 
terms of elementary functions is not expected. Even though the autonomous nature means the 
reference epoch for time in not required, in orbital mechanics, as discussed in Chapter 1, it is 
prudent to think of time in terms of year, month, day, hour, minute and seconds of ephemeris or 
dynamic time (1.3.2).

3.3.1 Angular momentum.

From Section 2.4.2, the total system angular momentum is conserved. The specific relative 
angular momentum (simply referred to as angular momentum)  is also conserved. To 
test for conservation of angular momentum, it is natural to form the cross product of r with 

equation (3-1) to obtain . Clearly angular momentum is conserved for any 
central force system. Since h is a vector, it represents three constants of integration and one 
immediate implication is that the relative position and velocity vectors must lie in the plane 
normal to h and through the center of mass of the reference body. This plane is called the orbit 
plane. Both bodies move in the same plane which contains the barycenter of the system. Kepler's 
observation that the planetary motion is planar is thus a result of the conservation of angular 
momentum. The second of Kepler's laws is also derived from this result as follows. Let θ be the 
angular position in the orbital plane measured from an arbitrary reference line. The magnitude of 
the angular momentum is the radial distance times the angular component of the velocity, i.e. 

. But, from elementary calculus the area sweep out in time dt is ½r2dθ. Thus, 

conservation of angular momentum implies that the orbital motion will sweep out equal 
area in equal time. This is a verification to Kepler's equal area law (Section 3.2.). Angular 
momentum can also be written as  where γ is the flight path angle or angle between 
the velocity and the local horizontal.

3.3.2 Energy.

Total system energy is conserved as seen in Section 2.4.3. The test for relative conservation of 

mechanical energy is to form the rate at which the system forces are doing work i.e. . 
Forming the dot product of the velocity with equation (3-1) yields

since  (B-2). This leads immediately to the energy integral

(3-2)

thus providing the fourth of six necessary constants of integration. From the form of the equation 
it is clear that the energy can be positive or negative because the potential energy has been refer-
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enced to r = . If the initial conditions have a “low” velocity and a “small” radius the energy will 

be negative. Specifically, if initially  then the energy is negative. In this case, the energy 
integral alone limits the motion to the bounded, spherical region . This spherical sur-
face is called a zero velocity surface because it is a surface that can not be crossed once the 
energy is known. If, on the other hand,  there are no spatial limit to the motion provided by 

the energy integral. When E>0 equation (3-2) is often written as , to 

show that there is a non-zero velocity as the particle approaches an infinite distance. The velocity 
at infinity is  which is zero if E=0 corresponding to an infinite radius for the surface of zero 

velocity. The escape velocity or parabolic velocity is ve, which is the minimum velocity at dis-
tance r that will provide “escape” from the central body.

Exercise 3-1. Use the energy integral to show that if the initial conditions are such that rovo
2 = µ, 

then the maximum distance between the bodies is 2ro.

3.3.3 In-plane orbit geometry

Equation (3-1) describes the three dimensional motion; but, from above it is known that the 
motion is in the plane normal to h. If h=0 then r and v are co-linear and the motion is a straight 
line toward or away from the center of attraction. This case will be considered later. Otherwise, it 
is desirable to have a form of the EOM that only describes the motion in the plane. To this end, 
cross h(≠0) with  equation (3-1) to get

 

Recalling that h and r are orthogonal and using the magnitude of h from above gives

since  (B-2). Straight forward integration yields

(3-3)

where c is the vector constant of integration. It is seen that c lies in the orbit plane, is 
dimensionless and was obtained by the integration of a vector equation. Since c is in the orbital 
plane, it does not provide three new constants of integration. As shown below c provides the 
direction of the line of apsides of the conic orbit and thus c only provides the fifth of the necessary 
integrals. This can be seen by reducing equation (3-3) to a scalar equation by forming the dot 
product with r to get
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where f is the angle between r and c. Solving for r gives the equation of a conic section with 
origin at a focus

(3-4)

where the semi-latus rectum is p=h2/µ, the eccentricity  and the true anomaly f is the 
angle from the line defined by the minimum r (periapsis) to the current value of r. Note that p is 
completely determined by the angular momentum. For an ellipse p=a(1-e2) where a is the length 
of the semi-major axis of the ellipse. Equation (3-4) is called the equation of the orbit and is the 
mathematical statement of Kepler’s elliptic motion law (Section 3.2).

Exercise 3-2. Starting with the equation of an ellipse with origin at the center, ξ2/a2 + η2/b2 = 1, 
show that equation (3-4) is the equation of the ellipse with origin at a focus and that p=b2/a where 
b is the length of the semi-minor axis.

If p≠0, the type of conic section is determined by the eccentricity. The minimum radius occurs 
when the denominator of equation (3-4) is a maximum i.e. when f=0. When e=0 the radius is a 
constant so the motion is in a circle. If e<1 there is a maximum radius at f=π, and the motion is 
elliptical. If p≠0 and e=1 the motion is parabolic and the radius is infinite at f=π. Finally, if e>1 
the motion is hyperbolic and the asymptotes correspond to values of true anomaly ( ) that make 

the denominator zero, where . There is thus a range of forbidden values of 

true anomaly for hyperbolic motion. For hyperbolas, the geometric definition of p is a(e2-1) with 
a>0. In orbital mechanics it is convenient to set p=a(1-e2) and let a<0 for hyperbolic motion. It is 
generally clear by inspection which convention is being used. However, computers do not have 
such reasoning capability, so care must be exercised in computer programs to pick a convention 
and use it throughout all procedures.

Figure 3-1 shows the orbit geometry for the 
elliptical case. The periapsis distance is rp=a(1-e), 
apoapsis distance ra=a(1+e), semi-latus rectum 

p=a(1-e2) and semi-minor axis is . 
The distance from the center to the focus is ae.

Regardless of the type of conic, at periapsis the 
velocity must be normal to the radius so 
h2=rp

2vp
2=µp. From above, rp=a(1-e) and p=a(1-

e2) for elliptic and hyperbolic motion, so

  

Evaluating the energy integral equation (3-2) at 
periapsis leads to E= -µ/2a. So that a more traditional version is the vis-viva integral

r p
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-----------------------=

e c 0≥=
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Figure 3-1. Elliptical orbit geometry
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(3-5)

Exercise 3-3. Fill in the steps from equation (3-2) to equation (3-5).

By comparing equation (3-3) and the vis-viva integral at periapsis, it can be seen that c=eer, i.e. c
points toward periapsis and has magnitude equal to the eccentricity. So c is redesignated as e, the 
eccentricity vector and is given by 

(3-6)

Note that the eccentricity vector is NOT a unit vector. It is well defined for all cases with . 
Since r can never be zero, er is always defined. If  the conic is degenerate and the 
motion is rectilinear, i.e. a straight line either toward or away from the center of attraction. In 
either case e = -er, and as would be expected the periapsis is in the opposite direction of the 
position vector.

Exercise 3-4. Derive equation (3-6) starting with equation (3-3).

Exercise 3-5. Draw and annotate a sketch like Figure 3-1 for the parabolic and hyperbolic cases. 
Show the asymptotes for the latter case.

3.3.4 Orbital plane orientation

The orientation of the orbit plane in three dimensional space and the location of the line of apsides 
in the orbit plane are usually defined by the [3,1,3] Euler rotation angles [Ω, i, ω]. These angles 
are illustrated in Figure 3-2 and can be calculated from the angular momentum vector and 
eccentricity vector. Like all three parameter representations there is a singularity, i.e. a situation is 
which the angles are not unique. With latitude and longitude the singularity is at the pole where 
longitude is undefined. For the [3,1,3] rotation, the singularity is when i=0 or π and neither Ω nor 
ω are uniquely defined. However, the longitude of periapsis, ϖ=Ω+ω may still be well defined if 

 even though it is not an angle in the usual sense. 

If , the orbital inclination is given by

(3-7)

where the h=0 case is discussed in 
Section 3.11. An orbit with i<π/2 is said to be a 
direct orbit. An orbit with i=π/2 is called a 
polar orbit and if i>π/2 the orbit is said to be a 
retrograde orbit.

The ascending node is the point where the 
particle passes through the x-y plane with 
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Figure 3-2. Orbit orientation elements.
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positive . The unit vector in this direction is in both the x-y plane and the orbit plane and is given 
by 

(3-8)

The cases where this definition does not provide a unique vector (i.e. h=0 or h=hez) are discussed 
in Section 3.11. The longitude of the ascending node is given by

(3-9)

Which can also be written as

(3-10)

and provide the tradition means of determining both inclination and longitude of the node.
If  define a unit vector toward periapsis . The argument of periapsis is then 
given by 

(3-11)

Equations (3-5) through (3-11) can be evaluated from the initial conditions r(to) and v(to) to 
determine the five Keplerian elements a, e, i, Ω, and ω as five constants of integration. The sixth 
orbital element, and last integration constant, is developed in the next section.

3.3.5 Motion in the orbital plane

None of the above five integrals of the motion explicitly involve time, i.e. given a time there is no 
relation above that will provide the position and velocity of the body. One approach to developing 
a relation between time and position in orbit can be derived from the vis-viva integral and 
conservation of angular momentum in the form

giving as the differential equation for r

(3-12)

This integral involves the square root of a quadratic polynomial and can therefore be integrated in 
terms of elementary functions to yield r as a function of time. The form of the solution depends on 
the sign of the coefficient of r2, yielding regular trigonometric functions if the coefficient is 
negative (elliptical motion, a>0), hyperbolic functions if the sign is positive (hyperbolic motion, 
a<0), and simple functions if the coefficient is zero (parabolic motion, 1/a=0)
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In elementary calculus one method for integrating similar forms is to replace the dependent 
variable by a trigonometric variable. Without justification, new variables E and F are introduced 
for the elliptic and hyperbolic cases:

(3-13)

The elliptic eccentric anomaly, E, is seen to be a well defined variable permitting r to vary from 
a(1-e) to a(1+e) as required by the equation of the orbit, equation (3-4). Also it is seen that if 
0<E<π then 0<f<π and likewise if π<E<2π then π<f<2π. Similarly for the hyperbolic eccentric 
anomaly F.

From this point, only the elliptical case will be developed in detail. Since E is well defined, the 

definition above can be differentiate with respect to time to yield . After this 
expression and the definition are substituted into equation (3-12) a little algebra leads to 

. This equation can be immediately integrated to yield Kepler's 
equation for the elliptical case

(3-14)

which provides the sixth and final constant of integration τ, the time of periapsis passage. The 

mean motion is denoted . The time from one periapsis passage to the next is the 

period, P. Since E would change by 2π during this time, , which is Kepler's 

orbital period law (Section 3.2). In practical orbital analysis it is not uncommon for t-τ to be larger 
than the orbital period. Thus the analyst must be prepared for |E| > 2π. The mean anomaly is 
defined by M=n(t-τ) and describes an angle that evolves linearly with time. The mean anomaly 
permeates orbital mechanics but is purely for notational convenience as a surrogate for time. 
From Kepler's equation, the difference between mean anomaly and eccentric anomaly is periodic 
and is never greater than the eccentricity.

Exercise 3-6. Make the substitution (3-13) in (3-12) to verify equation (3-14).

Following the same steps for the hyperbolic case and recalling that a<0 and e>1, Kepler's 
equation for hyperbolic motion can be shown to be

(3-15)

where  and if t<τ then F<0. The concept of orbital period is of course meaningless 
for this case, nevertheless the notation M=n(t-τ) is still used. Most text do not associate Kepler 
with this equation since he did not derive it. Nevertheless, to shorten terminology, both elliptic 
and hyperbolic forms will be referred to as Kepler’s equation.

The parabolic case is easier to derive from the conservation of angular momentum in the form 

. For a parabola, e=1, so the equation of the orbit can be written as 
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. Combining these two leads to the equation  which 

can be integrated to yield Barker’s equation

(3-16)

For notational continuity, M is also defined for parabolic motion, but the functional form is 
different than in Kepler’s equation.

Exercise 3-7. Perform the elementary integration to derive equation (3-16).

In equations (3-14) through (3-16) the time of periapsis is an ephemeris time (Section 1.3.3)
epoch often defined in either Julian day (Section 1.3.4) or YYMMDDHHMNSS.SS notation. 
Time must generally be carried to the microsecond level and is often represented by two numbers 
to maintain such accuracy. Typical representations are (1) modified Julian date (1.3.4) and 
seconds into the day, (2) year and seconds from beginning of the year, (3) YYYYMMDDHHMM 
and SS.SSS.... form and (4) year and day of the year.

This completes the development of the classical Keplerian orbital elements for the two body 
problem. For elliptical and hyperbolic motion a, e, i, Ω, ω and τ are utilized. For parabolic motion 
a and e are replaced by the single parameter p. Parabolic motion has only 5 independent 
parameters to define the orbit since it is known that e=1.

The trigonometric relationships between the true and eccentric anomalies can be derived directly 
from the equation of the orbit, equation (3-4), and (3-13), giving for f(E) and f(F)

(3-17)

Exercise 3-8. Invert equations (3-17) to obtain E(f) and F(f) as given in Table 3-1

3.4 Orbital Elements from Initial Position and Velocity

The calculation of the classical Keplerian orbital elements (a, e, i,  Ω, ω, τ) given r and v at time t 
is relatively straight forward using the equations above. Modern tracking accuracies require that 
double precision calculations be performed for most orbits. The issues in calculating the orbital 
elements are (1) when to assume a non-degenerate orbit is parabolic ( ), and any special 
consideration for (2) the circular orbit case ( ), (3) the low inclination case ( ) and (4) 
the degenerate conic case ( ). One approach to these issues is given in Section 3.11. For the 
rest of this section these subtleties will be ignored.

The following steps provide the method to calculate the orbital elements from position and 
velocity.
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1. Use the vis-viva integral equation (3-5) to calculate , the reciprocal of the semi-
major axis. The reciprocal is used since it is well defined even for parabolic orbits.

2. Calculate angular momentum and related variables .

3. Use equation (3-7) to determine inclination, i.

4. Use equations (3-9) or (3-10) to determine ascending node longitude, Ω.

5. Utilize equations (3-6) and (3-11) to determine argument of periapsis, ω.

6. Finally, τ, the time of periapsis is calculated using either equation (3-14), (3-15) or (3-16) 
depending on the sign of z. Quadrants are determined using r and  along with 
either: 

a.  for elliptical (z>0) motion.

b.  for parabolic (z=0) motion.

c.  for hyperbolic (z<0) motion.

Return z, p, i, Ω, ω and τ as the element set.

Exercise 3-9. From equations in Section 3.3, develop the expression for sinE in part a. and sinf in 
part b.

Numerous other sets of six elements have been developed. Some of these are combinations of 
Kepler elements utilized to eliminate a singularity for a particular problem. For examples, 
P=esinω and Q=ecosω have been used for low eccentricity orbits, while R=sinisinΩ and 
S=sinicosΩ have been used for low inclination orbits. Various sets of “universal variables” have 
also been utilized. These are valid for all three types of orbits at the cost of introducing new 
functions defined in terms of infinite series [2,168] or in terms of continued fraction [1,187] or 
simply branching and using the equations above. However, the classical elements provide 
physical insight into orbit geometry and are adequate with careful handling of degenerate or 
nearly-degenerate cases as discussed in Section 3.11.

3.5 Solution of Kepler's and Barker's Equations

If the position and velocity are given at some time t, then either Kepler's or Barker's equation can 
be used to calculate the time of periapsis. On the other hand, these equations are transcendental 
functions of the anomalies. So if the orbital elements are given and position and velocity at time t 
are desired, solution methods for Kepler’s and Barker’s equations must be developed.

Barker's equation (3-16) for parabolic motion is a cubic in tan(f/2), so a closed form solution exist 
from elementary algebra. Battin [1,151] gives a computationally robust solution repeated here. 
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ne
---------= Ecos 1

e
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fsin r· p
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ne
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e
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Referring to (3-16) let  then the solution 

to Barker's equation is 

(3-18)

Exercise 3-10. Verify that equation (3-18) is a solution by substitution into (3-16).

For the elliptical motion case there are two popular approaches to solving Kepler's equation. The 
first is successive substitution

(3-19)

and the second is Newton iteration

(3-20)

Danby [2,149] and Meeus [3,181] provide excellent discussions of iteration methods, evaluations 
of various starting values, and the advantages of including higher order Taylor series terms in the 
Newton iteration. Colwell [4] provides a history of solving this equation. Successive substitution 
is easiest to implement but can require 10 or more iterations even for e<0.1 and may not converge 
for e>0.8. The traditional starting value is E1 = M, but Newton’s method can become unstable due 
to the denominator being small when |M|<π/6 and 0.95<e<1. However, with the proper starting 
condition Newton’s method will converge in less than five iteration for all M and any e<1 [3,181]. 
Danby [2,152] suggest an initial guess of E1 = M+0.85 e sign(sin(M)) which will converge in six 
or less Newton iterations to eleven decimal places for . 

Exercise 3-11. Implement both equation (3-19) and equation (3-20) with different starting 
conditions and evaluate the convergence properties for 0<M<2π and 0.05<e<0.95. Write a 2-3 
page paper on the results. Use the starting values above and consider equation (3-23).

For the hyperbolic case e>1 so that successive substitution must take the form 

to assure convergence. Recall that inverse hyperbolic functions can be written in terms of 

logarithms, for example, .

3.6 Position and Velocity from Orbital Elements

If the orbital elements are known, then the position and velocity at any time t can be found by the 
following process.
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a.) Based on z=1/a determine the type of orbit. Calculate M and if elliptical make 

b.) Determine the eccentricity from p and z.

c.) Solve Barker’s or Kepler’s equation for the anomalies,  or F as appropriate.

d.) Calculate r,  and 

e.) Determine the position vector using the [3,1,3] rotation [Ω, i, ω+f] starting with (r,0,0)

f.) Determine the velocity vector using the [3,1,3] rotation [Ω, i, ω+f] starting with ( , ,0)

The explicit transformations are

(3-21)

(3-22)

where θ=ω+f corresponds to the third rotation. Note that .

3.7 Expansions for Elliptic Motion

In the era of analytic solutions it was often necessary to make approximations to arrive at any 
solutions at all. Taylor series expansions are a familiar tool. For periodic orbital motion the 
Fourier series representations are generally more useful and there are numerous such 
representations in the two body problem. These are developed in detail in a number of reference 
books [1,206], [5,33], [6, Chapter II] and will not be developed here. Such expansions are useful 
for making initial estimates for iterative solutions, for obtaining approximate solutions, for 
making order of magnitude estimates, and in orbit perturbation problems (Section 5.4.1). A few of 
these expansions are given below to terms through eccentricity cubed. The inversion of Kepler's 
equation yields

where Jk are Bessel functions of the first kind of order k. Bessel invented these functions for the 
two body problem rather than as the solution to a differential equation. Explicitly, through terms 
of order e3
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(3-23)

In this equation and those below, any term in square brackets [] is a truncated infinite series. 
Within the radius of convergence, the complete expansion could be used to solve Kepler's 
equation without iteration. But, this is impractical since iteration is faster. Nevertheless, the first 
few terms can be used to obtain a first estimate for the iterative solution. It is to be noted that this 
series does not converge rapidly for large eccentricity. A similar expansion for r

(3-24)

can be used to directly estimate r(t) without solving Kepler's equation. Since integration of M 
over 2π is the same as integrating over an orbital period, note that the mean value of r over an 
orbit in not a. The expansion for true anomaly is also a double infinite sum [1,212] 

(3-25)

If e < 0.01, as is common for LEO and many other satellites, the last two equations can be used to 
calculate the position and velocity to six significant figures without solving Kepler's equation. 
Two additional series will be used in Chapter 5.

(3-26)

(3-27)

3.8 F and G Functions

The solution of equation (3-1) can be written as a Taylor series expanded about some time to with 

initial conditions rO and vo i.e. . Second and 

higher order derivatives can be eliminated using (3-1). Following Danby [2,163], let  

and , then  and it can be shown that  etc. So the 

series can be written [2,437] in terms of rO and vo and constants σ, ε and δ = (vo/ro)2.

An expansion of this form might have been expected since two body motion takes place in the 
plane (or line) defined by the initial position and velocity vectors. These vectors can be therefore 
used as basis vectors for any motion in the plane (or line). The two series are called the F and G 
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functions and they are analytic in some neighborhood of to since the series has a non-zero radius 
of convergence. Thus the position and velocity can be written as

(3-28)

Since ,  and also note that these equations are 

valid component wise, i.e. x(t)=F(t,to)xo + G(t,to) . Because of slow convergence, this form has 
had limited utility except as a basis for analytic approximations over short times. A more useful 
form can be obtained by first introducing the orbital coordinate system (ξ, η, ζ). The origin of 
this system is the center of attraction and the fundamental plane is the orbit plane, i.e. the ζ axis is 
along h. The ξ axis points to periapsis to define the fundamental direction and the η axis 
completes the right hand system pointing in the direction of the velocity at periapsis. The 
following relations can be developed from the above

(3-29)

Equations (3-28) are independent of the particular coordinate system chosen and so are equally 
applicable to the orbital system, i.e.

(3-30)

If ηt and ξt are considered as being known, then these equations can be thought of as two 
equations in the two unknowns F and G so that 

(3-31)

where it is noted that the determinant of the coefficients of F and G is the angular momentum, 
h>0. Similar arguments can be made for the velocities. The states in the orbital coordinate system 
can be eliminated in favor of either the true or eccentric anomaly using equations (3-29) to yield

(3-32)
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Thus the F and G functions can be determined for any times t and to by solving Kepler's equation 
at the respective times to obtain E and Eo. The orbit position can then be propagated from any 
time to to any time t using (3-28). The three Euler angles (Ω, ω, i) are not required in this 
approach.

Exercise 3-12. Utilize equations (3-29) through (3-31) to derive the first line of equations (3-32).

3.9 Coordinate System Rotation

The (3,1,3) rotation matrix Φ from the orbital coordinate system  to the r=(x,y,z) 
system ( ), where 

(3-33)

can be determined directly using the spherical trigonometry relations given in Section 1.2.1 or 
from the multiplication of the three rotation matrices (B-1).

3.10 State Propagation

Mapping or propagating the state at time to to some other time t is one of the most common 
problems in orbital mechanics. For two body motion, two common approaches are

1. Transform the state at time to to orbital elements at to and then transform the orbital ele-
ments to the state at time t. This process would use the X2ORB and ORB2X procedures 
developed for the toolbox. This approach will also permit inclusion of secular and long 
period variations in the orbital elements due to perturbations to be discussed in Chapter 5.

2. Determine only a, e, τ and Eo from the state at time to. Solve Kepler's equation at time t for 

E, evaluate F, G, , then use equations (3-28) or the parabolic or hyperbolic equiv-
alents to determine the mapped position and velocity. Unless orbital elements are specifi-
cally desired or orbital perturbations must be included, this approach is the preferred 
method and utilizes the X2X procedure developed for the toolbox.

3.11 Degenerate, Circular and Nearly Parabolic Orbits

Numerical calculations will generally not exactly satisfy the conditions for determining the orbital 
elements for degenerate, low inclination, zero eccentricity, or parabolic orbits. When the 
condition is “nearly” satisfied, the analyst may elect to force the condition to be satisfied exactly. 
For example, for nearly parabolic motion, forcing parabolic motion has the advantage that 
Barker's equation is easier to solve than either form of Kepler's equation when the eccentricity is 
nearly unity. The near circular orbit case means that the argument of periapsis ω will be poorly 
defined from equation (3-11) because the eccentricity vector will be the difference of two much 
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larger vectors in (3-6). One can accept the values from (3-11) or by convention define a value to 
ω. The zero inclination case has a similar problem in that the line of nodes is poorly defined by (3-
9) because hx and hy are nearly zero. Finally, degenerate conics, i.e. h=0 can occur for elliptical, 
parabolic and hyperbolic orbits. As seen from (3-6), all degenerate orbits have unit eccentricity 
and the eccentricity vector is in the opposite direction of the position vector. For degenerate 
orbits, (3-4) is not valid and true anomaly is undefined. However equations (3-13) through (3-15)
are still valid. Barker's equation must be derived for the degenerate parabolic motion (Problem 3-
1). The following steps provide general direction for the calculation of the orbital elements in 
these cases. The tolerance parameter “tol” is analyst supplied and depends on the accuracy 
requirements of the problem and the computer. For double precision 1e-8< tol < 1e-10 might be 
considered.

• If |zr| < tol the semi-major axis is very large compared to the initial position so set z=0 to 
assure parabolic motion.

• If e < tol, put periapsis at the initial position i.e. set e= er  and τ=time of the initial conditions.
If p/r < tol, set e = -er, f = -π, and p = 0. For parabolic motion, use the results of Problem 3-1 to 
determine τ; otherwise, use E or F calculated from equation (3-13). Use  to remove ambiguities. 
There are a number of options for ascending node and inclination for rectilinear orbits. One option 
is to set  and select eh to assure the orbit plane passes through er. Another option is to set 
i=π/2 and tanΩ=y/x.
• If 1-|cos(i)| < tol, set i=0 or π and  or .

r·

eΩ ex=

eΩ ex= eΩ er=
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3.12 Table of Relationships

Some of the following relations are not valid if p=0. For hyperbolic orbits a<0.
 

Table 3-1. Two-body Problem Relationships
Variable Ellipse a>0, e<1  Parabola z=0, e=1 Hyperbola a<0, b<0, e>1
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3.13 Problems

3-1. Starting with equation (3-12), derive a form of Barker's equation (3-16) for degenerate 
parabolic motion.

3-2. Show that for small |t-to|, equation (3-32) reduces to the expected limit.

3-3. Develop the equivalent of equations (3-32) for parabolic orbits.

3-4. Develop the equivalent of equations (3-32) for hyperbolic orbits.

3-5. Verify the Φ(2,2) term in equation (3-33) using spherical trigonometry relations.

3.14 Astronautics Toolbox

1. Write a procedure that returns the rotation matrix (3 by 3) for an arbitrary [3,1,3] set of rota-
tions [α,β,γ], Φ=Rotate313(α,β,γ,ichk).

2. Write a procedure to solve Barker's equation (3-16), f=Barker(t,τ,p,µ,ichk). Assume t is (n by 
1).

3. Write a procedure to solve Kepler's equation (3-14) for elliptic motion using Newton-Raphson 
iteration, E=Kepler(M,e,tol,ichk).  Assume M is (n by 1) and “tol” is the relative error in E for 
convergence.

4. Write a procedure to solve Kepler's equation (3-15) for hyperbolic motion using Newton-
Raphson iteration, F=KeplerH(M,e,tol,ichk).  Assume M is (n by 1) and “tol” is the relative 
error in F for convergence.

5. Write a procedure to transform from rectangular coordinates to orbital elements for any type 
of motion. [OE]=X2Orb(t,r,v,µ,ichk), where r and v are given at a single time t and OE is the 
six vector (z,p,i,Ω,ω,τ).

6. Write a procedure to provide position and velocity at an array of times for any type of orbit. 
[r,v]=Orb2X(t,OE,µ,tol,ichk) where t is (n by 1), OE is the six elements used above, and "tol" 
is the relative accuracy for convergence of Kepler’s equation. Output position and velocity are 
both (n by 3).

7. Write a procedure, using the F and G function approach, to transform from an initial state at 
time t1 to states at an array of times t. [r,v]=X2X(t,t1,r1,v1,µ,tol,ichk), where, t (n by 1) and r 
and v are (n by 3).

3.15 References

1. Battin, R.H., An Introduction to the Mathematics and Methods of Astronautics, 
AIAA Education Series, 1987.

2. Danby, J.M.A., Fundamentals of Celestial Mechanics, Willmann-Bell, Richmond, Va., 
1989.

3. Meeus, John, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, Va., 1991.
3 - 17



MAE 589C Space Flight Mechanics a.k.a Astrodynamics August 24, 2005 9:42 pm
4. Colwell, Peter, Solving Kepler’s Equation over Three Centuries, Willmann-Bell, Inc., 
Richmond, Va., 1993.

5. Plummer, H.C., An Introductory Treatise on Dynamical Astronomy, Constable and 
Company Limited, 1918. Also available from Dover, 1960.

6. Brouwer, D. and Clemence, G., Methods of Celestial Mechanics, Academic Press, 1961
3 - 18



MAE 589C Space Flight Mechanics a.k.a Astrodynamics August 24, 2005 9:42 pm
Chapter 4 - Three Body Problem

4.1 Introduction

The three body problem has been of considerable interest for centuries because the Earth-Moon-
Sun system can be approximated as a three body problem. During the Apollo era, the problem 
received renewed interest since the two dominate forces action on the spacecraft were due to the 
Earth and the Moon. Even for this system, requiring 18 integrals, a closed-form solution of the 
general problem does not appear feasible and there are no known integrals beyond those 
discussed in Chapter 2. The three body problem was recognized by Poincare as being what we 
now call a chaotic system, i.e. the characteristics of the motion are very sensitive to the initial 
conditions. There exist, however, particular solutions of the three-body problem obtained by 
Lagrange in 1772, which will be discussed later.

4.2 Restricted Problem

Of interest in the problem of three bodies is the special case in which the mass m of one of the 
bodies is so small that its motion does not affect the motion of the two remaining bodies. The 
motion of the two massive bodies m1 and m2 is obtained from the solution of the two-body 
problem and can be assumed to be known. The problem is further restricted by considering the 
case in which m1 and m2 move in circular orbits about their barycenter with constant angular 
velocity ω whereas the infinitesimal mass m moves under the combined gravitational attraction of 
both m1 and m2. Under these circumstances, the problem is reduced to the investigation of a 3-
degree of freedom (DOF) system. This problem is called the restricted problem of three bodies. 
If m is further restricted to the plane of motion of m1 and m2, there is a 2-DOF system.

The classical coordinate system has the origin at the barycenter and the fundamental plane is the 
plane of motion of the two finite bodies. From equations (2-10) the equations of motion are 

(4-1)

where ρ0i is the distance from m to mi and ρi is the position vector of mi. Select as the unit of 
length the constant distance between m1 and m2 and the unit of mass so that m1+m2=1. It is 
readily shown (Section 3.3.5) that the mean motion of the two finite masses is unity, i.e. n=ω=1.

Now transform to a rotating coordinate system so that the two finite masses remain on the x axis. 
Let r be the position vector in the rotating system, then the transformation is

Using this expression to transform the above equations of motion to the rotating frame yields 
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(4-2)

where wolog  is the normalized mass of m2, x1=-µ is the location of m1 and x2=1-µ is the 
location of m2 on the x axis, and ri is the distance from m to mi. These equations can be written as

(4-3)

where the pseudo-force function is defined by

(4-4)

The latter two terms come from the gravity potential and the first term comes from the 
“centrifugal potential.”

Exercise 4-1. Fill in the steps from equation (4-1) to equation (4-2) for the x-component

Exercise 4-2. Verify that equations (4-3) and (4-4) are equivalent to equation (4-2)

The only integral of this system is an energy type integral discovered by Jacobi. To seek an 
energy integral, multiply each of equations (4-2) by the corresponding velocity component and 
add the three equations. The sum is integrable and leads to Jacobi's integral 

(4-5)

The constant C is called Jacobi's constant. Although this is the only known integral of the six 
required, it has proven very useful in studying orbital motion in systems that can be approximated 
by the restricted problem.

Exercise 4-3. Fill in the steps to develop equation (4-5) starting with equation (4-2).

4.2.1 Jacobi’s integral and Tisserand's criteria 

It is believed that the Oart cloud is the source of observed comets. This cloud is well outside the 
orbit of Pluto. Comets in the cloud are generally in nearly circular orbits about the Sun. However, 
close encounter between two comets or perturbations from nearby stars or Jupiter could 
significantly reduce the angular momentum of a comet so that the new perihelion is a few 
astronomical units or less. Many years later the comet may pass sufficiently close to the Sun and 
the Earth that the ablating ice is visible from the Earth. The comet will either be in a periodic orbit 
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about the Sun or the encounter in the Oart cloud added enough energy that the comet will 
subsequently escape the solar system. Observed periodic comets will therefore be in orbits with 
eccentricities near unity and large semi-major axes. Most of the orbital period is spent in the outer 
part of the solar system, otherwise the comet would have long ago been destroyed by the Sun's 
radiant energy.

If the elliptical orbit of a comet is unperturbed by one of the planets, subsequent appearances of 
the comet can be identified by the two body orbital elements about the Sun. On the other hand, if 
the comet is perturbed by a single planet then Jacobi's integral can be applied to the Sun, the 
perturbing planet, and the comet three body system so that the comet can be identified by Jacobi's 
constant. Tisserand found a simple way of relating Jacobi's constant to the Keplerian heliocentric 
orbital elements. Transform Jacobi's integral back to the non-rotating (ξ,η,ζ) system to get 

(4-6)

where ρ0i is defined above. For planets µ<<1 so that the first three terms can be interpreted as the 
velocity relative to the Sun and the next two terms as the ζ component of angular momentum 
relative to the orbital plane of the planet about the Sun. 

Exercise 4-4. Fill in the steps to develop equation (4-6) starting with equation (4-5)

Using the vis-viva integral equation (3-5) and  reduces Jacobi's integral to

where 1-µ has been set to unity on both sides of the equation. If Jacobi's constant is evaluated 

when the comet is far from the perturbing planet  this equation becomes

Evaluating this relation before and after the encounter with the perturbing planet yields 
Tisserand's criteria 

(4-7)

for the identification of comets that have been perturbed by a single planetary encounter. Based on 
the before and after heliocentric orbits, the planet at which the close encounter occurred can 
generally be identified. If not, since the semi-major axis and inclination in the equation are 
calculated according to the encountered planet, a number of planets must be tested before the 
identification of the comet can be confirmed or rejected based on this criteria.
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4.2.2 Zero velocity surfaces

The value of C in equation (4-5) can be determined from a set of initial conditions. If C>0 
equation (4-5) places a constraint on the possible spatial locations of the trajectory. In particular, 

motion can only occur in regions where . Recall that equation (3-2) limits the possible 
spatial locations for the two body problem. For a given C the surface defined by v2=0 is called the 
zero velocity surface. Motion can only occur on one 'side' of the zero velocity surface. 

From analytic geometry, a single equation relating the three spatial coordinates x, y, and z defines 
a two dimension subspace. For example, x2+y2=R2 defines the surface of an infinite circular 
cylinder of radius R with the z-axis along the center of the cylinder, while x2+y2<R2 defines the 

three dimensional space inside the cylinder. Similarly,  defines the surface of an 

ellipsoid with principal axes a, b, and c along x, y and z.

Moulton [1,281] provides methods for calculating and an extensive discussion of the zero velocity 
surfaces. Figure 4-1 shows some of the zero velocity contours in the plane z=0 for µ=0.25 and 
From equation (4-5) it is seen that motion can only occur in a region where

(4-8)

For example, if the initial conditions have 
z= =0 and result in C=5, then motion is 
confined to the x-y plane in the nearly 
circular region about either mass or to the 
region outside the C=5 outer contour. If 
one wanted to design a trajectory that 
goes from a point near m1 to m2, then C 
must be less than about 3.87. Similarly, if 
the 2-d motion of m is initiated near either 
mass and C>3.56 then m can never 
escape from the figure-eight region 
defined by the C=3.56 contour. Finally, 
applications of Jacobi's integral like the 
above are most useful for defining where 
motion cannot occur. There is no 
guarantee, that for a specified value of C, an actual trajectory exists between every two points in 
the region bounded by the C contour.

Exercise 4-5. Use the Matlab meshdom, mesh and contour functions to generate zero velocity 
surfaces and contour plots in the x-z plane for µ=0.25. Same scale as Figure 4-1. Interpret results.
Exercise 4-6. 
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Figure 4-1. Zero velocity contours, µ=0.25.
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4.2.3 Lagrange points

Lagrange discovered that there were five equilibrium points for the restricted three body problem. 
These positions correspond to solutions (x, y, z) to equations (4-2) when the velocity and 
acceleration terms are zero. In the inertial system, the particle at such an equilibrium point, would 
be in a circular orbit about the center of mass of m1 and m2. At an equilibrium point, 
equations (4-2) can be written as

 (4-9)

The first equation is factored in two ways for later use. The third of these equations implies that 
all equilibria must be in the x-y plane. The second equation admits to two types of solutions, y=0 
and r1=r2=1. Solutions with y=0 must therefore be on the x-axis and satisfy the condition

(4-10)

The zeros or roots of f(x) are the equilibrium points. Note that f(x)>0 for sufficiently large and 
positive x. As x becomes smaller and approaches x2, the gravity potential term for m2 dominates 
and f(x2

+)<0. Thus there is exactly one equilibrium point with x>x2=1-µ denoted L2. When x is 
slightly less than x2 this potential term still dominates but is now positive so f`(x2

-)>0. But as x 
becomes smaller and approaches m1, this potential dominates so that f(x2

+)<0. Thus there is 
exactly one equilibrium point between the two masses called L1. By the same arguments, there is 
exactly one equilibrium point with x<x1=-µ called L3. These three equilibria are called the 
straight line solutions since all three masses remain in a line. Moulton [1] provides power series 

expansions in  for calculating the locations along the x axis for L1 and L2. Retaining only the 

first term in the series, the distance from m2 to L1 and L2 is . Likewise, if 

 is the distance from m1 to L3. Newton-Raphson iteration works effectively for 
finding the roots of equation (4-10) if µ has a numerical value.

Exercise 4-7. Make a single Matlab plot of f(x’) from equation (4-10) for µ=[0.1:0.1:0.5] and x’ = 
[-2:0.02:2], where the origin for x’ is at mass 1-µ and mass µ is at x’=1. Note this is not the same 
coordinate system use in equation (4-10). Interpret results.
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The second set of solutions to the y-equation, i.e. r1=r2=1 can be easily shown to also satisfy the 

x-equation for equilibrium. These two points, , are called the equilateral triangle

solutions and denoted L4 and L5. In Figure 4-1, L1 is where the C=3.87 contour crosses itself 
between the masses, L2 is where the C=3.56 contour crosses near x=1.2, and L3 is located where 
the C=3.25 contour crosses near x=-1. L4 and L5 are inside the C=2.82 contour.

The Lagrange solutions of the restricted three-body problem are of more than purely academic 
interest. If the Sun-Earth system is considered, satellites have been located at L1 [2] to permit 
measurements of the solar wind before it arrives at the Earth and produces changes in the 
ionosphere and the geomagnetic field. The ionosphere is important for low frequency radio 
transmission and over-the-horizon radar. Disruptions in the ionosphere can be very dramatic 
during solar storms. Further, the electrical power distribution system, on numerous occasions, has 
had major black outs over large geographical areas when the geomagnetic field has changed 
drastically during a solar storm. One astrophysical phenomena which has been attributed to these 
solutions is the Gegenschein (counterglow). The Gegenschein is a faint glow observed at night in 
a position exactly opposite the sun and may result from reflection of sunlight off dust that is near 
the Earth-Sun equilibrium position L3. 

For the Sun and Jupiter system, there are a number of asteroids, called the Trojan asteroids, 
oscillating about L4 or L5. For the Earth-Moon system there have been numerous studies of 
placing a relay satellite near L2 but sufficiently far away that the satellite could be seen from the 
Earth. Though not at the equilibrium point, the unbalanced forces acting on the satellite would be 
small and this position would require limited station keeping propulsion. There are “halo orbits” 
about these equilibria that have been exploited for various scientific purposes [2]. There was also 
a report in the early 1960's that clouds of dust were observed near L4. This dust was attributed to a 
contemporary meteor impact on the back side of the Moon. Though these observation were never 
independently confirmed, numerous simulations were performed to study the possibility.

4.2.4 Stability of Lagrange points

After determining the existence of equilibrium points, the next issue is to determine the stability 
of each point. Only linearized stability will be considered here so that no conclusions will be 
drawn about global stability. Let (xo, yo, zo) be an equilibrium point and (ξ, η, ζ) be small 
deviations from equilibrium, i.e. x=ξ+xo, y=η+yo and z=ζ+zo=ζ. Linearizing equations (4-3)
about the equilibrium point yields

(4-11)

where U is given by equation (4-4), the usual notation for second derivatives is used, and it is 
understood that the derivatives are evaluated at the equilibrium point under study. Equations (4-

1
2
--- µ– 3

2
-------+− 0, ,

⎝ ⎠
⎜ ⎟
⎛ ⎞

ξ
·· 2η·– Uxxξ Uxyη Uxzζ+ +=

η
·· 2ξ

·+ Uyxξ Uyyη Uyzζ+ +=

ζ
·· Uzxξ Uzyη Uzzζ+ +=
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11) are a set of coupled, second order, autonomous, homogeneous, ordinary differential equations 
so the solution is a sum of exponentials. The characteristic equation, which completely defines 
the dynamics of this system, is obtained by substituting ξ(t)=ξoeλt, η(t)=ηoeλt, ζ(t)=ζoeλt into 
equation (4-11) and seeking non-trivial solutions. Before performing this operation, note that U 
has continuous derivatives (except at two uninteresting points) and is symmetric in z, therefore 
Uzx and Uzy vanish in the x-y plane. In this case, equations (4-11) shows that the perturbed 
motion in the z direction is uncoupled from the motion in the x-y plane and reduces to

(4-12)

where . At all five equilibrium points, motion in the z direction is uncoupled 

and harmonic. Also note that at L4 and L5 ωz=1, which is the same as the mean motion of m1 and 
m2, so that z-only linearized motion produces a closed orbit in 3-d inertial space as well as in the 
rotating system. In the inertial system, the motion describes a nearly circular orbit with a small 
inclination to the x-y plane.

Exercise 4-8. Starting with equations (4-3) develop the ξ component of equations (4-11)

The characteristic equation for perturbed motion in the x-y plane is obtained from the first two of 
equations (4-11) and reduces to the bi-quadratic

(4-13)

(4-14)

where all of the coefficients are evaluated at the particular equilibrium point under study. For 
stable solutions, λ must be pure imaginary so that λ2 must be negative. Let ν=λ2 and write 
equation (4-13) as

From the quadratic formula it is clear that the roots will be negative only if b>0, c>0 and b2>4c. 
For any of the straight line solutions y=z=0 and by symmetry Uxy=Uyz=Uxz=0. Unfortunately, 
symmetry arguments are not applicable to the two remaining terms and analysis must be 
performed to show that Uxx = 1+ 2ωz

2 and Uyy = 1- ωz
2, so b = 2 - ωz

2 and c = (1+2ωz
2)(1-ωz

2). 
The sign of c is determined from the sign of 1- ωz

2, which from the second form of the first of 
equations (4-9) can be written as 

ζ
·· Uzz z 0=

– ζ ζ
··= ωz

2ζ 0=+

ωz
2 1 µ–

r1
3

------------ µ

r2
3

---- 0>+=

λ4 4 Uxx– Uyy–( )λ2 UxxUyy Uxy
2–++ 0=

ν2 bν c+ + 0=
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For L1 and L2, x>0 and both points are closer to m2 than m1 so c will be negative at these two 
points. At L3 x<0 and L3 is closer to m1 than m2 so c is also negative at this point. Thus all of the 
straight line solutions are unstable.

Exercise 4-9. Starting with equations (4-11) develop equation (4-13)

At L4 and L5, ωz=1 and the x-y characteristic equation (4-13) reduces to

By Descartes rule of signs there are no positive roots and either 0 or 2 negative roots for ν. So if 
there are real roots they must be negative. Using the notation above, the condition for stable 
motion is b2>4c which reduces to

Thus, the triangle equilibrium points are stable if the primary to secondary mass ratio is greater 
than about 24.96. All Sun/planet and planet/moon pairs in the solar system satisfy this criteria 
except for Pluto/Claron. Finally, it must be remembered that any particular Lagrange point may 
not be stable when other forces are included in the equations of motion or the motion of the 
primaries is not circular.

4.3 Finite Mass Particular Solutions

A number of particular solutions for the case of three finite masses have been found. These are 
generalizations of the straight line and triangle solution of Lagrange discussed above. Motion of 
all three bodies occurs in the same plane but the distance between all three of the bodies can vary 
with time. From equations (2-10) the equations of motion for three bodies are

(4-15)

where µi=Gmi. Wolog let the origin be at the barycenter so that 

1 ωz
2– 1 µ–( )µ

x
--------------------- 1

r1
3

---- 1
r2
3

----–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

λ4 λ2 27µ 1 µ–( )
4

---------------------------+ + ν2 ν 27µ 1 µ–( )
4

---------------------------+ + 0= =

µ 1
2
---< 23

108
---------– 0.03852…= 1
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-------------≈

ri
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rij
3

----rij
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3
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4.3.1 Equilateral triangle solution

The generalization of the L4 and L5 equilateral triangle 
solution is to seek solutions where the three finite mass 
bodies form the vertices of an equilateral triangle at all 
times. However, the length of a side of the triangle is 
not necessarily constant. To determine if such a 
solution exist set ρ=rij to be the equal distance between 
the bodies as shown in Figure 4-2. Further let 
µ=µ1+µ2+µ3. Then the center of mass relation can be 
written as µr1 = µ2(r1 - r2) + µ3(r1 - r3). Using this 
expression in equation (4-15) and to determine r1(ρ) 
yields the equation of motion for m1

(4-16)

where  is a reduced gravitational mass. Equations of motion for the 

other two masses can be obtained by cyclic permutation. This is of course the equation of motion 
for a particle about a center with gravitational attraction M1 and located at the origin. Thus the 
motion is a conic as studied in Section 3.3.3. The rest of the development assumes elliptical 
motion, but the conclusions are equally applicable for parabolic or hyperbolic motion for the three 
bodies.

Exercise 4-10. Verify equations (4-16)

For the three bodies to remain in an equilateral triangle configuration the initial conditions must 
be chosen so that the masses have the same period, i.e.

Hence, if the period of one mass is specified, the semi-major axis for each orbit can be calculated 
from the above. Also the angular rate must be the same so that the angles between the masses as 
measured at the center of mass remain constant, i.e.

where hi
2 = Mipi. This condition requires each mass to have the same true anomaly at any 

specified time. Thus all masses are at the periapsis of their respective orbits at the same time. At 
periapsis

m1
m2

m3

Figure 4-2. Equilateral triangle 
solution configuration.
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where P is the orbital period common to all masses. The multiplier of P on the right is a monotone 
function of eccentricity on the interval (0,1), so the eccentricity of all three orbits is the same.

In summary, the dynamics of three finite bodies in an equilateral triangle configuration is 
completely defined by three mass values, an orbital period, an orbital eccentricity, a time of 
periapsis passage, the orientation of the orbit plane, and three arguments of periapsis that differ by 
120°. More analytic detail can be found in Moulton [1,313] and Danby {3,266].

4.3.2 Straight line solution

To investigate the conditions for planar, straight line solutions, assume wolog that the plane of 
motion of the three masses is the x-y plane and the barycenter is at the origin. Let θ define the 
location of the line of centers in the plane, ri define the location of each mass along the line of 
centers relative to the barycenter, and ri

o be the location at the initial time to. For the barycenter to 
remain fixed, variations in position along the line must keep the ratio of distances from the center 
of mass constant. So introduce the time dependent variable ρ such that ri(t) = ρ(t)ri

o. With er being 
the unit vector along the line of centers, ri = ρri

oer. By direct differentiation the familiar 
expression

is derived. Substituting into equations (4-15) gives for m1

(4-17)

These are of course the equation of motion for the two body problem. Since ρ is dimensionless, 

M1 has dimensions of an angular rate squared, so denote . Angular momentum for 
each mass is again preserved. The equivalent mass or mean motion in the radial equation must be 
the same regardless of which mass is used to derive the equation of motion for ρ, i.e. M1=M2=M3
and ωi=ω, i=1,2,3. If three initial positions are specified consistent with the barycenter location, 
then the period of the motion and the initial velocity for m1 can be obtained from

and the other two initial velocities can be obtained by cyclic permutation. Multiplying each 

equation in turn by µi and adding yields , the condition for the invariance 
of the center of mass. Thus the three conditions are not independent and the set of necessary 
conditions can be written by taking the first two expressions and the center of mass requirement 
[1,310], i.e.
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· 2
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(4-18)

where for notational simplification . Wolog let x1<x2<x3 and select the unit of length such 
that r12=1 then equations (4-18) reduce to

Using the first equation to eliminate x3 from the second and third equations and then eliminating 
ω2 between the remaining two equations yields

(4-19)

where µ=µ1+µ2+µ3 is the total gravitational constant. A little algebra will show that this quintic 
equation for x1 has all positive coefficients. By Descartes rule of signs there are no positive roots 
and one, three or five negative roots. This result does not provide much new information since it 
is already known that x1 must be negative. However, if x1 is eliminated from equation (4-19) in 
favor of  using

then it can be shown that x32 must satisfy

(4-20)

This quintic has exactly one positive root so there is only one root with x3>x2. After this root is 
found, x1 can be determined from the above. Then x2=1+x1 and finally x3=x32+x2. The common 
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value of ω2 can be obtained by either the second or third of equations (4-18). Three solutions to 
equation (4-20) can be obtained by cyclic permutation; but, these are the same as simply 
rearranging the mass values. After the xi are found, the solution can be scaled to real dimensions. 
Initial velocities can be calculated from the equations above. Perhaps the simplest approach is to 
select ri

o =  ai so that  and calculate the velocities at periapsis, i.e. ρ=1-e. The 

velocity at periapsis is given by , where the sign is selected depending on the 

location of mi with respect to the center of mass. 

4.4 Problems..

4-1. Use the Matlab meshdom, mesh and contour functions to generate zero velocity surfaces 
and contour plots in the (x-y), (x-z) and (y-z) planes for the Earth-Moon system. Same 
scale as Figure 4-1. Compare to Figure 4-1 and interpret results.

4-2. Write a Matlab procedure using ODE 45 to solve equations (4-2). Apply to motion near L4 
or L5 in the Earth-Moon system. Provide five example plots of the trajectories in the x-y 
plane for five different initial conditions with z= =0. Vary initial conditions to show the 
transition from bound motion to unbound motion. At least one case should verify that your 
solution at the libration point is correct. Interpret results.

4-3. Provide a semi-log or log plot of the period of oscillation for the two solutions to 
equation (4-13) over the range of mass ratios from 0.001 to 0.5. Interpret results.

4.5 Astrodynamics Toolbox

1. Write a function x=XLn(µ,n,tol,ichk) that returns the x location of the n-th (n=1,2,3) Lagrange 
point for mass ratio µ to an accuracy specified by tol.

2. Write a function f=LnFreq(µ,n,ichk) that returns the two frequencies of oscillation at 
Lagrange point n (n=1:5) for mass ratio µ.  
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Chapter 5 - Orbital Perturbations

5.1 Introduction

The motion of planets and natural or artificial satellites can be approximated by modeling both 
bodies as point masses and assuming that the only forces acting between them are the mutual 
gravitational attraction. The relative motion is then described by the two body solution discussed 
in Chapter 3. There are numerous additional forces affecting the relative motion. Both the 
additional forces and the deviations from the two body motion are called perturbations. When 
these forces are small compared to the central gravitational attraction, they may cause only small 
and/or slow deviations from two body motion and might be addressed analytically. The analytic 
solutions can be used as computationally efficient approximations to the motion or perhaps more 
importantly, can provide insight into the effects of the perturbations. By adding a disturbing force 
onto equation (3-1), the equation for the motion of m1 relative to m2 can be written as

(5-1)

where the perturbing force is f. Note the abuse of language here: f is actually the relative 
acceleration produced by whatever physical process is causing the deviation from two body 
motion. The relative acceleration is the acceleration produced on m1 minus the acceleration 
produced on m2. In addition to the gravitational attraction of other masses presented in Chapter 2, 
these perturbations can come from numerous sources and their effects on the orbit vary greatly. 
Perturbing forces include aerodynamic interaction with the atmosphere, electromagnetic 
interactions with the magnetic field and charged particle belts, and gravitational forces due to the 
non-spherical gravity field of the central body. Perturbations are produced by the momentum flux 
of electromagnetic energy from the Sun called radiation pressure and particle flux called the 
solar wind. Reflected and radiated flux from the Earth can also produce significant perturbations 
on low Earth orbit (LEO) satellites.

When a numerical solution is sought to (5-1) or an equivalent form of the EOM, the approach is 
called the method of special perturbations. Special perturbation methods will only be discussed 
briefly in Section 5.6. If an analytic solution is sought, the approach is called the method of 
general perturbations. General perturbation methods are usually based on a form of (5-1) that is 
derived using the variation of parameters method from the theory of ordinary differential 
equations.

5.2 Variation of Parameters

As a basis for developing Lagrange’s planetary equations (5-18), the variation of parameters
method for solving differential equations is reviewed by applying the approach to a harmonic 
oscillator with a non-linear spring. The equation of motion is

(5-2)

r·· µ r
r3
----+ f=

x·· ω2x+ εx3–= ε 0> ε 1«
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Letting  gives the first order form

(5-3)

For ε=0 the solution is harmonic motion with period 2π/ω, amplitude A, and phase ø

(5-4)

where A and φ are determined from the initial conditions.

The variation of parameters method can be thought of as nothing more than a change in variables. 
In this case the dependent variables ρ and ν are replaced by A and ø. It is clear from (5-4) that the 
transformation is well defined in both directions, except for the trivial solution A=0. To derive the 
equations of motion for the new dependent variables, (5-4) are differentiated with respect to time 
to yield

(5-5)

Using (5-4) and (5-5) to eliminate ρ and ν from (5-3) yields

(5-6)

Using the fact that the coefficient matrix of the derivatives is non-singular along with a few 
trigonometry identities, (5-6) can be written as 

(5-7)

These equations are exact. That is, let A(t) and ø(t) be solutions to (5-7). When these functions are 
substituted into (5-4) the results will be solutions to (5-3). Since (5-7) are much more complicated 
than (5-3), it might be said that nothing has been gained. Certainly, implementing a numerical 
solution to equation (5-2) would be less error prone than implementing a numerical solution to 
equation (5-7). But consider the case when ε<<1. In this case, from (5-7) both A and ø will 
change slowly with time. Assume that over one period of oscillation A and ø change so little that 
they can be considered constants on the right hand side of (5-7). The equations can then be 
integrated to show that over one period the net change in A is ∆A=0 and the net change in ø is ∆ø 
= 3πA2/4ω2. So that the first order effects of this non-linear spring are to 

1. produce only periodic variations in the amplitude of the oscillation and 
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2. produce periodic and secular variations in phase. That is, the phase continues to increase 
a small amount each period of oscillation and this secular drift increases with amplitude. 

Note that the secular drift in phase is equivalent to an amplitude dependent frequency of 
oscillation.

If a new variable φ’=φ−∆φ is defined, then φ’ will only have periodic variation. This is the 
standard approach for dividing the perturbations into secular and periodic terms and is the 
approach for describing the motion of the vernal equinox as precession and nutation in 
Section 1.2.2.

Such insights into the motion are difficult to discern from (5-3). Second and higher order effects 
can be obtained by using the first order solutions as approximate solutions to equation (5-7) and 
performing another variation of parameter procedure. The next section applies the variation of 
parameters approach to the perturbed two body problem.

5.3 Lagrange’s Planetary Equations

To study the effects of n-body perturbations on the motion of a planet, Lagrange applied the 
method of variation of parameters to equation (2-10) in the form of equation (5-1). It is for this 
reason that the results are given the name Lagrange’s planetary equations. If the perturbing 
force f is derivable from a force function R then f= R. This is of course the case for all 
gravitation perturbing forces. Both forms will be carried in the development. The equation 
numbers in brackets {} refer to the similar equation in Section 5.2. To begin, write equations (5-1)
in the first order form with the non-perturbing force derivable from a potential V {(5-3)}

(5-8)

where V=-µ/r and the argument indicates the coordinate system to which the gradient operator 
applies.

The solution to these equations can be formally written as {(5-4)}

(5-9)

where c is the six vector of Kepler orbital elements or any other six independent constants of 
integration. Because neither the position nor the velocity can be written explicitly as a function of 
time (recall equations (3-14), (3-15), and (3-16)) one must be careful with the explicit and implicit 
derivatives required below. The solution for r and v are given as implicit functions of time by 
equations (3-21) and (3-22) in which r and f are the terms that are functions of time. 

Applying the variation of parameter approach to the first of equations (5-8) yields three equations

∇
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where it is now assumed that r is a function of t and c {(5-5)}. But,  since the explicit 

dependence of r on time satisfies the equations of motion. Likewise, the second of equations (5-8)
yields three more equations 

Again the partial time derivative must satisfy the unperturbed equations of motion. So 

. The six differential equations of motion for c are therefore {(5-6)}

(5-10)

This form of the equations of perturbed motion are not convenient because the 3 by 6 coefficient 
matrices on the left are functions of time. Lagrange noted that this problem can be circumvented 

by multiplying the first equation by   and the second by   and then subtracting to get

(5-11)

where  is a 6 by 6 skew symmetric coefficient matrix, R(r) has been 

replaced by R(c) using equation (5-9), and the gradient operator on the right creates a six vector of 
partials of R wrt each component of c.

The most important property of L is that it is not an explicit function of time, that is, it can be 
evaluated at any point in the orbit and the same numerical values will result. To show this 
independence

where the partials with respect to t and c have been commuted in each term. The first and fourth 

terms cancel since  from above. The second term is the transpose of the third term and 

substituting  into the third term yields

(5-12)
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which is a symmetric 6 by 6 matrix. Thus, when the force driving the unperturbed motion is 
derivable from a potential, all terms cancel and L is not an explicit function of time. To emphasize 
this result, equation (5-11) might be written as

(5-13)

Exercise 5-1. Write explicitly every term in the first row of equation (5-13) for both the f and R 
cases.

5.3.1 Lagrange brackets

The individual components of L are called Lagrange brackets and denoted , i.e.

(5-14)

As seen from this definition, the Lagrange brackets satisfy

which means there are no more than 30 non-zero brackets and only 15 have to be evaluated. Since 
all types of two body motion have a periapsis, L is traditionally evaluated at periapsis.

5.3.2 Rectangular coordinates 

To compute the Lagrangian brackets, an appropriate c must be chosen. One set that results in the 
simplest forms of L is to chose the rectangular position and velocities at some epoch as the 
constants of integration. Though not usually thought of as constants of the motion, it is clear that 
they satisfy the necessary conditions of linear independence and are certainly sufficient to 
determine the state at any time. Wolog, let the epoch be to and specify the conditions at epoch as 

the six vector . From equation (5-14) the non-zero Lagrange brackets above 
the diagonal of L are

and the remaining 12 brackets are zero. Thus  and the equations of motion (5-

11) in terms of the force function reduce to the canonical form
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with similar expressions for the other two coordinates. There are numerous sets of choices of c
that will lead to the canonical form; in particular, Lagrangian generalized coordinates and 
conjugate momenta lead to this form.

5.3.3 Keplerian orbital elements

A slight modification of the classical Keplerian elements leads to c=(a, e, i, Ω, ω, λ), where λ= -
nτ to simplify the partial derivatives. To evaluate the Lagrange brackets the position and velocity 
must be written in terms of these elements. Equations (3-21) and (3-22) provide the necessary 
relationships. These equations provide the explicit dependence of position and velocity on Ω, ω, 

and i. The dependence on a, e, and λ are implicit through r, f,  and . There are numerous 
methods for evaluating the brackets and the most extensive discussions are given in Battin[5], 
Fitzpatrick[3], and Moulton[7]. The development below is typical.

First equations (3-21) and (3-22) are written in the orbital coordinate system (Section 3.8) using 
the direction cosines from equation (3-33) and relations from Table 3-1

(5-15)

where Φ is a function only of the orientation angles (Ω, ω, i) and the position and velocity in the 
orbital system (Section 3.8) are functions only of a, e, and λ. Note that some of the partials of the 
Φ matrix yield terms in Φ, e.g.

It is convenient to identify the columns of Φ as vectors

The Lagrange brackets will be evaluated at periapsis, t = τ. Since Φ is independent of time, for 
any orientation angle α = Ω, ω or i

But at periapsis,  and , so it is straight forward to 

show that
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(5-16)

Exercise 5-2. Starting with equation (5-15) verify the first line of equations (5-16) and (5-17)

It remains to take the partials with respect to a, e and λ. The rotation matrix Φ is not a function of 
these variables. So in equations (5-15), a and e appear explicitly and a, e and λ appear implicitly 
through E. The implicit relationship is defined purely by Kepler's equation (3-14) 

where of course n is a function of a only. From which it is easy to show that when evaluated at 
periapsis

Combining the implicit and explicit derivatives leads to 

(5-17)

When the expression from equations (5-16) and (5-17) are substituted into equation (5-14) it is 
found that there are only 6 non-zero Lagrange brackets and these are [5,482]
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Equations (5-13) in terms of the non-zero Lagrange brackets are

This is a set of linear algebraic equations with constant coefficients, so as long as the matrix of 
coefficients is not rank deficient, these equation can be easily solved to have only time derivatives 
on the left. The equations of motion for a and Ω can be found by division. Time derivatives for 
elements e and ω can then be obtained by elimination. Finally, the equation of motion for i and λ
are also obtained by elimination to yield the Lagrange’s planetary equations {(5-7)}[5,483]

 (5-18)

These are exact equations of motion and equivalent to equation (5-8). Even if other parameters 
are chosen for the orbital elements, the resulting EOM are called Lagrange’s planetary 
equations. Other choices might depend on the particular orbit being analyzed. For example, to 
derive equations (5-18) division by e and sin(i) has been performed, hence application to orbits 
where either of these terms is zero or nearly zero must be done with care or the non-singular 
elements must be utilized. As mentioned in Section 3.4, if e is small e and ω might be replaced 
with P=e sinω and Q=e cosω to obtain new equations of motion, [4, 337].
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5.4 Perturbations Derivable from a Potential

The two typical perturbations derivable from a potential function are the contributions due to 
other point masses as in the n-body problem (Chapter 2) and the contributions due to the gravity 
field of the primary being non-central. The former is discussed briefly in Section 5.5.2 and the 
latter is developed below.

5.4.1 Non-spherical gravity potential

The external gravity field of most bodies can not be represented as arising from a point mass. 
However sufficiently large, slowly rotating bodies will closely approximate a sphere because 
internal shear stresses due to self gravity cannot be supported. The external gravity field potential 

for any body satisfies Laplace's equation, . For nearly spherical bodies, it is natural to 
represent the potential in spherical coordinates V(r,λ,φ). Solution by separation of variables leads 
to the spherical harmonic representation, which is used here in the form

(5-19)

where λ is longitude, φ is geocentric latitude, and R is a reference radius usually taken as the mean 
equatorial radius. Pnm is the associated Legendre polynomial of degree n and order m [1].

The terms cosmλ Pnm(sinφ) and sinmλ Pnm(sinφ) are called surface spherical harmonics of 
degree n and order m. The Cnm and Snm are called the spherical harmonic coefficients and are 
the unknowns that would be selected to fit the boundary conditions to obtain the solution to 
Laplace's equation. The reference model in the Explanatory Supplement [2,226] is actually a 
force function and is the negative of equation (5-19). Some representations also change the sign 
between the '1' and the double sum. Thus care must be exercised by the analyst to check sign 
conventions. The expansion above is also “unnormalized” in that the relative importance of the 
terms on the orbit is not directly related to the numerical value. Various normalization approaches 
have been [2,226] used so that the numerical value is a direct measure of the “average” 
acceleration produced by the term. The complete set of surface spherical harmonics are divided 
into three sub classes:

1. zonal harmonics with m=0 are rotationally symmetric about the pole and have n zero 
crossings from pole to pole. Note that Sn0=0. The zonal coefficients are often represented 
by J's, i.e. Jn= - Cn0. Here the minus sign is used, but some authors will use a plus sign. J2
is the “oblateness” and J3 is the “pear shape” parameter. For planets with rotational rates 
sufficiently large to significantly affect the surface shape, J2 is greater than zero and is the 
dominate perturbation. The first three values of Jn for Earth are

J2= 0.108263 x 10-2 J3= -0.253 x 10-5 J4= -0.162 x 10-5

For m=0, the Legendre polynomials are written without the m=0 subscript
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P0(x)=1 P1(x)=x P2(x)=(3x2-1)/2 

where subsequent terms can be obtained from the recursion relation

Note this is not a particularily useful recursion formula since errors in Pn produce errors 
that could be twice as large in Pn+1.

2. sectorial harmonics with n=m have no zero crossings from pole to pole since 

, but have 2m zeros in longitude due to the sinmλ and cosmλ terms.

3. tesseral harmonics with n≠m>0 have n-m zeros from pole to pole due to Pnm and 2m 
zeros in longitude due to the sinmλ and cosmλ terms. Recursion relations can be used [1]
to increase the order so that all tesseral harmonics can be generated once the zonal 
harmonics are known from the recursion equation above.

In summary, all of the surface spherical harmonics have n-m zeros pole to pole and  2m zeros 
in longitude. Chobotov, Danby and other books presents graphical representation of some of 
these functions. In trajectory packages the gradient of the spherical harmonic functions are 
required. The gradient can be related to other harmonics and are also calculated recursively [1].

The spherical harmonic coefficients can be related to the inertia integrals of the body [3]. An 
inertia integral is a generalization of the traditional moments of inertia. The general inertial 
integral is defined by 

where the integral is taken over the physical limits of the body and ρ is density. The moment of 
inertia about the x-axis is Ixx = I020+I002. Coefficients of degree n can be written as linear 

combinations of inertia integrals with p+q+r=n, for example  where M is 

the total mass and R is the mean radius of the body used in equation (5-19). From this form it is 
easier to see that J2 is positive for oblate spheroids, i.e. most planets and other large, rotating 

bodies. Now , where  is the z component of the center of mass location. From 

this result, all the first degree coefficients are zero if the origin is taken at the center of mass. In 
precision Earth satellite orbit determination programs, the center of mass of the Earth is permitted 
to deviate from the coordinate system origin to account for motion of the crust and the liquid core.

Before the advent of Earth artificial satellites, these coefficients were determined by surface 
gravity measurements. Now the coefficients are determined by the perturbations they cause on 
satellite orbits as discussed below. One of the first discoveries of satellite geodesy, that the Earth 
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is “pear shaped,” came from the orbital perturbation in eccentricity caused by C30 [Section 5.4.4].
The recommended [2,227] model of the gravity field is (36,36), i.e. nmax=36 and mmax=36. 
Larger models are used for precision orbit calculations. High order models for Mars and Venus 
have obtained from numerous orbiting missions to these planets. Generally, accuracy of the 
coefficients decrease with increase in degree and order. Exceptions correspond to coefficients of 
potential terms that produced a resonance with the orbital motion of a particular satellite.

5.4.2 Non-spherical gravity perturbations

To apply the planetary equations to the non-central part of the field, write the gravity potential 

function as  . Substitution of the complete disturbing function R 

into equations (5-18) generally has little practical value. The general approach is to divide the 
perturbations to the orbital elements into secular perturbations, long period perturbations, and 
short period perturbations. The secular variations result from averaging the equations of motion 
over one orbital period by assuming constant, mean values of the elements over that time. Recall 
the variation of parameter results of Section 5.2. The result generally is that some of the angular 
variables (Ω, ω and λ) will change linearly with time. Inclusion of the slow change in these 
angular variables in the equations of motion produces the long period effects. When both the long 
period and secular effects are subtracted, only short period effects remain. These short period 
effects have periods no longer than the orbital period.

5.4.3 Oblateness Perturbations

As an example of this process, consider the J2 term and the equation of motion for Ω for the 
elliptical orbit case

since . To take the partial derivative r and φ must be replaced in favor of the 

orbital elements and time. Either the E or f forms could be used for r, so that r is only a function of 
time and the in-plane elements a, e and λ. For φ, write  from the law of 
sines, equation (1-1). Thus, the only dependence of this disturbing term on inclination is explicitly 
through sin(i). The final, exact equation of motion for Ω is

(5-20)

None of the other five equations of motion are so easy to obtain. Since J2>0, it is clear that  is 
negative throughout the orbit if i < 90o, vanishes at the equator as would be expected for a 

symmetric potential, and vanishes for polar orbits (i=90o). The mean value of  is the secular 
perturbation and is determined from the change in Ω over one orbital period assuming the orbital 

V r φ λ, ,( ) µ
r
---– R r φ λ, ,( )–=

dΩ
dt
-------

J2µ
nab isin
-------------------–

i∂
∂ 1

r
--- R

r
----⎝ ⎠

⎛ ⎞ 2 3
2
--- φ2sin 1

2
---–⎝ ⎠

⎛ ⎞=

P2 x( ) 3
2
---x2 1

2
---–=

φsin i ω f+( )sinsin=

dΩ
dt
-------

3µJ2
nab
-----------– 1

r
--- R

r
----⎝ ⎠

⎛ ⎞ 2
i ω f+( )2sincos=

Ω
·

Ω
·

5 - 11



MAE 589C Space Flight Mechanics a.k.a Astrodynamics August 24, 2005 9:42 pm
elements are constant on the right hand side. For this case, the independent variable in 

equation (5-20) is changed from time to f using  yielding

The change in Ω in one orbit is obtained by integrating with respect to f from 0 to 2π to give

 

Using the value of J2 given above leads to about 0.5o per orbit change for low inclination, LEO 
satellites. The secular rate per orbit is obtained by dividing by the period to give

yielding about 8o per day change for low inclination, LEO satellites. 

An alternate approach is to average the disturbing function over one orbital period before 
evaluating the partials on the right hand side of equations (5-18). The resulting disturbing 
function for the J2 term is

Again switching to f as the independent variable yields after some algebra

(5-21)

Exercise 5-3. Perform the integration over one period to arrive at equation (5-21)

Thus the mean disturbing function for J2 depends only on the orbital elements a, e and i. In view 
of equations (5-18) it is clear that there are no secular variations in a, e and i. Thus the mean orbit 
shape (a, e) is invariant and the mean inclination is constant. Physically this means that the 
average energy and z-component of angular momentum are preserved. The former should have 
been expected from the fact that the disturbing force is derivable from a potential function and the 
latter by the rotational symmetry of the potential due to J2. The three secular variations due to J2
are
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 (5-22)

Exercise 5-4. Begin with equation (5-18) and equation (5-21) and verify the second of 
equations (5-22)

Interpretation of these equations shows that  if , or i=63.43° or 116.56°. 

This angle is called the critical inclination. Since the argument of periapsis shows no secular 
variation at the critical inclination, the latitude of periapsis remains the same from orbit to orbit. 
The Molniya orbits in Section 7.3 are at the critical inclination so as to keep the periapsis at the 
latitude of the USSR. Below the critical inclination, periapsis regresses so that the time from one 
periapsis to the next is less than the “orbit period.” The last equation suggest that the mean motion 

is biased by J2 since  similar to the phase change for the non-linear spring example in 
Section 5.2.

The perturbations discussed above are typical of those caused by all even zonal harmonics e.g. J4, 
J6, etc. When calculating accurate values for critical inclination or secular variations in Ω, ω or λ, 
these additional terms must be considered. 

Because of these types of perturbation to the orbit, a number of “periods” are in use. The nodal 
period is the time between successive ascending node passages. The anomalistic period is the 
time between successive periapsis passages based on the change in mean motion due to J2 and 
other perturbations.

5.4.4 Odd-Zonal Perturbations

In a similar manner, the mean disturbing function for the third zonal harmonic is [4,349],

(5-23)

Referring to equations (5-18) it is again seen that there is no change in mean energy due to J3, but 
unlike J2, there will be variations in inclination and eccentricity from the mean values. The 
eccentricity is particularly of interest because changes in eccentricity affect satellite lifetime. By 
direct substitution
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(5-24)

If all the terms on the right side were considered to be constant, this equation would suggest a 
secular variation in eccentricity. However, due to the J2 effects, ω is varying linearly with time 
unless the orbital inclination is critical, i.e. cos2i=1/5. Assuming that ω is the linear function of 
time given in equation (5-18) leads to the integral for the change in eccentricity from time to to 
time t

(5-25)

The maximum amplitude for the variation in eccentricity occurs for polar orbits. Since 
 for the Earth, the maximum change in eccentricity for a LEO is about 0.001. This 

would produce a maximum variation in periapsis altitude of about 7 km with a period of . 
For the Moon J2=2.03x10-4, so the node and periapsis for a low altitude lunar orbiter (LLO) will 
precess 1/5 of the rate per orbit as a LEO satellite. Also the lunar J3=6x10-6, yielding the ratio 

. Thus, the change in eccentricity due to J3 is about 15 times larger. For LLO the 
effect of J3 is a major consideration for orbit lifetimes.

Exercise 5-5. Derive equation (5-25) from equation (5-24).

There is also a long period variation in inclination which is of interest 

(5-26)

The perturbations discussed above are typical of those caused by all odd zonal harmonics e.g. J5, 
J7, etc. When calculating long term variations in i or e, these additional terms must be considered. 
Additional long period variations due to J3 as well as secular, long period and short period terms 
for J2 through J5 are given in Koelle[8,8-26] through terms of order J2

2.

5.4.5 Radiation pressure

Radiation pressure on an orbiting body occurs when photons strike the surface. These photons can 
be radiation directly from the sun (most of the energy is in the visible wavelengths), can be 
reflected from another body, or can be radiation, usually in the infrared, emitted from another 
body. Earth reflected radiation is particularly important for LEO satellites because of the high 
albedo of the Earth. The Earth has an albedo of about 0.3 at middle latitudes and 0.8 at the poles. 
Thus, between 30% and 80% of the incoming energy from the sun is reflected back into space. 
Modelling radiation pressure for a general perturbation approach is difficult because of 
shadowing, which produces a force that is a discontinuous function of orbit position. Radiation 
pressure is generally handled with special perturbations, i.e. numerical integration of the EOM. If 
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shadowing is ignored, solar pressure can be analyzed using Lagrange’s planetary equations as will 
be demonstrated below.

Solar pressure has been proposed as a propulsion system for a satellite. Solar sails can be 
constructed to “catch” photons and reflect them in a manner to produce thrust. This method needs 
a very high effective area to produce a substantial thrust.

Radiation from a body is normally specified in energy flux. For example, the energy flux from the 
Sun at 1 AU is about 1340 watts/m2. The momentum flux, from which pressure can be calculated, 
is the energy flux divided by the speed of light. Hence, the solar momentum flux P is about 
4.5x10-6 N/m2. The interactions of a photon with a surface ranges from passing through without 
any absorption (transparent material), having a probability greater than zero of being absorbed 
(translucent), completely absorbed (black body) and reflected (mirror). The solar pressure ps is 
modeled as

 (5-27)

where . Transparent materials have α=0 and mirrors have α=2, i.e. transparent materials 
absorb none of the momentum flux and mirrors reverse the direction of the momentum flux, 
effectively reacting to twice the incoming flux. The total force is obtained by integrating 
equation (5-27) over the exposed area of the body. Note that in addition to producing a net force 
on the satellite, solar pressure can also produce significant torques on unsymmetrical satellites 
which must be considered for attitude control.

Exercise 5-6. Show that a 100 kg satellite with a cross sectional area of 2 m2 and albedo of 1 
would experience about 1 micro-g of acceleration due to radiation pressure.

Now consider a spherical satellite of the Earth that is not passing through the shadow of the Earth. 
Assume a homogeneous reflecting surface so that the solar pressure is constant and away from the 
Sun. The radiation force is therefore -αPAes, where es is the unit vector from the central body to 
the Sun and A is the effective cross sectional area. Assuming that the Sun does not move over one 
orbital period, this is a constant force and hence derivable from the disturbing function

 where r is the position vector and in terms of the orbital elements is 
given by equation (3-21). The average of R over an orbit can be obtained using equations (3-26)
and (3-27) to yield the disturbing potential for long period and secular variations  
where e is the eccentricity vector and κ=−3β/2. Hence, the eccentricity and the angle between the 
direction to the Sun and the major axis of the ellipse completely determine the perturbations.

Referring to the planetary equations (5-18), it is seen that there is no secular variation in energy 
because the work done by solar pressure as the satellite approaches the sun is equal to the work 
done as the satellite recedes from the sun. This conclusion is not generally valid if shadowing 
occurs during the orbit. From a mission design viewpoint the most interesting variation is in the 
eccentricity, where solar pressure can produce a long term variation in eccentricity much like the 
J3 effect. Only a special case will be demonstrated here. Let the Sun be on the x-axis, then from 
equation (3-33) . The two elements of interest are ω and e. 

ps αP=

0 α 2≤ ≤

R αPA– es r βes r⋅=⋅=

R κaes e⋅=

R aκ ωcos Ωcos ωsin Ωsin icos–( )=
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Evaluating equations (5-18) for these two variables and then letting inclination become zero so 
that the Sun is in the orbit plane yields 

These equations show that if solar pressure is the only perturbing force, the argument of periapsis 
will precess until cos(ω+Ω)=0 and the precession is very rapid for small eccentricity. When the 
sun is along the semi-latus rectum, the precession stops, then e will either increase until the 
satellite hits the planet or decrease until a circular orbit is achieved. Though the equations here are 
not applicable when e=0, it can be shown that a circular orbit will become increasingly elliptical 
with the major axis at right angles to the sun line. For most satellites the J2 secular variation in Ω 
and ω will dominate the solar pressure precession in ω, so the eccentricity will undergo a long 
period variation. Recall again that these results are for the no shadowing case.

Exercise 5-7. Use the toolbox to plot the 24 hour ground track of the LEO satellite a=7000, 
e=0.05, i=55o, Ω=60o, ω=45o, τ=July 4, 2000, 13 hrs, 55 min, 34.56 sec. Compare tracks with and 
without J2 precession.

5.5 Gauss' Form of the Perturbation Equations

Drag and some other forces can not be formulated as potential functions. It is therefore of interest 
to have the analog of the planetary equations in a form where the perturbing force or acceleration 
appear explicitly. There are numerous approaches to arrive at these equations. The direct method 
is to start with equation (5-10) and substitute the results from equations (5-13) and (5-14) directly 

into . Another method is to consider the effect of an impulse or instantaneous change in v

applied at some point in the orbit. Since the motion before and after the impulse is pure two body 
motion, the change in the elements across the impulse can be obtained by applying differential 
calculus to any two body equation. For example, from the vis-viva integral

where the fact that an impulse does not change r has been utilized. Interpretation of this equation 
shows that the most effective location in orbit to change the energy is to apply an impulse at 
periapsis (where v has the maximum value) along the velocity vector. Energy is not affected by an 
impulse normal to the velocity vector. If instead of an impulse, it is assumed that the δv occurred 
over a finite but small time δt, then taking the limit leads to 

where at is the tangential component of the disturbing acceleration. This is an exact equation of 
motion.

e· κb
na2
-------- ω Ω+( )sin= ω· κb

nea2
----------- ω Ω+( )cos=

r∂
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µ
--------v δv⋅=
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The complete set, given below, is from [5,489] for the case where the perturbation acceleration is 
projected along orthogonal axes that are along the orbit tangent (at), normal to the orbit plane (ah) 
and normal to the velocity vector in the orbit plane (an). In the Euler form of the perturbation 
equations, it is not convenient to utilize λ or τ as an orbital element for reasons discussed in [5]. 
Instead the last equation is given for M explicitly. Danby [4] and many other books present the 
equations of motions for perturbations that are projected in the radial, normal to the orbit, and 
circumferential directions. 

(5-28)

Interpretation of equations (5-28) can lead to an understanding of where to apply impulses to 
achieve maximum change in an orbit parameter. Changing energy or semi-major has already been 
discussed. Changing orbital inclination is often a mission requirement. It is seen that only an 
impulse normal to the orbit plane will change inclination and that the most effective location is 
where rcos(ω+f) is a maximum/minimum. The cosine reaches an extremum when the satellite is 
on the node line, so this is the most efficient location for a circular orbit. For the high eccentricity 
transfer orbits from LEO to GEO the optimal location for a single impulse would clearly be near 
apoapsis. Similar arguments can be made for Ω, but the other variables are not so obvious. Since 
there are three components to the impulse, at most three elements can be controlled with one 
maneuver. Of course, the remaining three elements may also change. For a particular orbit, the 
optimal location for performing an impulse can be formulated as a constrained optimization 
problem and the solution found by searching numerically around the orbit.

5.5.1 Drag

Any planetary atmosphere experienced by an orbiting body will cause drag and perhaps other 
forces and moments on the satellite. In the free molecular flow region that is usually associated 
with satellites with more than a few orbits of lifetime, side forces are generally negligible. Drag 
transfers kinetic energy of the satellite to thermal energy of the atmosphere. Since satellite energy 
is decreasing, the semi-major axis for elliptic motion must be decreasing and mean motion is 
increasing. This leads to the seemingly paradoxical statement that “drag makes the satellite move 
faster.” The drag acceleration d is generally modeled as

da
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(5-29)

where A is the satellite reference area, m is the mass, Cd is the drag coefficient, v is the velocity 
vector, v is the speed, ρ is the atmospheric density, and CdA/m = β is the ballistic coefficient. 
Atmospheric density can vary with altitude, planet-sun distance, day/night, latitude, local solar 
time, solar activity, etc. and models of these variations are not precise. As a result the analyst must 
be careful in modeling drag phenomena. Letting A be the cross-section of the spacecraft exposed 
to free molecular flow, . Cd=2 if the linear momentum of all incoming molecules is 
completely absorbed by the satellite. This situation occurs if the satellite surface has a 
momentum accommodation coefficient of unity. However, these gas-surface interactions are 
very complicated. Simple models assume that some fraction of the incoming molecules are not 
absorbed by the surface and that most absorbed molecules are quickly emitted from the surface 
after coming into thermal equilibrium with the surface. This generally leads to .

Drag is generally the dominate force that defines a satellite’s orbital lifetime and requires 
propulsive capability for orbit maintenance. The definitive study of drag effects is given by King-
Hele [6]. On the other hand, atmospheric drag has been used for aerobraking which is the 
process of reducing orbital energy to a desired level by dipping into an atmosphere. This process 
can significantly reduce propulsive requirements. In any case, if latitudinal and longitudinal 
variations in density are significant, the usual approach is to numerically integrate the equations 
of motion in rectangular coordinates using equation (5-29) for the perturbing force. If such 
variations are negligible or to gain insight into the effects of drag on orbit parameters, density can 
be assumed to only be a function of altitude.

From equations (5-28) it is seen that only a, e, ω and M are perturbed by a tangential drag force. 
For orbit lifetimes, the perturbations to a and e are of particular interest because rp=a(1-e). 
Referring to the first two of equations (5-27), change the independent variable from time to 
eccentric anomaly using Kepler’s equation (3-14) and use the vis-viva integral (3-5) to write 

 to finally yield

(5-30)

If density is modeled as only a function of altitude, density can be written as a function of E. 
Further, if a and e can be assumed to be constant during a single pass through the atmosphere, 
these equations can be integrated numerically to yield the change in a and e during one orbit.

Exercise 5-8. Derive equations (5-30) following the directions above.

Numerous approximations [6] have been made to obtain analytic solutions to these equations. 
First note that, omitting density, the remaining terms are periodic, even functions of E and can be 
expanded in a Fourier cosine series in E, for example
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The coefficients are infinite power series in eccentricity. For analytic solutions, atmospheric 
density is modeled by an exponential in altitude, i.e.

(5-31)

where ρo is the density at reference altitude ho and Hs is the density scale height. For the Earth, 
Hs may range from 30 to 100 km depending on altitude, solar cycle, and other geophysical 
parameters. The reference altitude is usually taken as the periapsis altitude, ho=hp. To utilize this 
model for density in equations (5-30), note that . With this 
substitution and the Fourier series expansions, the right hand sides can be integrated over one 
orbit. The results are infinite series of Bessel functions with coefficients that are infinite series in 
eccentricity[Reference 6, Chapter 4]. Reference 6 provides numerous approximations to 
equations (5-30) based on the values of e and α=ae/Hs. Only one of the expansions is given here 
as it applies to many LEO satellites and is applicable if 0.02<e<0.2 and α>3

(5-32)

where the argument of the modified Bessel functions is α, i.e. In=In(α).

5.5.2 N-Body Perturbations

To obtain the equation of relative motion of m1 with respect to m2 including the effects of the 
remaining n-2 bodies, subtract equation (2-10) with i=2 from the same equation with i=1,

(5-33)

Even though the perturbation term on the right is derivable from a disturbing function, obtaining 
an average disturbing function, to study secular and long period variations, is difficult because the 
other bodies are in motion. Prior to the development of high speed computers, these equations 
were used as the basis for planetary theories. Generally, the approach is to consider a single 
disturbing body at a time. Double averaging is done over the two orbital periods to obtain the 
averaged disturbing function. The interested reader can consult Reference 9 for details. For LEO 
satellites, secular and long period variations due to the Moon and Sun are several orders of 
magnitude smaller than the J2 secular terms, but can be substantial for high eccentricity orbits.

5.6 Special Perturbations

Solving the equations of motion using numerical integration techniques is called the method of 
special perturbations. When choosing an integration scheme to numerically integrate 
equation (5-1), speed, accuracy, storage, and complexity must all be addressed. The main 
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consideration is the selection of a method for numerical integration. The most efficient methods 
are second order, multi-step, constant step size which are very efficient for low to moderate 
eccentricity orbits. Reference 4 provides an introduction to the numerical procedures used in 
orbital mechanics including interpolation, extrapolation, differentiation and integration.

5.7 Problems

5-1. Apply the planetary equations to equation (5-23) to derive equation (5-25).

5-2. Apply the planetary equations to equation (5-23) to derive equation (5-26)

5-3. Derive an expression for the first order dω/dt due to J3 similar to equation (5-22).

5.8 Astronautics Toolbox

1. Develop a function [wdot, Wdot, Lamdot]=J2Precess(a,e,i,J2,mu,R) that will return the pre-
cession rates in radians per unit of time.

2. Modify the Orb2X routine (Section 3.14) so that ,  and   due to J2 are included to 
change Ω, ω and λ in the orbit propagation. Call the new routine Orb2XJ2 and add J2 and R to 
the input set. Use J2Precess.

3. Write a function that will plot ground tracks for a LEO satellite given the orbital elements in 
the J2000 equatorial system, (Section 1.2.2). Time of periapsis is in ymdhms format 
(Section 1.6) and time interval for the plot starts at periapsis and stops an input time in days 
later. Include an option for turning J2 precession on or off. An option is to also limit applica-
bility to years near 2000 so that precession of the vernal equinox does not have to be consid-
ered in the terrestrial longitude calculation using sidereal time (Section 1.3.5). Make 
maximum use of existing toolbox functions. It is recommended that a considerable design 
effort precede implementation of this function.

4. Develop a function that will integrate equations (5-30) over one orbital period. Assume an 
exponential atmosphere. [da,de]=dragI(a,e,Cd,A,m,rho0,h0,Hs,ichk).

5. Develop a function, [da,de]=dragKH(a,e,Cd,A,m,rho0,h0,Hs,ichk), that will evaluate 
equation (5-32)

6. Write a test program that will compare the relative error in da between dragKH and dragI over 
the applicable range of eccentricities using a=6800 km and Hs=40 km.
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Chapter 6 - Orbit Transfer and Powered Flight

6.1 Introduction

The general term orbit transfer refers to the maneuvers required to change the orbit of a 
spacecraft from an initial orbit to a terminal orbit. A propulsive maneuver is called impulsive if 
the maneuver time is very short compared to some orbit characteristic time, e.g. period. For 
impulsive maneuvers the change in position during the maneuver is neglected. Otherwise, the 
maneuver is termed continuous or finite burn, for example low thrust orbit transfers. In this 
chapter the emphasis will be on impulsive orbit transfers. Often “orbit transfer” is used in the 
more limited sense where only the five spatial elements (a, e, i, Ω and ω) are specified for the 
initial and final orbits. In this case the times of departure and arrival are unimportant. 
Interception requires that the transfer orbit pass through a specific moving point in space. For 
interception, individual values of the orbital elements are not important, but time optimal and fuel 
optimal transfers are of interest. Rendezvous specifies all six of the orbital elements of the 
terminal orbit, thereby assuring coincidence in both position and velocity. Optimizing orbit 
transfers involves minimizing propulsive requirements, transfer time, or other mission parameters 
often subject to equality or inequality constraints. This chapter provides the formulation for 
various orbit transfers. Powered flight in this chapter will be limited to elementary launch 
considerations including structural mass, propellant mass and staging.

6.2 Powered Flight

Powered flight is normally thought of as being based on the expulsion of some mass from the 
vehicle to produce a change in velocity of the vehicle. Chemical rocket motors, cold gas jets, ion 
rockets, and rail guns are examples. The resulting change in vehicle velocity is a result of 
Newton’s Second Law [Section 2.2.1], which states that the time rate of change of linear 
momentum is equal to the sum of the external forces.

6.2.1 Rocket equation

Let the linear momentum of the entire vehicle at time t be mv, where m is the mass at time t and v
is the velocity of the center of mass of the rocket with respect to an inertial coordinate frame. The 
change in mv is due to the decrease in mass of the rocket when propellant, and effectively mass, is 
expelled from the vehicle. Define the mass flow rate as <0, which is taken as negative since the 
mass of the rocket is decreasing. To apply Newton’s Second Law to this system, the total linear 
momentum is evaluated at time t and t+∆t. At time t, the linear momentum is mv, while at time 
t+∆t, the linear momentum is the sum of the momentum of the rocket (with decreased mass) and 
the momentum of the expelled mass or

where c is the exhaust velocity with respect to the rocket.

The change in linear momentum is equal to the total impulse due to external forces:

m·

m m· ∆t+( ) v ∆v+( ) m–· ∆t( ) v c+( )+
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Simplifying yields:

Dividing by ∆t and taking the limit as ∆t → 0:

(6-1)

Equation (6-1) is known as the rocket equation, which describes the acceleration of the rocket 
due to thrust (=c dm/dt) and external forces.

A comparative measure of the performance of a rocket is the specific impulse, which is defined 
as the ratio of the thrust divided by the propellant flow rate in weight/second at sea level:

(6-2)

A table of specific impulses for various commercial engines is shown below in Table 6-1 (See
Reference 2).

In the rest of the chapter, the scalar version of equation (6-1) will be utilized by assuming that c
and v are parallel and unchanging in direction. A simple solution to equation (6-1) occurs when 
there are no external forces, such as atmospheric drag or gravity, acting on the rocket (Fext=0):

m dv = c dm     or     

This equation can be integrated assuming that the exhaust velocity c is constant yielding the ideal 
velocity equation:

(6-3)

where ∆v is called the characteristic velocity of the rocket when t is the final or burnout time.

Table 6-1. Typical Rocket Motor Characteristics

Engine Thrust (lbf) Fuel Oxidizer Isp

Rocketdyne RS-27 (Delta) 207000 RP-1 LO2 262 (S.L.)

Aerojet AJ110 9800 UDMH/N2H4 N2O4 320 (Vac)

TRW TR-201 (Delta) 9900 UDMH/N2H4 N2O4 303 (Vac)

United Technologies Orbus 6 23800 Solid 290 (Vac)

United Technologies Orbus 21 58560 Solid 296 (Vac)

Pratt & Whitney RL-10 16500 LH2 LO2 444 (Vac)
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Exercise 6-1. For each rocket motor in Table 6-1, calculate the ratio of final to initial mass for a 
velocity increase of 5000 m/s. Plot and interpret results.

In the presence of external forces, equation (6-1) can be rewritten as:

Under certain forms of the force, the solution can be written as

(6-4)

For rockets in vertical ascent through a constant Earth gravity field, equation (6-4) reduces to:

(6-5)

So it is seen that the gravity loss term, go(t-to) can only be neglected if the burn time is short 
compared to the specific impulse. Orbit trim maneuvers and launch vehicles with high thrust to 
weight ratios (meteorological rockets, fireworks) often fall into this category. In vehicles with low 
thrust to weight ratios (most scientific, manned and commercial launches), the gravity term 
cannot be ignored.

The Isp is primarily determined by the fuel selection (Table 6-1). So the velocity gained can only 
be increased by increasing the ratio of initial mass to final mass. The initial mass is the sum of the 
fuel mass, the structural mass, and the payload mass

(6-6)

and the final mass is mt=ms+mp.  A significant parameter is the structural mass factor

(6-7)

which is a measure of the structural efficiency of the vehicle.  Solid rockets generally have lower 
β values than liquid systems, but at the cost of lower Isp.  A value of β as low as 0.04 (Atlas launch 
vehicle) would be considered a very efficient structural design. Values in the range of 0.08 to 0.12 
are more typical.  So even with no payload and ignoring gravity losses and drag, the maximum 
velocity for a single stage vehicle with β=0.1 and Isp= 300 is less than 7000 m/s.  This is less than 
the orbital speed for a LEO of 7500 m/s.  Consequently staging of launch vehicles is required to 
reach LEO speeds when external forces and non-vertical launches are considered.

Exercise 6-2. Neglecting gravity losses and with payload mass of zero, calculate the structural 
mass fraction for each engine in Table 6-1 required to provide LEO orbital speed of 7500 m/s.

Exercise 6-3. For a payload of 500 kg, structural mass fraction of 0.08, and final velocity of 7000 
m/s, calculate the lift off mass for a rocket powered by the Pratt & Whitney engine. What is the 
burn time (careful of units)? Would it be reasonable to ignore gravity losses for a vertical flight?
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6.2.2 Staging

Consider the case of n-stages. The payload at the end of stage i is approximated by the initial mass 
for stage i+1. The final mass of the vehicle is the payload mass plus the structural mass of the last 
stage. The overall payload to initial mass has been increased by jettisoning the structural weight 
of the first n-1 stages. Ignoring drag and gravity losses, the velocity change for a multistage
rocket with N stages is the sum of the velocities of the individual stages

(6-8)

For the case where ∆v and βi are fixed, there is a choice of how to distribute the total mass among 
the stages. An optimization problem associated with rocket staging is to minimize the overall 
mass to payload ratio

(6-9)

subject to the constraint that the sum the characteristic velocities be a specified value, ∆vT:

∆v1+∆v2+...+∆vN-∆vT=0 (6-10)

This problem, which can be solved using the Lagrange multiplier process [1], is of little practical 
value because of the assumptions of straight line flight and the omission of drag and gravity 
effects. Rather, optimal multistage launch trajectory analyses are performed using sophisticated 
models that include the variation of g with altitude, inclusion of Earth rotation, aerodynamics, 
pitch and yaw of the thrust vector, and many other factors. Nevertheless, the optimal solution can 
be utilized to estimate the upper bound for performance.

6.3 Impulsive Maneuvers

Midcourse corrections and orbit transfers maneuvers are often performed with thrust durations 
that are very short compared to the orbital period and with the thrust applied in one direction. 
Such maneuvers, at least for purposes of mission design, can be approximated by impulses. 
During an impulse, the position of the vehicle is assumed to not change, but the velocity 
undergoes an instantaneous change in magnitude and/or direction. Most orbit changes must 
consider the three dimensional nature of the problem and conditions for optimality are often 
difficult to develop. Three and four impulse optimal transfers are still a research topic. The two 
dimensional case, on the other hand, admits to some analytical solutions. Finally, optimal 
transfers are often compromised by launch windows, limitations on the available sizes of solid 
rockets boosters, and other missions requirements [4,137].

In-plane or coplanar orbit changes are those maneuvers that do not change the direction of 
angular momentum, but may change a, e, ω, and/or τ. The ∆v for such a maneuver must therefore 
be in the orbit plane. Several different transfers will be discussed here, involving various conic 
sections and impulses. The most general planar case, optimal transfer between two arbitrary 
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coplanar elliptical orbits, requires finding the roots of an eighth degree polynomial [3,525] just to 
evaluate the necessary conditions for optimally. Constraints can be placed on the possible transfer 
orbits [3,237] but often zeroth order analyses are used to find the optimum.

6.3.1 Single impulse transfers.

A single impulse transfer between two orbits can only be considered if the two orbits have at lease 
one common point in space. The transfer must then occur at one of the intersection points. For 
small impulsive changes in the orbital elements, Gauss’ form of the perturbation equations (5-27)
can be utilized to solve for all three components of the impulse. In general, only three orbital 
elements can be controlled since there are only 3 components to an impulse. Also some 
combinations of changes may be impossible. For example, from the third and fourth of 
equations (5-27) it is clear that inclination can not be changed without changing the nodal location 
unless the intersection point is on the line of nodes. In this case the maneuver must be performed 
on the line of nodes, i.e. sinθ=0. Typical single impulse maneuvers include 

1. maneuvers at apoapsis to raise periapsis to reduce drag effects, requires δa and δe changes,

2. maneuvers to rotate orbit in-plane to place periapsis over a specified latitude, δω change,

3. maneuvers at periapsis to change orbital period, δa  and δe change,

4. maneuvers near the line of nodes to change inclination.

Two impulse maneuvers, to accomplish the same orbit changes, often require much less ∆v than 
the single impulse. For example, the optimal two impulse maneuver to change ω requires half of 
the single impulse δv [4, 109].

6.3.2 Two-impulse transfer between coplanar circular orbits

Consider the transfer of a spacecraft in a circular orbit of 
radius r1 to a coplanar circular orbit of radius r2, as shown 
in Figure 6.1. Assuming no external forces during the 
transfer, the transfer orbit is a conic. The first impulse, ∆v1,
places the spacecraft on the transfer orbit and the second, 
∆v2, recircularizes at r2. The periapsis of the transfer orbit 
cannot lie outside the inner orbit, and the apoapsis must lie 
outside or be tangent to the outer orbit. The transfer orbit 
must therefore satisfy the conditions:

(6-11)

The semi-major axis and the eccentricity provide 
constraints on the possible range of v1 and v2. Here rp and 
ra are selected as independent variables in lieu of a and e.

The four relevant velocities can be obtained from the vis-viva equation (Equation (3-5)). Before 
the first burn the spacecraft has circular speed from the inner orbit:

v1
−

v1
+

∆v1

v2
−

v2
+

∆v2

Departure orbit

Target orbit

Transfer
orbit

Figure 6-1. Two impulse transfer 
between coplanar circular orbits

rp a 1 e–( ) r1≤=

ra a 1 e+( )= r2≥
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. (6-12)

The transfer orbit speed immediately after the first burn is

(6-13)

Before the second impulse

(6-14)

and afterwards

(6-15)

The angle between the two vectors and  is the flight path angle on the transfer conic 

γ1, and can be obtained from the angular momentum h=r1v1
+cosγ1= . From the law of 

cosines, the speed change required to transition to the transfer orbit is

(6-16)

which is a function of r1, rp, and ra.  Likewise, for the second impulse

(6-17)

is a function only of r2, rp, and ra. Equation (6-16) and (6-17) are equally applicable if r2<r1 and if 
the maneuver occurs at either of the two intersection points of the transfer orbit with the initial 
orbits. Elliptic transfer orbits that make less than one complete orbit about the primary are 
classified as four Types. Type I: during the transfer the true anomaly satisfies . That is, 
the motion is away from the primary during the entire transfer. Type II: periapsis is not contained 
in the transfer arc but apoapsis is. Type III:  and Type IV: the transfer includes 
periapsis but not apoapsis. These definitions are not uniformly accepted in the community.
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---------------–⎝ ⎠

⎛ ⎞=

v2
– 2µ 1

r2
---- 1

ra rp+
---------------–⎝ ⎠
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Figure 6-2 provides the ∆v requirements for 
transfer from a LEO at a=6700 km to a 
geosynchronous orbit as a function of ra and 
rp of the transfer ellipse. The blue lines are 
the ∆v for the first impulse required to 
establish the transfer orbit. These velocities 
are sensitive to rp because reducing rp
requires turning as well as increasing the 
velocity with the first impulse. They are a 
weaker function of ra because near periapsis a 
small change in velocity provides a large 
increase in semi-major axis.The magenta 
lines are for the second impulse required to 
circularize the transfer orbit at 
geosynchronous altitude. These lines show 
the opposite sensitivity. Increasing ra provides significant sensitivity because the velocity on the 
transfer orbit at r2 increase in magnitude and flight path angle.

Figure 6-3 shows the total ∆v and the transfer 
time in hours for the transfers in Figure 6-2. Of 
course, transfer time is completely determined by 
the first maneuver. For a fixed total ∆v, the 
quickest transfer occurs when rp=r1 or γ1=0. With 
rp=r1, it takes almost 500 m/s to reduce the flight 
time from 100 hrs. to 70 hours.

6.3.3 Hohmann transfer

From equations (6-16) and (6-17) it can be 
shown [1] that minimum ∆v = ∆v1 + ∆v2 occurs 
when γ1 and γ2 are zero. This minimum speed 
change corresponds to a minimum fuel transfer. 
The transfer ellipse is tangent to both circular 
orbits. This ideal maneuver is known as a Hohmann transfer after Walter Hohmann who in 1925 
hypothesized that such a maneuver would be optimal. The semi-major axis of the transfer orbit is 

, the transfer time  is half of the period of the ellipse, and the 

eccentricity can be written in terms of the radii, . Equations (6-16) and 
(6-17) reduce to

(6-18)

For the example in Figure 6-2 and Figure 6-3, the Hohmann transfer occurs in the upper left 
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corner. The corresponding values are ∆v1=2.42 km/s, ∆v2=1.46 km/s, and the transfer time is 5.3 
hrs.

Exercise 6-4. Starting with equation (6-16) and equation (6-17) verify Equations (6-18).

While the Hohmann transfer is the most economical transfer in terms of fuel usage, there are a 
number of reasons that they are not practical. First, the transfer time is significantly longer than 
some slightly less energy efficient transfer orbits. Hohmann transfers may also be physically 
impossible, for example, Hohmann transfers from an intermediate LEO to geosynchronous 
equatorial orbit are only possible if the LEO is in the equatorial plane. This will normally require 
a launch site near the equator. Hence, establishing GEO orbits using Hohmann transfers from 
non-equatorial launch sites requires a “dog leg” launch trajectory or an orbit transfer with a 
significant orbit plane change to establish the equatorial orbit. Similarly, because the planetary 
orbits are not in the same plane, Hohmann transfers are generally not possible for interplanetary 
transfers. Near Hohmann transfers, i.e. near 180 deg transfers with small plane changes, are 
possible if departure and arrival occurs near the line of nodes of one orbit with respect to the other. 

If the planets were in circular orbits and in the same plane, the 180 degree transfer places strict 
conditions on the relative angular position of the departure and arrival planets at the time of 
departure. Since the transfer time and transfer angle are fixed, the angular position of the target, 
relative to an arbitrary line in the plane of motion, must satisfy

where td is the time of departure, T is the transfer time and n2 is the mean motion of the target. For 
Hohmann transfers to an outer planet, the last term is positive and the target must “lead” the 
departure planet. Conversely for transfers to an inner planet. For transfers from the Earth to Mars 
the lead angle is about 43 deg. and from equatorial LEO to GEO is about 100 deg. By eliminating 
T, a general expression for lead angle can be derived in terms of only the semi-major axis ratio. 
Since the relative angular motion is |n2-n1|, the relative configuration will reoccur every synodic 

period given by , where P represents orbital period. For the Earth and Mars 

the synodic period is about 26 months, thus near minimal energy launch opportunities occur every 
26 months. For the equatorial LEO to GEO, the synodic period is about 100 minutes. This 
difference places substantially more pressure on interplanetary launches than on most launches 
into near Earth orbits.

Exercise 6-5. Calculate the synodic period and lead angle for 180 deg. transfers from the Earth to 
each of the planets. Ignore planetary eccentricities and inclinations. Plots results vs. planetary 
semi-major axis in AU and interpret results.

θ2 td( ) θ1 td( ) π n2T–( )+=

2π
n2 n1–
-------------------  

P1P2
P1 P2–
--------------------=
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6.3.4 Bi-elliptic and bi-parabolic transfer

It has been shown that the Hohmann transfer is not the 
global minimum energy transfer if the ratio of major axis is 
greater than 11.94. Above this ratio the bi-parabolic
transfer is the optimal. In this transfer, ∆v1 is performed 
with γ1=0 to establish a parabolic orbit. At  the 
second maneuver is performed to adjust the angular 
momentum so that the return parabola will have a radius of 
periapsis of r2. Since the maneuver is at infinity, these 
changes can be made with ∆v2=0. The third maneuver on 
the return parabola circularizes the orbit at r2. Such a 
transfer is of course impractical. For large semi-major axis 
ratios, bi-elliptic transfers can provide a small reduction it total ∆v, but at a significant increase in 
transfer time. A bi-elliptic transfer is shown in Figure 6-4. LEO to GEO transfers can not benefit 
from the bi-elliptic option and only transfers from Earth to Uranus, Neptune and Pluto could 
benefit. The second maneuver must occur outside the outer orbit, so the transfer time is more than 
doubled for a small saving in ∆v [1,111]. Thus for interplanetary transfers this option is also 
impractical.

6.3.5 Impulsive Transfers Between Inclined Orbits

Transfers of this type include the transfer from an inclined LEO to the GEO and the interplanetary 
transfer between Earth and any planet. In the first case the difference in inclination can be 28 
degrees or more, while in the second case the inclination difference is at most a few degrees. 
From equations (5-27) an impulse is most effective for making small changes in inclination when 
rcosθ achieves its maximum value. For circular orbits this is at the ascending or descending node. 
For eccentric orbits the most effective location depends on the particular values of eccentricity 
and ω and corresponds to the true anomaly that satisfies

(6-19)

This equation can be reduced to sin(f+ω)+esinω=0, from which two solutions for extrema can be 
found. 

For large angle plane changes the assumptions associated with equations (5-27) are not applicable 
and finite velocity changes must be included. Consider first the case where the orbits are circular 
and have the same semi-major axis, a. This is the case of rotating the initial orbit to a new 
inclination. The transfer can be accomplished with a single impulsive maneuver of magnitude 

, where ∆i is the difference in inclination between the two orbits. With the bi-

parabolic generalization of the Hohmann transfer as a guideline, consideration might be given to a 
three maneuver bi-parabolic transfer for inclination changes. The first maneuver places the 
vehicle on a parabolic trajectory without changing the orbit plane , the 
second maneuver is performed at infinity to change the orbit inclination to the desired value 

∆v(1)

∆v(2)

∆v(3)

Figure 6-4. Bi-elliptic transfer.
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without changing the periapsis distance ∆v2=0, and the third maneuver changes the return 
parabolic motion to the original circular orbit ∆v3=∆v1. It is readily shown that the bi-parabolic 
plane change is less expensive than the single impulse plane change if ∆i>48.9o. Continuing the 
analogy with the co-planar circle to circle transfers, there are three impulse bi-elliptic maneuvers 
that require less ∆v than single impulse plane change maneuvers if ∆i>38.9o [4,118]. All three 
maneuvers are performed on the line of nodes. This approach of course extends the time to 
achieve the final orbit. Further savings in ∆v can be achieved by performing a fraction of the 
ultimate plane change at each of the three maneuvers. However, plane changes of this magnitude 
are generally avoided because of the large propulsion penalty.

Now consider the case of transfer between inclined circular orbits of radius a1 and a2. The bi-
parabolic and bi-elliptic transfers again provide advantages in particular cases, but emphasis here 
will be on the two impulse transfer at the line of nodes. First order analysis would suggest that the 
plane changed be performed at minimum velocity, i.e. at the larger orbit. However there is an 
advantage to performing part of the plane change during both maneuvers. The magnitude of the 
velocities before and after each maneuvers are the same as for the Hohmann transfer. The ∆v’s are 
different because the velocities are not co-linear. The velocity before the first burn is the circular 
speed from the first orbit:

. (6-20)

The speed on the transfer orbit immediately after the first burn is

(6-21)

and before the second impulse

(6-22)

On the final orbit, after the second impulse

(6-23)

Let the total required plane change be divided between the two maneuvers ∆i = ∆i1+∆i2.  From the 
law of cosines, the speed change required to transition to the transfer orbit is

(6-24)

which is a function of only ∆i1.  Likewise, the second impulse

(6-25)
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is also a function of only ∆i1 since all the other parameters are specified.  The total impulsive 
requirement can be directly minimized.  For the transfer from LEO to GEO with a 28o plane 
change, the minimum ∆v occurs if about 2o of plane change is performed at departure and 26o at 
arrival.

6.3.6 Other Impulsive Transfers

The results of the above sections can be used as starting points for numerical searches for the case 
of two or three impulse transfers between inclined circular orbits. Solution approaches range from 
multi-dimensional optimization to zeroth order searches of the design space. Two impulse 
transfers between slightly elliptic, nearly co-planar orbits can also be optimized by constraining 
the solution to transfer angles near 180o. A particularly useful form for calculating velocity 
vectors before or after an impulsive maneuver can be obtain by crossing the angular momentum 
vector with equation (3-6) to get

(6-26)

which provides velocity as a function of p, e, i, Ω, ω and f. The true anomaly enters the equation 
through the unit vector along the radial direction, er, thereby providing a convenient method for 
calculating velocity around the orbit as a function of true anomaly.

6.4 Low Thrust Transfer

The discrete impulsive maneuvers discussed above would normally be performed with rocket 
engines having specific impulses less than 500 sec. A potential alternative is a transfer using 
continuous, low thrust, high specific impulse technology. Ion propulsion systems provide specific 
impulses that are up to 10 times those of chemical systems. However, they are not applicable for 
missions requiring high accelerations or short mission times. Orbit transfer optimization 
associated with continuous thrust trajectories is difficult and requires the application of special 
numerical techniques. There are three special cases, tangential, circumferential, or radial 
acceleration, where approximate analytic solutions can be formed [3]. This section will present a 
numerical example for constant tangential acceleration and outline an analytic solution for the 
constant circumferential acceleration case.

6.4.1 Constant Tangential Acceleration Escape Trajectories

Assume the spacecraft is initially in a circular orbit with semi-major axis ao.  A constant tangential 
acceleration is applied until the s/c reaches escape velocity.  Since the thrust is applied in the same 
direction as the velocity vector, the thrust is providing the maximum change in kinetic energy at 
every instant of time.  With the acceleration aT applied tangent to the orbit, the equations of 
motion  are

(6-27)
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where aT is the magnitude of the acceleration. 
Numerical integration of these equations results 
in the spiral trajectory shown in Figure 6-5. The 
assumption of constant acceleration implies a 
variable thrust level for a rocket system. Solar 
sail systems would not be expelling mass, but 
generally cannot provide constant tangential 
thrust because the distance from the Sun and the 
orientation to the Sun change throughout the 
orbit. At the acceleration level of 0.005go, the 
spacecraft reaches escape velocity (the red star) 
after about 33 hours and 7 revolutions of the 
Earth. For comparison, if the acceleration is 
reduced to 0.001go, it will take about 180 hours 
to reach escape velocity.

6.4.2 Constant Circumferential Acceleration

Battin [3,418] provides the following as an exercise for the student. The constant circumferential 
acceleration aθ is directed perpendicular to the radius vector, and the equations of motion are

(6-28)

If the radial acceleration is small so that the centripetal acceleration balances gravity, the equation 
for distance from the center of attraction is

(6-29)

where vo is the velocity in the initial circular orbit.  The radius at escape is

(6-30)

and the time to escape is 

(6-31)

The trajectory is again a spiral as in Figure 6-5. As might be expected, the tangential thrust 
reaches escape velocity sooner than the circumferential thrust case.
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Figure 6-5. Escape from LEO (h=300 km) 
using constant tangential thrust of 0.005go
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6.5 Lambert’s Theorem

For rendezvous and interception type orbit transfers, the orbital elements of both the departure 
and target orbits are known, i.e. the position in both orbits are known functions of time. The 
transfer orbit must therefore pass through a point on the departure orbit at the departure time and 
pass through a point on the target orbit at a later time, the arrival time. Thus, six state variables 
and a transfer time are specified for each possible transfer. It is natural to ask if more than one 
orbit can satisfy these conditions. The answer is partially given by Lambert’s theorem of 1761 
which states that the time required to transfer between two points P1 and P2 on an elliptic transfer 
orbit depends only on the semi major axis of the ellipse, the chord length c and the sum of the 
radii from the focus to point P1 and P2.

(6-32)

Lambert’s theorem involves conditions at two times and is referred to as a boundary value 
problem. The most extensive coverage of the topic is given in [3,237]. Since Kepler’s equation 
only involves one time, its solution is called an initial value problem.

6.5.1 Proof of Lambert’s theorem

The first analytic proof of Lambert’s theorem was given by Lagrange in 1778. The proof develops 
a form of Kepler’s equation that is only a function of the desired variables. Let E2 and E1 denote 
the eccentric anomalies at time t2 and t1, respectively, then Kepler’s equation (3-14) can be 
written as 

(6-33)

Since , the transfer time can be written as the sum and 

difference of the eccentric anomalies.  So it is convenient to define 

(6-34)

Likewise, since r=a(1-e cos E), the sum of r1 and r2 can be written as

(6-35)

To calculate the chord length from P1 to P2 use the orbital coordinate system from Section 3.8:

(6-36)

The chord distance in terms of a and e is then
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(6-37)

Since e is less than 1 for elliptic orbits, define

(6-38)

A quadrant ambiguity has been introduce here which would have to be resolved in practice. 
Nevertheless, equation (6-37) then reduces to

(6-39)

and equation (6-35) becomes

(6-40)

The transfer time given by equation (6-33) in terms of these newly defined parameters is

(6-41)

Ignoring the quadrant issues, equations (6-39) and (6-40) can be used to solve for Em and κ given 
only a, r1+r2 and c. Thus Lambert’s theorem is proved and as stated the transfer time only depends 
on r1+ r2, c, and a.

6.5.2 Euler’s equation for parabolic orbits

A special case of Lambert’s theorem which describes the parabolic transfer time between two 
points, was derived by Euler in 1743. The result is [3, 277]

(6-42)

with the negative sign if θ=f2-f1 < π, and positive for θ > π. During searches for feasible departure 
and arrival times, this equation is useful for identifying when the transfer switches from elliptic to 
parabolic.

6.6 Interception and Rendezvous

In the standard approach to determining interception and rendezvous transfer orbits, a set of 
potential departure times and a set of potential arrival times are selected. For interplanetary and 
other transfers requiring small inclination changes, the sets are generally centered around the 
Hohmann or 180o transfer opportunities. For transfers that require large plane changes a broader 
search space may be required. For each departure time, an initial position vector r1 is determined. 
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Likewise for each arrival time, r2. Lambert’s theorem solutions for the transfer orbit are 
performed for every pair of departure dates and arrival dates. Contour plots of mission 
parameters, e.g. ∆v1, ∆v2 are then plotted as functions of departure and arrival date. In this 
approach, the only unknown in equation (6-41) is the semi major axis, a. Thus iterative schemes 
must be utilized to find the semi major axis which satisfies the equation. Many methods have been 
developed [1,3,6] to obtain a solution. Even today no method is accepted as the “best” and many 
methods fail for the 180o transfer. The method presented here is by Herrick and Liu as described 
in Reference 7 and is one form of the class of solutions called “p-iteration.”

The procedure follows the steps:
1. Determine the transfer angle 0<θ=f2-f1<2π from the dot product  and the cross 

product . For transfers greater than 180o, care must be exercised to assure angular 
momentum of the transfer orbit is in the desired direction. Without such care, retrograde 
transfer orbits may result from transferring between two direct orbits.

2. Pick an initial estimate of the semi-latus rectum of the transfer, p.

3. Solve for the F and G functions from Section 3.8

 

4. Determine the initial velocity that will produce such a transfer: . Note 

that 0 and 180 degree transfers are not permitted. The resulting transfer time may not be 
the desired value since only the difference in true anomaly has been use.

5. Using r1, v1 and t1 map the estimated transfer orbit to time t2 to get the position vector .

6. Iterate on p until the angle between  and r1 is θ.

By starting near the 180 degree transfer, an initial guess for p is readily available. A Newton-
Raphson iteration scheme can be utilized if finite difference partials of  wrt p are generated.

6.7 Midcourse Corrections

Midcourse maneuvers or trajectory correction maneuvers are performed throughout the life of 
most space missions.  The need for such maneuvers generally result from three causes: 

1. Errors in modeling the forces acting on the satellite. There are always uncertainties in the 
modeling of forces acting on a satellite. Precise calculation of radiation pressure is difficult 
because the optical properties of materials are not known at all angles of incidence and wave-
lengths. Further, reflected and emitted radiation from the Earth is very dependent on geo-
graphic location and cloud cover. Gravitational terms are in error because the masses of the 
planets, Moon and Sun and the non-central gravity field are uncertain. Drag and other aerody-
namic forces are difficult to model to better than 10% accuracy because of uncertainties in 
both the aerodynamic properties of the spacecraft and the atmospheric environment. These 
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types of errors usually produce small but often secular deviations of the trajectory from the 
nominal path and are corrected whenever the orbit approaches some mission tolerance limit.

2. Execution errors in previous propulsive maneuvers. Maneuver errors result from errors in 
pointing the spacecraft to perform the maneuver and errors in the total ∆v imparted. The 
former depend on both the knowledge of spacecraft orientation at the beginning of the burn 
and the control of the orientation during the burn. The latter errors can be due to a number of 
causes including uncertainties in the thrust level for the specific maneuver, burn time, and 
blown-down after the fuel supply is terminated. Maneuvers are monitored very closely to 
assure that the performance was not outside the nominal error limits. If an off nominal maneu-
ver was performed, perhaps due to a sticky propellant valve, the need for an immediate cor-
rective maneuver is determined. Designing the time between nominal maneuvers and the ∆v 
allocation are part of the mission and operations designs.

3. Changes in mission requirements. Mission requirements can also change during the course 
of a mission. If “large” orbit changes are required to accomplish the new mission, the maneu-
ver methods discussed in sections (6.3), (6.4) and (6.6) are appropriate. Many of these meth-
ods require iterative or other multi-step numerical methods. If the maneuvers are “small” then 
linear approximation methods can be used to determine the maneuver or at least obtain a very 
good estimate of the maneuver which can be verified or slightly adjusted through precise tra-
jectory calculations.

6.7.1 State transition matrix

The fundamental tool for performing small, impulsive maneuver design and analysis is the state 
transition matrix. The state transition matrix is obtained by linearizing the equations of motion, 
equation (2-1) along a reference trajectory. The “two body” state transition matrix is obtained if 
the only force is due to the central gravity term. The general state transition matrix is obtained 
first and then specialized to the two body case. Write Newton’s second law in the six-vector form 
of equation (5-8)

(6-43)

Assume that initial conditions ro and vo are given at time to and the resulting solution is the 
reference or nominal trajectory r(ro,vot) and v(ro,vot). If the initial conditions are perturbed by 
some small amount δro and δvo the change in position and velocity at time t would be

(6-44)

where only the linear terms in the Taylor series expansion have been retained and the partial 
derivatives are evaluated along the nominal trajectory.  These equations can be combined in the 
form

(6-45)
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where Rr, Rv, Vr and Vv are the 3 by 3 submatrices from equation (6-44) and the state transition 
matrix is defined as:

(6-46)

The terms in this equation are obtained by integrating the equations of motion resulting from 
differentiating equations (6-43) with respect to each of the 6 initial conditions; for example, for 
the initial position component xo

(6-47)

This is a set of 6 coupled, first order, linear, non-autonomous, homogeneous, differential 
equations for the six quantities in brackets ( ). The terms in braces [ ] are 3 by 3 matrices that are 
evaluated along the nominal trajectory and therefore known functions of time. Note that there is 
no coupling between equations for different components of the initial conditions. Secondly, if the 
force does not depend on velocity, the last term in the second equation vanishes. The equations for 
all six of the initial conditions can be written as

(6-48)

with initial conditions . This is the equation of motion for the state transition 

matrix.    For two body motion f=-µr/r3 so that  and

(6-49)

Explicit expressions for the elements of the two body state transition matrix can be derived after 
considerable algebra, one representation in given in (3,467). For the general case, numerical 
integration is the only resort and many orbit propagation programs will simultaneously integrate 
equations (6-43), equations (6-48) and generalizations of (6-48).
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The distinction between the state transition matrix and the F and G functions of Section 3.8 is 
that the F and G functions are used to map the reference 2-body trajectory from one time to 
another while the state transition matrix is used to map small deviations from the reference 
trajectory from one time to another.

6.7.2 Constant time of arrival maneuvers

Consider a spacecraft that has been targeted to arrive at a particular point in space rt at some 
specified time, tt on the nominal trajectory. Examples include interception and interplanetary 
missions. Because of various errors mentioned above, the trajectory is not going to meet the 
objective. Orbit determination and trajectory calculations predicts that at time tt on the current 
trajectory, the spacecraft will be at position rs. The error δr=rt-rs is to be corrected at time tm<tt
with an impulsive δv maneuver. Evaluating the state transition matrix Φ(tt,tm) along the current 
trajectory provides from equation (6-45)

(6-50)

If the inverse of Rv exist, the required impulsive maneuver at time tm is readily calculated. Since 
the impulse does not change the position, δr(tm)=0 and this term in equation (6-45) does not 
contribute to either the final position or velocity. The equation shows that velocity at time ta is 
influenced by the maneuver, but this term is often ineligible compared to the nominal velocity at 
tt. If final velocity is a consideration, then a second maneuver could be performed at time tt to 
correct for any velocity mismatch. The are orbital transfers for which Rv is singular; for example, 
an impulse at any point in an orbit can not change the position normal to the orbit plane for a 180o

transfer. In this case Rv would be at most of rank two.

In this problem there are no extra degrees of freedom, i.e. there are three positions to be corrected 
and three components of velocity to be changed. In some cases, the target may be a two 
dimensional surface or a line in three dimensional position space. For example, suppose for a 
rendezvous mission a sequence of N trajectory correction maneuver are required to meet the final 
accuracy requirements. More than one maneuver is required because early orbit determination 
and maneuver execution errors may be large. To avoid possible collision if subsequent maneuvers 
fail, only the N-th maneuver can target for rendezvous. The first N-1 maneuvers are then targeted 
to sequentially closer distances which might be represented by ellipsoids surrounding the target. 
In this case there is one or two extra degrees of freedom in choosing the impulsive maneuver and 
minimum ∆v maneuvers become a consideration.

6.7.3 Variable time of arrival maneuvers

For both interception and interplanetary missions, small variations in arrival time may be 
acceptable. Two types of problems can be now posed: (1) for a fixed ∆v magnitude determine the 
earliest time of arrival and (2) for a variable time of arrival determine the minimum ∆v. Within the 
linear approximations of this section, both formulations are very similar, so consider the latter 
case. At time tt, let rs and vs be the spacecraft position and velocity and rt and vt be the target 
position, then within the linear assumptions

δr tt( ) Rv tt tm( , )δv tm( )=
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(6-51)

where the Rδv term represents the change in spacecraft position at time tt due to an impulsive 
change in velocity at the maneuver time tm. Small changes in vs due to the maneuver are ignored 
as second order. The goal is to make rs(tt+δt)=rt(tt+δt) by selecting δt so as to minimize δv.
Setting these terms equal leads to the solution

(6-52)

where δr=rt-rs as above and ν=vt-vs is the relative velocity. It is straight forward to show that the 

time that minimizes the norm of δv occurs when . The minimum impulse to provide 

interception is therefore

(6-53)

Exercise 6-6. Starting with equation (6-52), verify and provide a physical interpretation for 
equation (6-53).

6.8 Problems

1. Consider the vertical launch of a two stage vehicle with a 1000 kg payload and a first stage 
structural plus propellant mass of 100,000 kg, β=0.04, Isp=300s, and thrust of 1.5e6 N.  
The respective second stage values are 5,000, 0.08, 350, and 180,000.  If gravity and drag 
are neglected, what is the burn out velocity?  Is this enough to escape the Earth?

2. For the same rocket as in problem 1, assume a uniform gravity field of 10 m/s2 and no 
other external forces.   What is the burn out velocity? Is this enough to escape the Earth?

3. A Russian satellite is in a circular LEO at 400 km altitude and inclination 55 deg. Assume 
a two impulse transfer to a geosynchronous circular equatorial orbit. How should the incli-
nation change be divided among the two impulses to minimize the total ∆V?

4. Consider 3-d particle motion in a uniform gravity field (go) along the z axis and initial 
conditions (xo, yo, zo, uo, vo, wo) at time to. Write the state transition matrices Φ(t,to) and 
Φ(t,tm) where to<tm<t is a potential midcourse maneuver time. 
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Chapter 7 - Special Orbits

7.1 Introduction

An important consideration in space mission design is determining the type of Earth orbit that 
best suits the design goals and purpose of the mission. This chapter will include a discussion of 
the advantages and disadvantages of these orbits with emphasis on the geosynchronous, Sun-
synchronous, Molniya, polar, low Earth orbits and frozen orbits. There will also be a discussion of 
the ground track characteristics of certain orbits and the possible benefits of the use of 
constellations.

7.2 Geosynchronous Orbits (GEO)

Geosynchronous orbits are a special class of synchronous orbits. A synchronous orbit will have 
a repetitive ground track after an integer number of days (m) and an integer number of orbits (n). 
Usually m is a small integer but may be 30 days or more. The value of n of course depends on the 
period of the orbit. The smallest practical value of n is 16 and even this orbit may have a relatively 
short life time due to drag. If m/n<1 the orbit is sub-synchronous (e.g. for a 8 hour orbital period 
m/n=1/3) and if m/n>1 the orbit is super-synchronous (e.g. for a 36 hour orbit m/n=3/2).

Of all the synchronous orbits, the geosynchronous orbit is the most utilized type, with many of the 
meteorological and communication satellites in this orbit. A geosynchronous orbit has an orbital 
period equal to one sidereal day (1.3.5) so m=n=1. The benefit of the geosynchronous orbit is that 
a satellite in this orbit will appear over the same point on the Earth at the same time each day. The 
statement is only precise within the framework of the 2-body problem since perturbations 
(Chapter 5) will produces deviations and must be considered in the design of the orbit. The 
special case of a circular geosynchronous orbit that has zero inclination to the equator is referred 
to as geostationary. A satellite in a geostationary orbit will appear to be motionless to an observer 
on the surface of the Earth with no change in elevation or azimuth during the day. This orbit is 
useful for communication satellites because it eliminates the need for tracking mechanisms so that 
communication with the satellite can be maintained with a fixed antenna at the Earth tracking 
station. The commercial importance of this orbit is demonstrated by an international agreement 
that assigns positions in the geostationary orbit. Original spacing was limited to 3 degrees in 
longitude but this was subsequently reduced to 2 degrees. The spacing is limited by radio 
interference criteria and not orbital considerations.

The sidereal day (Section 1.3.8) is approximately 23h56m04s or 86,164 seconds. From 
Section 3.3.5 the two body semi-major axis for a geosynchronous satellite would give a=42,164 
km. Additional benefits of this high altitude include negligible atmospheric drag, being above the 
Van Allen radiation belts, and providing coverage of the Earth's surface up to about 82o latitude. 
The main economic drawback is the launch cost. Establishing a geostationary orbit generally 
consists of three phases. First, the satellite is inserted into a low Earth orbit (LEO). This orbit 
provides an opportunity to check spacecraft health and establish proper phasing for the orbit 
transfer. Next a near Hohmann transfer from the LEO to GEO is executed. This geosynchronous 
transfer orbit (GTO) has a periapsis near the LEO and the apoapsis near the GEO. Finally a 
7 - 1



MAE 589C Space Flight Mechanics a.k.a Astrodynamics August 24, 2005 9:42 pm
maneuver is performed near apoapsis on the GTO to circularize the orbit and to make the 
inclination near zero. A plane change of up to 28.5  is needed for a satellite launched from 
Kennedy Space Center. For this case, the typical ∆V for transfer from LEO to GEO is greater than 
4.2 km/s, whereas from LEO the ∆V to escape the Earth is only 3.2 km/s. Establishing a GEO 
from an equatorial launch site (zero inclination LEO) requires about 3.9 km/s total ∆V.

GEO satellites must be maintained within their assigned longitudinal spaces. This station 
keeping requirement can produce a significant propulsive penalty. The major perturbations of a 
GEO satellite are J2 and to a much lesser extent other non-central gravity terms (Section 5.4.2), 
solar pressure (Section 5.4.5), and N-body perturbations from the Moon and Sun (Section 5.5.2). 
Even at this altitude, J2 still produces the largest precession in the orbit periapsis, but solar 
pressure and lunar and solar gravity produce long period changes in eccentricity and/or 
inclination. These later effects can cause the satellite to move out of the assigned region. N-body 
effects can produce long period variations in inclination greater than 15o over times scales of a 
decade. Orbits are typically established with a small inclination, so that after a 3 to 5 years the 
perturbations drive the inclination to zero and after 3 to 5 more years the inclination has again 
increased to a few degrees. Proper design can assure inclinations less than 5o over the life of the 
spacecraft. At the end of the useful life, geostationary satellites are generally moved to higher 
altitude orbits and powered off so as not to interfere with GEO or GTO orbits. 

Exercise 7-1. Assume a GEO has been assigned a location of 75o W longitude. Make plots of 
longitude vs. time, latitude vs. time, and latitude vs. longitude for inclination (deg.) and 
eccentricity pairs of (4,0), (10,0), (0,0.002), (0,0.004), and (4,0.004). Multi-plots per page are 
recommended but, to provide easy comparison, plots of the same type must have the same axis 
range. Provide all calculations, m-files and a discussion of the results considering at least fixed 
Earth antenna pointing and longitudinal station keeping.

7.3  Molniya Orbits

The Molniya orbit is a sub-synchronous orbit that has a period of 12 hours so m=1 and n=2. The 
satellite will thus pass over the same point every other orbit. Note that there is a lack of precision 
in the synchronous orbit definitions and that discipline jargon is often used. By a "12 hour orbit" it 
is recognized that this means the ground track repeats after two orbits considering significant 
orbital perturbations and the sidereal rotation of the Earth. Since 1965 over 100 Molniya satellites 
have been launched. The Molniya orbit is highly inclined to provide radio communication across 
wide areas of the Soviet Union. The orbit is also highly elliptical to reduce launch requirements. 
This combination permits a Molniya spacecraft to remain over high latitudes twice each day for 
extended periods of time. The high eccentricity means that a satellite only spends about 3 hours 
over the southern hemisphere. To maintain the apoapsis at a high northern latitude, the inclination 
is selected near the critical inclination (Section 5.4.3) of 63.4o or 116.6o so that . Of 
course, the argument of perigee does not remain constant because of higher order gravity terms 
and the Sun-moon attraction. These effects are included in the design of the orbit and remaining 
perturbations are adjusted by orbit maintenance maneuvers. The typical Molniya orbit has a 
period of about one-half of a sidereal day, a semi-major axis of about 26,500 km, and the 
eccentricity is between 0.72 and 0.75. 

°

ω· 0=
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Exercise 7-2. Plot a one day ground track for both a direct and a retrograde Molniya satellite. 
Consider only J2 perturbations and include J2 precession in calculating the desired orbital period. 
Pick a periapsis altitude between 400 and 1000 km, apoapsis at maximum northern latitude, and 
longitude of apoapsis of 90 deg. east. Show tick marks along the ground track every 30 minutes. 
Use the supplied m-file "GroundTrack.m" to put the ground track on the globe. Also plot altitude 
vs. latitude over one orbital period with the same tick marks. Show all calculations, m-files, and 
discuss results including advantages and disadvantages of the direct and retrograde cases.

LEO parking orbits near the critical inclination are easily obtainable from the high latitude launch 
sites in Russia. The ∆V required to place a satellite into a Molniya orbit from a critically inclined 
parking orbit is about 2.5 km/s. This is significantly lower than the delta V needed to place an 
satellite into geosynchronous orbit. The disadvantage is of course that ground tracking stations 
must include some sort of antenna pointing control.

7.4 Polar Orbits

For full global coverage of the Earth, a ground track would have to cover latitudes up to . 
The only orbit that satisfies this condition has an inclination of 90°. These types of orbits are 
referred to as polar orbits. Polar orbits are used extensively for the purpose of global 
observations of the Earth and planets. The orbital altitude of polar orbits is chosen to produce a 
specified observation resolution and field of view. Sometimes the period must also be chosen to 
produce a sub-synchronous orbit thus assuring that the satellite ground track will repeat after a 
specified number of orbits. For Earth observation satellites, repetitive ground tracks on a weekly 
or monthly basis may be desirable. Since the inclination is 90°, nodal regression due to J2
(equation (5-22)) is zero so to first order the orbit plane is inertially fixed. Launches into polar 
orbits occur from the west cost of the USA and require slightly more launch capability because 
the rotation of the Earth does not contribute to attaining the orbital velocity.

7.5 Sun-Synchronous Orbits

A Sun-synchronous orbit (SSO) is a nearly polar orbit where the ascending node precesses at 
360 degrees per year or 0.9856 degrees per day. This type of orbit assures that the local solar time 
(LST) at the ascending node is nearly constant throughout the life of the mission. Orbits are 
identified by the time of ascending node crossing. So a "2 PM orbit" will ascend through the 
equator when the LST=1400 hours. Such orbits are primarily used for missions where the 
scientific instruments have been optimized for a particular lighting condition. Sun-synchronous 
orbits are typically nearly circular and always retrograde (i>90 deg). The design of a sun-
synchronous orbit starts with equation (5-22) for the regression of the node

(7-1)

where for dΩ/dt 0.9856 degrees/day. Typical parameters for sun-synchronous orbits include 
an inclination between 96 and 100 degrees and as altitude of 400 -1200 kilometers.
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Exercise 7-3. Make a plot of the relationship between semi-major axis and inclination for circular 
sun-synchronous orbits. Discuss any limiting factors for the design of such an orbit, e.g. 
maximum or minimum altitude. Identify, with a "+" on the plot, all combinations of a and i that 
will have repetitive ground tracks each day, i.e. orbits that are both sun-synchronous and sub-
synchronous.

7.6 Low-Earth Orbit (LEO)

A low-Earth orbit is roughly defined as any orbit with an altitude less than that of a 
geosynchronous orbit. Almost 90 percent of all satellites in orbit are in LEO. LEO is so often 
utilized because of the low launch requirements that are needed to place a satellite into orbit. The 
highest density of satellites are at altitudes between 200 kilometers and 1000 kilometers. Altitudes 
below 200 kilometers are not practical because of atmospheric drag. Orbits above 1000 km often 
utilize a lower altitude parking orbit as in intermediate phase to attaining the final orbit. Manned 
spacecraft utilize LEO in the relatively radiation-free corridor above 200 km and below 600 km. 
LEO is used for such missions as flight tests, Earth observations, astronomical observations, 
space stations, scientific experiments, and possibly commercial endeavors.

7.7 Frozen Orbits

A frozen orbit is designed so that one or more of the orbital elements are "frozen" or held 
constant in time. In other words, the orbit is designed so that there are no secular or long period 
perturbations (Section 5.4.2) to specified orbital elements. One example is the Molniya orbit 
where the choice of inclination assures that the secular change in ω is minimized. Some missions 
require a nearly constant eccentricity to either extend mission life time, to provide nearly constant 
altitude observations, or to meet other mission requirements. The eccentricity of low altitude 
satellites is influenced by the odd zonal harmonics of the gravity field (5.4.4) and reducing this 
influence may be necessary to extend mission duration. This is particularly important for the life 
times of LLO. Atmospheric drag (5.5.1) and solar radiation pressure (5.4.5) also affect 
eccentricity but are ignored in the following. The averaged variation of parameters equation (5-
24) for eccentricity changes due to J3 is

(7-2)

The eccentricity will be constant under a number of conditions: (1) argument of perigee equal to 
90 or 270 degrees, or (2) inclination of 0, 63.4, 116.6, or 180 degrees. Hence if the Molniya orbits 
are at the critical inclination, the argument of periapsis, the eccentricity and the inclination 
(equation (5-26)) will have no secular or long period variations due to J2 and J3. The requirement 
of critical inclination is a rather severe restriction for general mission design and the question 
arises if there are other orbit conditions that lead to frozen orbits where neither eccentricity nor 
argument of periapsis has long term or secular variations.

Equation (5-22) includes only the J2 contribution to the perturbation of ω. Including the 
contribution of J3 results in
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(7-3)

The critical inclinations still provide a constant argument of perigee. Another solution occurs 
when the bracketed expression is zero. Further if ω=  then the eccentricity and inclination will 
also be constant for both J2 and J3 long term and secular variations. This leads to an equation for 
the eccentricity in terms of the semi-major axis and the inclination

(7-4)

where ω must be chosen to made the eccentricity positive. Since J2 and J3 for Earth, Moon, Mars, 
etc. are known, frozen orbit relationships can be developed between eccentricity, inclination, and 
semi-major axis for mission design purposes. Among these planets, the Moon has the largest ratio 
with J3/J2 =0.03, so that the eccentricity for these frozen orbits will be less than 0.015. 

Note that equation (7-4) is not applicable near the critical inclination since equation (7-2) was 
derived on the assumption that . Near the critical inclination, the eccentricity for a 
frozen orbit increases significantly due to the higher order spherical harmonics that dominate near 
the critical inclination. The major contributors are J5 and J7, Reference 1 Consequently frozen 
orbit design near the critical inclination usually requires inclusion of higher order gravity terms 
and iterative numerical solutions. For a small range of inclinations, frozen orbit solutions may not 
exist.

7.8 Satellite Constellations

No single satellite can provide continuous, global coverage, so early in the utilization of space for 
communication and Earth observation, constellations of satellites were utilized to provide 
continuous coverage. NASA launched three Tracking and Data Relay Satellites (TDRS 1,3 and 4) 
to provide nearly global, continuous communication between other Earth satellites and almost any 
ground station. These satellites, which are in geostationary orbits separated by about 120o in 
longitude, eliminated the need for NASA to maintain costly ground tracking and communication 
stations around the world.

Exercise 7-4. Can a TDRS communicate with a LEO as the LEO passes over the North pole? 
Assume that signals can not propagate through the atmosphere below 100 km. What is the 
minimum altitude for the LEO to maintain communications? 

Since a Molniya satellite provides about 8 hours of communication opportunity for high northern 
latitude locations, three satellites would be required to provide continuous coverage. The three 
orbits could be identical except for Ω and τ. The ascending nodes would be placed about 120o

apart and the times of periapsis would be about 8 hours apart. 

The most well known constellation today is the Global Positioning Satellite system (GPS). This is 
a constellation of satellites that provide position and time information anywhere on the globe and 
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was originally designed for defense purposes. The GPS system consisted of 24 satellites of which 
three are spares. The orbits of the spares are strategically selected so that a spare can be quickly 
moved into the orbit of a failed satellite. An observer’s position (latitude, longitude and altitude) 
is determined by measuring the light time travel from the GPS satellites to the observer. If the 
observer’s clock was synchronized with the atomic clocks on the GPS satellites, only data from 
three satellites would be required. Since few mobile clock maintain sufficiently accurate 
synchronization, a fourth satellite is necessary to synchronize the observer’s clock. This 
requirement determines the number of satellites that make up the GPS constellation. When 
deployed in six equally spaced 12 hour orbits, the minimum number of satellites considered 
necessary to provide adequate coverage is 21. This maximizes the constellation value. The 
constellation value represents the fraction of space and time over which four satellites will be 
available. For the 21 satellite system, the constellation value is 0.996. Consequently at any 
location an observer will only have to wait a short time for 4 satellites to be in view.

The orbital elements of the satellites that make up the GPS satellite system are shown in Table 7-
1. GPS is universally and routinely used to determine position to within 10 meters at any location 
on the Earth. In addition, it has been used for orbit determination, ionosphere mapping, spacecraft 
and airplane attitude determination and many other unanticipated applications.

7.9 Astronautics Toolbox
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Table 7-1. GPS Orbital Elements

Satellite a (km) e i (deg) Ω (deg) ω (deg) M (deg)

A1 26609 0 55 325.73 0 190.96

A2 26609 0 55 325.73 0 220.48

A3 26609 0 55 325.73 0 330.17

A4 26609 0 55 325.73 0 83.58

B1 26609 0 55 25.73 0 249.90

B2 26609 0 55 25.73 0 352.12

B3 26609 0 55 25.73 0 25.25

B4 26609 0 55 25.73 0 124.10

C1 26609 0 55 85.73 0 286.20

C2 26609 0 55 85.73 0 48.94
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C3 26609 0 55 85.73 0 155.08

C4 26609 0 55 85.73 0 183.71

D1 26609 0 55 145.73 0 312.30

D2 26609 0 55 145.73 0 340.93

D3 26609 0 55 145.73 0 87.06

D4 26609 0 55 145.73 0 209.81

E1 26609 0 55 205.73 0 11.90

E2 26609 0 55 205.73 0 110.76

E3 26609 0 55 205.73 0 143.88

E4 26609 0 55 205.73 0 246.11

F1 26609 0 55 265.73 0 52.42

F2 26609 0 55 265.73 0 165.83

F3 26609 0 55 265.73 0 275.52

F4 26609 0 55 265.73 0 305.04

Table 7-1. GPS Orbital Elements

Satellite a (km) e i (deg) Ω (deg) ω (deg) M (deg)
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Appendix A -  Biographical Bullets

Copernicus 
Nicolaus Koppernik (1473-1543).  
•Doctor of Arts and Medicine, professor of mathematics, and canon at Frauen-
burg. 
•Compiled tables of the planetary motions that remained state of the art until 
Tycho Brahe.
•In 1507 became convinced of the heliocentric nature of the solar system.
•Aware that the planets speeds varied throughout the orbit.
•Knew that precession is a conical motion of the earth's axis.

• Suggested universal gravity: "that gravity is not an influence of the whole earth, but is a prop-
erty of its substance, which, it is thinkable, may extend to the sun, moon, and other stars."[1]

• First treatise on the heliocentric theory written about 1530. Pope Clement VII approved the 
work and asked for a complete presentation, which was finished in 1540. Printing in 1543 was 
paid for by a cardinal and presented to Copernicus on his death-bed. It was dedicated to Pope 
Paul III. He did not fear religious criticism: "If there be some babblers," he wrote, "who, 
though ignorant of mathematics, take upon them to judge of these things, and dare to blame 
and cavil at my work, because of some passage of Scripture which they have wrested to their 
own purpose, I regard them not, and will not scruple to hold their judgment in contempt." 
During his lifetime his work received the approval of the Church.[1]

• In 1616, Copernician theory was declared "false, and altogether opposed to Holy Scripture," 
and placed on the Syllabus Errorum.

• At the end of the sixteenth century the theory of Copernicus was warmly, if not hotly, upheld 
by Giordano Bruno, who welcomed its aid in his attack on Aristotle. Bruno was imprisoned, 
excommunicated, and burned at the stake in 1600, and scientific men of succeeding genera-
tions cannot have been unmindful of his fate.[1]

Euler
Leonhard Euler (1707-1783)
•Founded analytical mechanics in Mechanica sive Motus Scientia  (1736).
•Initiated calculus of variations with development of the “Euler-Lagrange” 
equation in 1744.
•First to provided detailed analytic treatment of the two body problem in 
Theoria motuum planetarum et cometarum (1744) vs geometric approach.
•Provided analytic solution to orbit determination problem (1744).
•Applied the variation of parameters method to the study of the mutual per-
turbations of Jupiter and Saturn and received the French Academy of Sci-

ences award in 1748 and 1752. Also used to calculate the effects of drag on projectiles.
• Knew of the ten integrals of the n-body problem.
• Proposed “center of inertia” to distinguish from “center of gravity.”
• Studied bending of beams, motion of fluids, columns in compression, blood flow, refraction 

and dispersion of light, etc. etc.
• Received 300 pounds British from the Longitude Act for his analytic theory of lunar motion, 

1764.[2]
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• Published two lunar theories (1753 and 1772). The first based on variation of parameters and 
the second referenced to the mean rotation of the moon.

• Wrote 400 pages of his books while totally blind [3].

Galileo
Galileo Galilei (1564-1642) 
•Born Florence and died the year of Newton’s birth. 
•At 17 he was a student of medicine.
•At 26, he was a professor of mathematics, having been seduced by the mathe-
matics of Euclid and Archimedes.
•Experimented with falling bodies including the famous Leaning Tower experi-
ment and inclined planes reaching the conclusions:

1. The final velocity acquired is independent of the angle of slope, but depends on the verti-
cal height through which the body falls.

2. The height through which the body falls is proportional to the square of the time.

3. All bodies fall at the same rate.

• Received from Kepler a copy of his Mysterium Cosmographicum and wrote "I have been for 
many years an adherent of the Copernican system. I have collected many arguments for the 
purpose of refuting [the commonly accepted hypothesis], but I do not venture to bring them to 
the light of publicity, for fear of sharing the fate of our master Copernicus, who has become 
the object of ridicule and scorn. I should certainly venture to publish my speculations if there 
were more people like you. But this not being the case, I refrain from such an undertaking."

• Realized that the new star of 1604 ended the Aristotelian view of the heavens and he began 
publicly supporting the Copernican theory[1]

• Discovered the telescope and used the 3x refractor for observing planets and stars. Eventually 
built a 30x telescope.

• Discovered now familiar lunar surface features and estimated the heights of lunar mountains.
• Recognized the earth is brighter than the moon because of the clouds.
• Observed the four brightest moons of Jupiter, and demonstrated that they were in orbit around 

the planet.
• Proposed and diligently pursued using the eclipses of the Jovian moons to solve the longitude 

problem and win the life pension prize offered by King Philip III [2]
• Observed in 1610 that Saturn was a triple planet.
• Observed in 1612 that Saturn was a single planet and commented: “Looking at Saturn within 

these last few days, I found it solitary and without its accustomed stars, and in short perfectly 
round and defined like Jupiter. Now what can be said of so strange a metamorphosis? Are per-
haps the two smaller stars consumed like spots on the sun? Have they suddenly vanished and 
fled? Or has Saturn devoured his own children? Or was the appearance indeed fraud and delu-
sion? . . . Now perhaps the time is come to revive the withering hopes of those who . . . have 
fathomed all the fallacies of the new observations and recognized their impossibility . . . The 
shortness of time, the unexampled occurrence, the weakness of my intellect, the terror of 
being mistaken, have greatly confounded me.”[1]
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• Discovered the phases of Venus, and announced them in the form of an anagram: “the mother 
of the Loves (Venus) imitates the phases of Cynthia (the moon).”  Thus one of the objections 
to the heliocentric hypothesis was removed. [1]

• Slight phase changes were even correctly observed for Mars.
• Wrote for the church an apparently dispassionate dialogue that compared the Ptolemaic and 

Copernican systems; however, the astronomical arguments for the latter that it contained were 
cogent and unanswerable, and the book was suppressed.[1]

• Put on trial for his books, which he had already twice revised. Made public submission: "I do 
not hold, and have not held this opinion of Copernicus since the command was intimated to 
me that I must abandon it . . . I swear that in future I will never say or assert, verbally or in 
writing, anything that might furnish occasion for a similar suspicion against me." [1]

Gauss
Carl Friedrich Gauss (1777-1855)
•Developed the least squares method.
•Perhaps the first to recognize the concept of radius of convergence for power 
series.[3]
•Developed orbit determination method for Earth based observations, 
1801[4].
•Introduced hypergeometric functions in 1812, Disquisitiones Generales 
Circa Seriem Infinitam.
•1999 study of his brain indicated nothing unusual, unlike Einstein’s that has 

unusually large inferior parietal lobes.

Jacobi
Carl Jacobi (1804-1851)
•Proved that if all but the last two integrals of the n-body problem were 
known, then the last two could be found (1842).
•Showed that the n-body problem was equivalent to solving a partial differ-
ential equation of one-half the order of the original ordinary differential 
equations, setting the stage for the Hamilton-Jacobi theory.
•Reduced the general problem of three bodies to seventh order (1843), no 
further reduction to date.

Kepler
Johannes Kepler (1571-1630)
•Twenty-five years younger than Tycho, and seven years younger than 
Galileo.
•In his twenties he was interested in the planetary motions, and published a 
theory based on the forms of the regular solids.
•Fuller knowledge of the facts destroyed this formal picture after he began 
to work with Tycho in 1599.[1]
•Worked primarily with Tycho's observations of Mars, and he devoted 
enormous labor to improving the Copernican picture of circular motion in 
an orbit not quite centered on the sun.

• Announced the first two of his three laws of planetary motion in 1609, and the third in 1618.

A - 3



MAE 589C Space Flight Mechanics a.k.a Astrodynamics August 24, 2005 9:42 pm
• Conjectured in a 1611 pamphlet, “The Six Cornered Snowflake,” the optimal spacing for 
spherical bodies is the face centered cubic, finally proved in 1998 to be true.

• Derived much of his income from computing horoscopes and astronomical almanacs.
• Successfully defended his mother during her trial for witchcraft (1615-21).[1]

Lagrange
Joseph-Louis Lagrange (1736-1813)
•First memoir on perturbations of Jupiter and Saturn, included further devel-
opment of the variation of parameters method, 1766 [4]. Inclination, node 
and longitude of perihelion were correct, but incorrectly assumed that semi-
major axis and time of perihelion were constant. Mean longitudes included 
secular terms proportional to time and time squared (see Laplace)
•Presented particular solutions to the problem of three bodies, 1772
•Showed in 1776 that there are no first order secular variations in the semi-

major axes of the planets for all orders of eccentricity.[4]
• In a prize memoir, variation of parameters method developed as we know it today(1782) and 

applied to the perturbation of elliptical comets.
• Developed power series expansion in time and introduced recursive variables for coefficients 

leading to F and G functions.

Laplace
Pierre-Simon de Laplace (1749-1827)
•Devoted most of his life to the study of celestial mechanics and his Meca-
nique Celeste (1799-1805) contained all that was known about the subject at 
that time.
•First memoir to the French Academy of Sciences (1773) proving that up to 
second powers of the eccentricity, the semi-major axes of the planets had no 
secular variations.[4]
•Conceived of the invariant plane in 1784.
•Explained the secular acceleration of the moon’s mean motion (1787).

• Showed that outside a gravitational body, . Green named V the potential function in 
1828.

• Demonstrated that secular terms in mean longitude were actually long period variations [4].
• Developed the planetary disturbing function to third order in eccentricity and inclination.
• Developed fundamentally new orbit determination method (1780).

Napier
Napier, John (1550-1617)
•Invented "artificial numbers", we call them logrithms, in 1614.
•Invented Napier’s bones, a set of marked wooden pegs for doing arithmetic, 
later became the slide rule. 
•Tycho Brahe waited in vain for Napier to complete his log tables and both 
died before they were completed.
•Henry Briggs first completed the tables and for a long time they were 
named for him. 

∇2V 0=
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Newton
Nature and nature’s law lay hid in night

God said, Let Newton be, and all was light

                                                     POPE, from the inscription on Newton’s monument

Isaac Newton (1642-1727). In the words of Leibnitz: "Taking mathematics 
from the beginning of the world to the time when Newton lived, what he 
had done was much the better half.” [4]
•His life appeared to be uneventful and that of a retiring scholar.
•Most of his important scientific work was done in his earlier years.
•In his old age he wrote at great length on theological problems, much of 
which remains unpublished even though Newton thought it his most impor-
tant production [1].
•Reluctant to go to the trouble of publishing his results, and the Principia 

would probably never have appeared if Halley had not paid for it and seen it through the press 
[1].

• The Principia, containing the derivations of the laws of planetary motion, is a formulation of 
celestial mechanics that has not been essentially improved up to the present. 

• Principia is difficult for the modern reader because all the proofs are geometrical. For a mod-
ern geometrical treatment see [5].

• Proves that for central forces, the law of areas (Kepler’s second law) must be obeyed, what-
ever the nature of the force, and that if the law of areas is obeyed, the force must be central.

• Examined the law of force that will produce motion in an elliptical orbit round the center of 
the ellipse and showed that in this case the force will vary directly as the distance from the 
center and the period is independent of the size of the ellipse (the 3-d harmonic oscillator)[4].

• Investigated motion under a central force in an ellipse about the focus, and shows that it 
implies an inverse square law. He goes on to prove that motion in confocal ellipses under an 
inverse square law of attraction will result in periodic times that are as the 3/2 powers of the 
major axes (Kepler's third law).

• Extends the proof to the hyperbola and the parabola. 
• To apply the gravity law to bodies of finite size, proved that a sphere attracts as though its 

mass we're concentrated at its center.
• Considers how to determine orbits. A conic is fixed by five points through which it passes; 

however, the determination of the motion of a planet in a conic requires only three, because 
the law of motion supplies the equivalent of the other two.[4]

• Discusses the motion of the moons of Jupiter and Saturn, and that of the planets.
• Gives the theory of the figure of the earth and of the tides. 
• Makes a dynamical study of precession.
• Invent the "Method of Fluxions," essentially modern calculus.
• He did not publish his results at once. It was not until 1684, when Wren offered a small prize 

for the first who should prove that a body under the inverse square law would describe an 
ellipse, that Halley spoke to Newton of the problem, and found that he had solved it sixteen 
years earlier! Halley persuaded Newton to publish, and the Principia appeared in 1687.[4]
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Poincare
Henri Poincare  (1854-1912)
•Demonstrated that if two mass are small in the problem of three bodies, 
there are an infinity of periodic solutions.
•Fundamentally new approach to celestial mechanics published in Les 
Methods Nouvelles de la Mechanique Celeste.
•Proved that rotating fluids can have an infinity of equilibrium shapes.
•Discovered the dynamical concept we now call “chaos.”

Ptolemy
Ptolemy (~100-170 AD)
•Wrote Almagest describing his works which has remained intact to modern 
times.
•Described the evection in the Moon’s motion.
•Discovered refraction of light.
•Used eccentricities and epicycles to explain the apparent motion of the plan-
ets.
•Last significant astronomical (except for the Arabs) research until the end of 

the dark ages.

Tisserand
Francois-Felix Tisserand. (1845-1896)
• Traite’ de Mechanique Celeste, 1891-1896, outstanding four volume work 
provides comprehensive coverage of gravity potentials for irregular bodies, 
stability of the solar system, development of perturbation functions, etc.
• Doctorial thesis extended Delaunays research on the three body problem for 
the lunar theory.
•
•

Tycho Brahe
Tycho Brahe, (1546-1601)
•First modern astronomer. Began construction of quadrants and sextants at 
early age after seeing an eclipse of the sun. 
•New star of 1572 stimulated him to build an observatory on the island of 
Hven, off the Swedish coast, in 1576.
•Undertook study of planetary motions, and constructed the most accurate 
instruments that were possible at the time. He took great precautions in 
making observations and was thoroughly modern in his attempts to avoid 
and evaluate errors. His magnificent series of planetary observations made 

possible Kepler's study of the laws of planetary motion, the basis of our modern picture of the 
solar system.[4]
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• Did not accept the heliocentric ideas of Copernicus. Believed that the earth was the stationary 
center of the solar system; its motion, he argued, is not felt and is difficult to picture. More-
over, he saw that the stars should show annual parallax if the earth has orbital motion; he did 
not realize that his failure to detect the parallax was a result of the great distance of the stars 
and the consequent extreme smallness of the effect. He pointed out (as Copernicus had done) 
that Mercury and Venus should show changing phases if the sun is at the center of the system; 
we now know that they display such phases, but Tycho could not detect them. He argued that 
if the earth is in motion, a stone should not fall vertically; we know now that it does not. His 
picture of the solar system showed the sun, moon, and superior planets carried around the 
earth, but with Mercury and Venus going in orbits around the sun (Heracleides of Pontus had 
held the same view two millenniums before) [4].

• Published works include astrological predictions (which were reputable in the sixteenth cen-
tury) and accounted for much of his revenue.

• Lost his nose and his honor in a duel after astrologically predicting the death of an already 
dead sultan.

• Late in life he was assisted by Johann Kepler.
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Appendix B - Vector and Matrix Analysis

This appendix provides some useful formulae from vector and matrix analysis without proof or 
expanded explanation. Since the applications for this book are generally to position and velocity 
vectors, the equations are valid for real, 3 vectors and 3 by 3 matrices. Some of the equations may 
also be valid for more general linear vector spaces. In the equations below regular text variables 
represent scalars, bold lower case represent 3 vectors and bold upper case represent 3 by 3 
matrices. 

B-1 Algebra

Unit vectors: eg is a unit vector in direction g. Typical replacements for g are x, y, z, r, φ, θ,...

Vectors: a = (a1, a2, a3) = (ax, ay, az) = axex + ayey + azez

Matrices:  

Vector norm or length: 

Addition: Is component wise, e.g. a + b = (a1 + b1, a2 + b2, a3 + b3). Likewise for matrices.

Commutative law of addition: a + b = b + a   and A + B = B + A.

Associative law of addition: a + (b + c) = (a + b) + c and A + (B + C) = (A + B) + C

Vector dot or inner product:  Can be 
thought of as the length of a times the length of b projected on to a or conversely. Commonly 
used to determine the cosine of the angle between two vectors which is always between 0 and π.

Orthogonal vectors:  a and b are orthogonal iff 

Vector cross or outer product:  
Commonly used to determine the sine of the angle between two vectors since 

. Be aware of quadrant limitations.

Distributative laws:  and  and A(B+C) = 
AB + AC

A
A11 A12 A13

A21 A22 A23

A31 A32 A33

=

a a ax
2 ay

2 az
2+ += =

a b⋅ b a⋅ a b a b( , ) axbx ayby azbz+ +=cos= =

a b⋅ 0=

a b× b– a× aybz azby– azbx axbz– axby aybx–,,( )= =

a b× a b a b,( )sin=

a b c+( )⋅ a b⋅ a c⋅+= a b c+( )× a b× a c×+=
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Triple scalar product:  is preserved under cyclic permutation 
or operator interchange , but changes sign if two terms are interchanged 

. The triple scalar product is equal to the volume of the 
parallelepiped form by the three vectors as sides.

Triple vector product: 

Matrix product: C=AB where the ij term of C is given by   

Matrix-Vector product: c=Ab if given by  maps the vector b into vector c.

Matrix transpose:  AT or A’  If Aij is the ij-th term of A then Aji is the ij-th term of AT

Matrix identity:  The 3 by 3 matrix multiplicative identity is 

Matrix inverse: If the 3 by 3 matrix A has an inverse A-1 then AA-1 = A-1A = I3.

Orthonormal matrix: A is orthonormal iff AT = A-1.

Rotation matrix:  An orthonormal (rows and columns are orthogonal and have unit length) 
matrix that describes the orientation between two orthogonal coordinate systems. For example a 

rotation through angle α about the z-axis produces the rotation matrix 

B-2 Calculus

Time derivatives:
Time derivative of a vector is the time derivative of the components

 

a b c×⋅ c a b×⋅ b c a×⋅= =
a b c×⋅ a b× c⋅=

a b c×⋅ b a c×⋅( )– a c b×⋅( )–= =

a b c×( )× a c⋅( )b a b⋅( )c–=

Cij AikBkj
k 1=

3

∑=

ci Aijbj
j 1=

3

∑=

I3

1 0 0
0 1 0
0 0 1

=

αcos αsin 0
αsin– αcos 0

0 0 1

a· da t( )
dt

-------------
da1
dt

--------
da2
dt

--------,
da3
dt

--------,⎝ ⎠
⎛ ⎞= =

d a b⋅( )
dt

------------------- da
dt
------ b⋅ a db

dt
------⋅+= d a b×( )

dt
-------------------- da

dt
------ b× a db

dt
------×+=
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For any vector . So if a is a unit vector, the dot product vanishes, i.e. the time 

derivative of a unit vector is orthogonal to the unit vector.

Spatial derivatives:

Gradient of a scalar function:  is a vector normal to the 

surface f=0 and pointing in the direction of increasing f

Divergence of a vector field:  

Curl of a vector field

  which is the basic for the theorem that a force is derivable from a potential 
function iff the curl of the force field vanishes everywhere.

Laplacian: 

a da
dt
------⋅ a d a

dt
---------=

f x y z, ,( )∇ f∂
x∂

-----ex
f∂
y∂

-----ey
f∂
z∂

-----ez+ +=

div a ∇ a x y z, ,( )⋅
ax∂
x∂

--------
ay∂
y∂

--------
az∂
z∂

-------+ += =

curl a x y z,( , ) ∇ a×
az∂
y∂

-------
ay∂
z∂

--------–⎝ ⎠
⎛ ⎞ ex

ax∂
z∂

--------
az∂
x∂

-------–⎝ ⎠
⎛ ⎞ ey

ay∂
x∂

--------
ax∂
y∂

--------–⎝ ⎠
⎛ ⎞ ez+ += =

∇ ∇f x y z, ,( )× 0=

∇ ∇f x y, z( , )⋅ ∇2f ∂2f
∂x2
-------- ∂2f

∂y2
-------- ∂2f

∂z2
--------+ += =
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C - 1

Appendix C - Acronyms and Notation

Notation
v   -  -  -  - vectors are bold characters
eb  -  -  -  - unit vector in direction b, typical replacements for b are x, y, z, r, φ, θ, ξ, η, ζ

Acronyms
DOY -  -  - day of year
EOM   -  - equation of motion
ET -  -  -  - ephemeris time, (1.3.3)
JD  -  -  -  - Julian day number, (1.3.4)
MDJ -  -  - modified Julian day number= JD-2400000.5, (1.3.4)
TAI   -  -  - atomic time, (1.3.1)
TDB -  -  - barycentric dynamic time, (1.3.2)
TDT  -  -  - terrestrial dynamic time, (1.3.2)
UT -  -  -  - universal time, (1.3.6)
wolog   -  - without loss of generality
wrt -  -  -  - with respect to
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Index

A
Accommodation coefficient 5-18
Albedo 5-14
Altitude

elevation 1-10
geodetic 1-9

Angular momentum
definition 2-5
conservation 2-6, 2-7, 3-2
specific 2-5, 3-2
total 1-7, 2-7

Anomalistic period 5-13
Areocentric 1-3
Argument of periapsis 3-6, 5-13

variation due to J2 5-12
Argument of perihelion 2-9
Ascending node 1-17, 2-9, 5-11

definition 3-5
longitude of 3-6

Astronautics toolbox
coordinate systems and time 1-17
two body 3-17

Astronomical unit 2-9
Atomic time 1-11

definition 1-11
SI second 1-11
TAI 1-11

Autumnal equinox 1-6
Azimuth 1-10
B
Barker’s equation 3-8, 3-9, 3-10
Barycenter 1-3, 2-6, 2-9, 3-2, 4-1, 4-8, 4-10
Bi-elliptic transfers 6-9, 6-10
Bi-parabolic transfers 6-9
C
Celestial coordinate systems 1-3, 1-5

definitions 1-5
apparent 1-7
declination 1-7
ecliptic 1-5
invariant plane 1-7
J2000 1-7
latitude 1-7
longitude 1-7
obliquity 1-6, 1-7

right ascension 1-7
vernal equinox 1-6

Celestial sphere 1-3
Center of mass 2-6
Centrifugal potential 4-2
Characteristic velocity 6-2
Circular orbit 3-14
Colatitude 1-9
Conic

circular 3-14
degenerate 3-5, 3-8, 3-14
nearly parabolic 3-14
rectilinear 3-5

Conservative force 2-4
Coordinate systems

definition 1-2
barycentric 1-3
celestial 1-3, 1-5
inertial 2-1
terrestrial 1-3
topocentric 1-3

Critical inclination 5-13, 7-2
D
Declination 1-7, 1-16
Degenerate conic 3-5, 3-14
Direct orbit 3-5
Distrubing function

radiation pressure 5-15
Disturbing function 5-11

mean due to J2 5-12
second zonal harmonic 5-12
second zonal harmonic. 5-12

Drag 5-17
Duration 1-11
Dynamical time 1-11, 3-2

definition 1-11
barycentric 1-11
terrestrial 1-11

E
Eccentric anomaly 3-7, 3-8
Eccentricity 2-9, 3-4, 4-10

variation due to J3 5-14
vector 3-5

Ecliptic 1-5
planetary precession 1-7
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Elevation 1-10
Elliptical motion 3-4, 3-6, 3-8

Kepler’s equation 3-7, 3-10
Kepler’s law 3-1

Energy
conservation 2-6, 2-7, 3-2
kinetic 2-3
potential 2-3
total mechanical 2-7

Ephemeris
definition 2-8
planetary 2-8
satellite 2-8
time 1-11, 1-12
Venus, Earth, Mars 2-9

Ephemeris, time 3-8
Ephemeris,time 3-2
Epoch 1-11
Equal area law

definition 3-1
Equation of the equinoxes 1-13
Equation of the orbit 3-4
Equator

mean 1-7
nutation 1-6
precession 1-6

Equilateral triangle solution
finite masses 4-9
location 4-6
stability 4-8

Equinox
mean 1-7

Escape velocity 3-3
Exhaust velocity 6-1
F
First point of Aries 1-6
Flattening 1-9
Flight path angle 3-2, 6-6
Force 2-2

conservative 2-4
function 5-3

Frozen orbits 7-4
Fundamental direction 1-8

definition 1-2
celestial 1-6
terrestrial 1-8

Fundamental plane

definition 1-2
3-body problem 4-1
celestial 1-5
ecliptic 1-5
terrestrial 1-8

G
Gegenschein 4-6
General perturbations 5-1, 5-14
General relativity 2-8
Geocentric coordinates

definition 1-3
colatitude 1-9
latitude 1-8
longitude 1-9
radius 1-9

Geodetic coordinates 1-9
latitude 1-8, 1-9
local vertical 1-9
longitude 1-9
reference ellipsoid 1-9

Geostationary orbit 7-1
Geosynchronous orbit 7-1, 7-4

delta V requirement 7-2
stationkeeping 7-2

Global Positioning Satellite system 7-5
Gravitational constant

Sun 2-9
Gravity loss 6-3
Greenwich sidereal time 1-13
H
Halo orbits 4-6
Heliocentric 1-3
Hohmann transfer 6-7, 7-1
Horizon 1-10
Hour angle 1-13
Hyperbolic motion 3-4, 3-6, 3-8

Kepler’s equation 3-7, 3-10
velocity at infinity 3-3

I
Ideal velocity equation 6-2
Impulsive maneuvers 6-4

in-plane 6-4
Inclination 2-9, 3-5

variation due to J3 5-14
Inequalities

periodic 1-13
secular 1-13
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Inertia integrals 5-10
Interception 6-1
Invariant plane 1-7, 2-7
Inverse square law 2-2
J
J2000

definition 1-12
Jacobi's constant 4-2, 4-3
Jacobi’s integral 4-2, 4-3
Julian date 3-8

definition 1-12
algorithm 1-12
century 1-12
day numbers 1-12
modified 1-12

K
Kepler’s equation 5-7

elliptic 3-7, 5-18
hyperbolic 3-7
solution 3-10

Kepler’s laws 3-1
elliptical motion 3-1
equal area 3-1, 3-2
orbit period 3-1

Keplerian orbital elements 3-8, 5-6
calculation 3-8

Kinetic energy
total 2-7

L
Lagrange brackets 5-5

canonical form 5-5
Lagrange points 4-5

equilateral triangle 4-6
stability 4-6
straight line 4-5

Lagrange’s planetary equations 5-3, 5-8
Latitude

celestial 1-7
geocentric 1-8
geodetic 1-8, 1-9

Leap year 1-12
Linear momentum 2-6

definition 2-5
conservation 2-6
total 2-6

Local mean sidereal time 1-16
Local meridian 1-8

Local sidereal time 1-13
Local vertical 1-9
Long period perturbations 5-11
Longitude

celestial 1-7
observer 1-8
terrestrial 1-8

Longitude of periapsis 3-5
Longitude of the ascending node 3-6

variation due to J2 5-12
Low thrust transfer 6-11
Low-Earth orbit 7-4
M
Mean anomaly 3-7
Mean motion 3-7, 4-1
Mean sea level 1-9
Mean sidereal day 1-15
Meridian 1-10
Minimum fuel transfer 6-7
Molniya orbit 7-5
Moment of momentum 2-5
Moon

J2 5-14
J3 5-14

Multistage rocket 6-4
N
Nadir 1-10
N-body perturbations 5-19
Newtonian mechanics 2-1

first law 2-1
force 2-2
particle 2-2
second law 2-2, 6-1
third law 2-2
universal gravitation 2-2

Nodal period 5-13
Non-spherical gravity potential 5-9
Nutation

equator 1-6
luni-solar 1-6
vernal equinox 1-6

O
Oart cloud 4-2
Obliquity 1-6, 1-7
Orbit

direct 3-5
plane 3-2
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polar 3-5
retrograde 3-5

Orbit perturbations 5-1
planetary equations 5-3

Orbit Transfer
types 6-6

Orbit transfer 6-1
bi-elliptic 6-9, 6-10
bi-parabolic 6-9
constant circumferential acceleration 6-12
constant tangential acceleration 6-11
finite burn 6-1
Hohmann 6-7
impulsive 6-1
interception 6-1
low thrust 6-11
rendezvous 6-1
single impulse 6-5
two impulse 6-5

Orbit transfers
Hohmann 6-7

Orbital coordinate system 3-13, 3-14, 5-6
Orbital elements

Keplerian 2-9
Venus, Earth, Mars 2-9

Orbital period law 3-1, 3-7
Origin

definition 1-2
3-body problem 4-1
terrestrial 1-8

P
Parabolic motion 3-4, 3-6, 3-8, 3-9, 3-17

Barker’s equation 3-8, 3-9
Parabolic velocity 3-3
Periapsis 3-4

longitude of 3-5
Period 3-7
Periodic

inequalities 1-13
Perturbations 5-1

drag 5-17
J2 5-12
long period 5-11
n-body 5-19
radiation pressure 5-14
second zonal harmonic 5-12
secular 5-11, 5-12

short period 5-11
special 5-14, 5-19
third zonal 5-13

Physical ephemeris 1-8, 1-16
rotational elements 1-16
terrestrial planets 1-17

Planetary equations 5-1
Planetary precession 1-7
Polar orbit 3-5
Polar orbits 7-3
Potential energy 2-4

total 2-7
Powered flight 6-1

rocket equation 6-1
staging 6-4

Precession 1-13
luni-solar 1-6
obliqity 1-7
planetary 1-7
vernal equinox 1-6

Prime meridian 1-8
Problems

coordinate systems and time 1-17
n-body problem 2-9
orbit transfer and powered flight 6-19
orbital pertubations 5-20
special orbits 7-6
three body problem 4-12
two body problem 3-17

R
Radiation pressure 5-1, 5-14
Range 1-10
Rectilinear conic 3-5
Reference ellipsoid 1-9

equatorial radius 1-9
flattening 1-9

Reference meridian 1-8
Rendezvous 6-1
Retrograde orbit 3-5
Right ascension 1-7, 1-16
Rocket equation 6-1

characteristic velocity 6-2
definition 6-2
exhaust velocity 6-1
gravity loss 6-3
specific impulse 6-2
staging 6-4
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thrust 6-2
Rotational elements 1-16
S
Scale height 5-19
Sectorial harmonics 5-10
Secular

inequalities 1-13
perturbations 5-11

Selenocentric 1-3
Semi-latus rectum 3-4
Semi-major axis 2-9, 3-4
Short period perturbations 5-11
Sidereal time 1-11

definition 1-13
apparent 1-13
day 1-13
GMST 1-15
Greenwich 1-13
hour angle 1-13
local 1-13
local mean 1-16
mean 1-13
mean day 1-15
noon 1-13

Solar pressure 5-14
Solar wind 5-1
Special perturbations 5-1
Specific impulse 6-2, 6-11
Spherical harmonic 5-9
Spherical harmonics

coefficients 5-9
sectorial 5-10
surface 5-9
zonal 5-9

Spherical triangle 1-4
angle 1-4
area 1-5
distance 1-4
four-part formula 1-4
great circle 1-4
law of sines 1-4, 5-11
laws of cosines 1-4
Napier's circle 1-5
Napier’s Rules 1-5
right 1-5
sides 1-4
solid angle 1-5

vertices 1-4
Staging 6-4
State transition matrix 6-16, 6-17
Stationkeeping 7-2
Straight line solutions 4-5

finite masses 4-10
location 4-5
stability 4-7

Sub-synchronous orbits 7-1, 7-2, 7-3, 7-4
Summer solstice 1-6
Sun-synchronous orbit 7-3, 7-4
Super-synchronous 7-1
Surface spherical harmonics 5-9
Synchronous orbits 7-1

sub-synchronous 7-1, 7-2
Sun 7-3
super-synchronous 7-1

Synodic period 6-8
T
Terrestrial coordinate systems

definition 1-8
flattening 1-9
fundamental 1-8
fundamental direction 1-8
fundamental plane 1-8
geocentric 1-9
geocentric latitude 1-8
geodetic 1-9
geodetic altitude 1-9
geodetic latitude 1-9
latitude 1-8
local meridian 1-8
longitude 1-8
mean sea level 1-9
origin 1-8
prime meridian 1-8
reference meridian 1-8

Tesseral harmonics 5-10
Three body problem 4-1

equilateral triangle solution 4-6, 4-9
finite masses 4-8
general 4-1
Jacobi’s integral 4-2
L1, L2 and L3 stability 4-8
L4 and L5 stability 4-8
Lagrange point stability 4-6
Lagrange points 4-5
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restricted 4-1
straight line solution 4-5, 4-10
straight line solutions 4-5
Tisserand’s criteria 4-3
zero velocity surface 4-4

Thrust 6-2
Time

definition 1-11
atomic 1-11
duration 1-11
dynamical 1-11
ephemeris 1-11, 1-12
epoch 1-11
GMST 1-15
Julian date 1-12
sidereal 1-11, 1-13
universal 1-11, 1-13

Time of periapsis passage 3-7
Tisserand’s criteria 4-2, 4-3
Topocentric coordinate systems 1-10

definition 1-3
azimuth 1-10
elevation 1-10
fundamental direction 1-10
fundamental plane 1-10
horizon 1-10
nadir 1-10
origin 1-10
range 1-10
zenith 1-10
zenith angle 1-10

Tracking and Data Relay Satellites 7-5
Trajectory correction maneuvers 6-15
Trojan asteroids 4-6
True anomaly 3-4
U
Universal gravitation

constant 2-2
law 2-2

Universal time 1-8, 1-11, 1-13
definition 1-13
GMST 1-15
UT0 1-13
UT1 1-13
UT2 1-14
UTC 1-14

V
Variation of parameters 5-1

periodic 5-2
secular 5-3

Velocity at infinity 3-3
Vernal equinox 1-6

nutation 1-6
precession 1-6

Vis-viva integral 3-4, 4-3, 5-18
W
Winter solstice 1-6
Work 2-3
Z
Zenith 1-10
Zenith angle 1-10
Zero velocity surface 3-3, 4-4, 4-12
Zonal harmonics 5-9
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