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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.



PREFACE

These notes have been compiled in an attempt to integrate a descrip-
tion of the method of least squares as used in surveying with

(a) statistical concepts

(b) 1linear algebra using matrix notation, and

(¢) the use of digital computers.
They are a culmination of concepts first described at a symposium held
in 1964 at the University of New Brunswick on "The Impact of Electronic
Computers on Geodetic Adjustments" (see The Canadian Surveyor, Vol. IX,
No. 1, March 1965). We also owe a considerable debt to Professor
Urho Uotila of The Ohio State University, Department of Geodetic Science
whose lecture notes ("An Introduction to Adjustment Computations', 196T)
provided a starting point for these notes. We have attempted to retain
Uotila's notation with minimum changes.

We acknowledge the invaluable help of Mr. Mohammed Nassar who
meticulously proofread the manuscript before the first printing, and
Dr. Georges Blaha who suggested a number of corrections which have

been incorporated in the second printing.
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THE METHOD OF LEAST SQUARES
1. INTRODUCTION

The method of least squares is the standard method used to obtain
unique values for physical parameters from redundant measurements of
those parameters, or parameters related to them by a known mathematica. |
model.

The first use of the method of least squares is generally
attributed to Karl Friedrich Gauss in 1795 (at the age of 18),
although it was concurrently and independently used by Adrien Marie
Legendre. Gauss invented the method of least squares to enable him
to estimate the orbital motion of planets from telescopic measurements.

Developments from three other fields are presently finding
increasing application in the method of least squares, and are
profoundly influencing both the theory and practice of least squares
estimation. ‘These three developments are the concepts of modern
statistical estimation theory; matrix notation and the concepts of
modern linear algebra; and the use of large fast digital computers.

These notes are an attempt to describe the method of least squares
making full use of these three developments. A review of the concepts
of statistics is given in chapters 2, 3, 4, 5 and 8 of these notes.

The required background in matrix notation and linear algebra is



given in the course notes on "Matrices" [Wells 1971]. A description
of digital computer programming is beyond the scope of this presentation,
however, an Appendix to these notes contains listings of results
obtained by computer for a specific problem discussed throughout
these notes.

The remainder of this chapter briefly oqtlines the relationship
of the method of least squares to statistics énd linear algebra, and
describes the current impact of digital computers on practical

computing techniques.

1.1 STATISTICS AND THE METHOD OF LEAST SQUARES

Physical quantities can never be measured perfectly. There will
always be a limiting measurement precision beyond which either the
mathematical model describing the physical quantity, or the resolution
of the measuring instrument, or both will fail. Beyond this limiting
precision, redundant measurements will not agree with one another
(that is they will not be consistent).

For example if we measure the length of a table several times
with a meter stick and eyeball, the limiting precision is likely to
be about one millimeter. If we record our measurements only to the
nearest centimeter they will be consistent. If we record our measure-
ments to the nearest tenth of a millimeter, they will be inconsistent.

The precision which we desire is often beyond the limiting
precision of our measurements. In such a case we can not know the
"true'value of our physical quantity. All we can do is make an

estimate of the "true" value. We want this estimate to be unique



(that is determined by some standard method which will always yield
the same estimate given the same measurements), and we want to have
some idea of how "good" the estimate is.

The scientific method for handling inconsistent data is called
statistics. The methods for determining unique estimates (together

with how good they are) is called statistical estimation. The method

of least squares is one such method, based on minimizing the sum of
the squares of the inconsistencies.

It should be emphasized that there are other methods which will
yield unique estimates, for example minimizing the sum of the absolute
values of the inconsistencies, or minimizing the maximum inconsistency
[Hamming 1962]. However, these other methods have at least three
disadvantages compared to the method of least squares. The method of
least squares can be applied to problems involving either linear or
non-linear mathematical models; these other two methods are restricted
to linear problems only, because of fundamental continuity and
differentiability limitations. Least squares estimates are related to
a statistical quantity (the arithmetic mean) which is usually more
important than the statistical quantities (the median and mid-range
respectively) to which these other methods are related. And finally
the method of least squares is in common use in many fields, making it
the standard method of obtaining unique estimates.

Statistics is sometimes called the theory of functions of a
random variable. An ordinary variable is defined only by the set of
permissible values which it may assume. A random variable is defined

both by this set of permissible values, and by an associated frequency



(or probability density) function which expresses how often each of
these values appear in the situation under discussion. The most
important of these functions i$ the normal (or Gaussian) frequency
function. Physical measurements can almost always be assumed to be
random variables with a normal frequency function.

A unique statistical estimate of the value of a physical quantity

(called a point estimate) together with some indication of how close

it is to the "true" value can be made whether the frequency function
is known or not. However, there are other kinds of estimates (called

interval estimates and hypothesis tests), which cannot be made unless

a particular frequency function is specified.

Chapter 2 summarizes statistical nomenclature and concepts.
Chapters 3 and L4 present the properties of some particular distributions,
related to the normal distribution. Chapters 6 and 7 discuss least
squares point estimators, and Chapters 5 and 8 discuss interval

estimation and hypothesis testing.

1.2 LINEAR ALGEBRA AND THE METHOD OF LEAST SQUARES

The system of linear equations
AX=1L 1-1

where X is called the unknown vector, L is the constant vector, A the

coefficient matrix,[A : L] the augmented matrix, has a unique nontrivial

solution only if

L # 0 (the system is nonhomogeneous), 1-2a
rank of A = dimension of X , 1-2b
rank of [A: L] = rank of A (system is 1-2¢

consistent).



In the case where there are no redundant equations, criterion (1-2b) will
mean that A is square and nonsingular, and therefore has an inverse.
The solution is then given by
X = A'll_. 1-3
In the case where there are redundant equations, A will not be square,

but ATA will be square and nonsingular, and the solution is given by

x = ()t a1 . 1-4

(See course notes on "Matrices" for a more detailed treatment of the
above ideas).

Let us consider the case where the elements of L are the results
of physical measurements, which are to be related to the elements of
X by equation (1-1). If there are no redundant measurements (the
number of measurements equals the number of unknowns) there will be a
unique nontrivial solution for X. However, if there are redundant
measurements, they will be inconsistent because physical measurements
are never perfect. In that case criterion (1-2c) will not be satisfied,
the system of equations will be inconsistent, and no unique
solution will exist. All we are able to do is make a unique estimate
of the solution. In order that a unique estimate exists, we must find
some criterion to use in place of criterion (1-2c). There are a
number of possible criteria, but the one commonly used is the least

squares criterion; that the sum of the squares of the inconsistencies

be a minimum. Before stating this criterion, let us find an expression
for the inconsistencies.

Because equation (1-1) is inconsistent, let us write an equation
which is consistent by adding a vector which will "cancel" the

inconsistencies.



AX-L=YV 1-5

where V is usually called the residual vector. The elements of V are

not known and must be solved for, since we have no way of knowing what
the inconsistent parts of each measurement will be. We can now replace

criterion (1-2c), the consistency criterion, with the least squares

criterion, which states that the "best" estimate £ for X is the estimate
which will minimize the sum of the squares of the residuals, that is

= (ax-1)T (A% -1L) = minimum. 1-6

The estimate X so determined is called the least squares estimate, and

we will see (in Chapter 6 of these notes) that it is equal to the
expression in equation 1-k4, that is
£= Tt 1-7
and that the "best" estimate of the observation errors or residuals is
given by
V=aX-1L . 1-8

These estimates are the simple least squares estimates (also called the

equally weighted least squares estimates).

Often the physical measurements which make up the elements of L
do not all have the same precision (some could have been made using
different instruments or under different conditions). This fact‘should
be reflected in our least squares estimatioh process, so ﬁe assign to
each measurement a known "weight" and call P the matrix whose elements

are these weights, the weight matrix. We modify the least squares

criterion to state that the best estimate is that which minimizes the

sum of the squares of the weighted residuals, that is

VT P V = minimum. 1-9



And as we will see in Chapter € the estimate is given by

)—l T

%= (apa)t aTpL 1-10

and is called the weighted least squares estimate.

In Chapter 6, we will see that if the weight matrix P is chosen

to be the inverse of the estimated covariance matrix of the observations,

then the least squares estimate is the minimum variance estimate, and

that if the observation errors have a normal (Gaussian) distribution,
then the least squares minimum variance estimate is the maximum

likelihood estimate.

In this short introduction to least squares estimates we have
considered only the linear mathematical model of equation 1-5. In
Chapter 7 we will consider the more general case in which

i) the observations are related to nonlinear functions of

the unknown parameters, that is
F(X) -L =V 1-11

and ii) the observations are nonlinearly related to functions of

the unknown parameters, that is
F(X, L+ V) =0 1-12
In Chapter 9 we will consider further complications of the

mathematical models.

1.3 DIGITAL COMPUTERS AND THE METHOD OF LEAST SQUARES

So far we have described the method of least squares from a
purely theoretical point of view, discussing expressions for least

squares estimates. However, from a practical point of view, the



inversion of large matrices (and even the multiplication of matrices)
requires a considerable number of computation steps.

Until the advent of large fast digital computers the solution of
large systems of equations was a formidable and incredibly tedious
task, attempted only when absolutely necessary. One application for
which it was absolutely necessary was to obtain least squares estimates
for survey net coordinates. Consequently the last 150 years have seen
considerable ingenuity and effort directed by geodesists towards
finding shortcuts, simplifications, and procedures to reduce the
number of computation steps required.

Now that digital computers are in widespread use, this work does
not hold the importance it once did. However, even the largest fastest
digital computer is incapable of simultaneously solving systems which
may incorporate, for example, several thousand equations. Therefore,
ingenuity and effort are currently directed towards developing algorithms
for chopping a large system into smaller pieces and solving it piece
by piece, but in a manner such that the final solution is identical to
that which would have been obtained by solving simultaneously. We will

discuss some of these algorithms in Chapter 10.

1.4 GAUSS AND THE METHOD OF LEAST SQUARES

To dispel the notion that the concepts discussed in this Chapter
are all new, we will analyze the following quotation from Gauss' book
"Theoria Motus Corporum Coelestium" published in 1809 (see Gauss [1963]

for an English translation).



"If the astronomical observations and other quantities
on which the computation of orbits is based were absolutely
correct, the elements also, whether deduced from three or
four observations, would be strictly accurate (so far
indeed as the motion is supposed to take place exactly
according to the laws of Kepler) and, therefore, if other
observations were used, they might be confirmed but not
corrected. But since all our measurements and observations
are nothing more than approximations to the truth, the same
must be true of all calculations resting upon them, and
the highest aim of all computations made concerning concrete
phenomena must be to approximate, as nearly as practicable,
to the truth. But this can be accomplished in no other way
than by a suitable combination of more observations than
the number absolutely requisite for the determination of
the unknown quantities. This problem can only be properly
undertaken when an approximate knowledge of the orbit has
been already attained, which is afterwards to be corrected
so as to satisfy all the observations in the most accurate
manner possible."

Note that this single paragraph, written over 150 years ago,

embodies the concepts that

a) mathematical models may be incomplete,

b) physical measurements are inconsistent,

¢) all that can be expected from computations based on
inconsistent measurements are estimates of the '"truth",

d) redundant measurements will reduce the effect of
measurement inconsistencies,

e) an initial approximation to the final estimate should be
used, and finally,

f) this initial approximation should be corrected in such a
way as to minimize the inconsistencies between measurements (by which

Gauss meant his method of least squares).
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2. STATISTICAL DEFINITIONS AND CONCEPTS

Statistical terms are in everyday use, and as such are often used
imprecisely or erroneously. Most of this Chapter is based on a
comparative reading of Kendall [1957], Spiegel [1961], Hamilton [1964],

Kendall [1969] and Carnahan et al [1969].

2.1 STATISTICAL TERMS

Statistics is the scientific method of collecting, arranging,
summarizing, presenting, analyzing, drawing valid conclusions from,

and making reasonable decisions on the basis of data. Statistical

data include numerical facts and measurements or observations of

natural phenomena or experiments. A statistic is a quantitative

item of information deduced from the application of statistical methods.
A variable is a quantity which varies, and may assume any one of

the values of a specified set. A continuous variable is a variable

which can assume any value within some continuous range. A discrete

variable (also called a discontinuous variable) is a variable which

can assume only certain discrete values. A constant is a discrete

variable which can assume only one value. In general, the result of a
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measurement is a continuous variable, while the result of counting is
a discrete variable.

A variate (also called a random variable) is a quantity which may

assume any one of the values of a specified set, but only with a
specified relative frequency or probability. A variate is defined not
merely by a set of permissible values (as is an ordinary variable),
but also by an associated frequency (probability) function expressing
how often those values appear.

A population is the collection of all objects having in common a
particular measurable variate. A population can be finite or infinite.
For example, the population consisting of all possible outcomes of a
single toss of a coin is finite (consisting of twé members, heads and
tails), while the population consisting of all possible outcomes in
successive tosses of a coin is infinite, and the population consisting
of all real numbers between 0 and 1 is also infinite. An individual
is a single member of a population.

A sample is a group of individuals drawn from a population, and

a random sample is a sample which is selected such that each individual

in the population is equally likely to be selected. Usually sample

implies random sample. Often the terms sample space, sample point,

and event respectively, are used instead of population, individual and
random sample (for example in Hamilton [1964]).

The individuals in a sample may be grouped according to convenient
divisions of the variate-range. A group so determined is called a
class. The variate-values determining the upper and lower limits of a

class are called the class boundaries. The interval between class




12

boundaries is called the class interval. The number of individuals

falling into a specified class is called the class frequency. The

relative frequency (also called the proportional frequency) is the

class frequency expressed as a proportion of the total number of
individuals in the sample.

No single definition of the concept of probability is accepted
by all statisticians. The classical definition is that the probability
Pr (A) that an individual selected with equal likelihood from a
population will fall into a particular class A is equal to the
fraction of all individuals in the population which would, if selected,
fall into A. This is a circular definition since the words "equal
likelihood" really mean "equal probability", therefore defining
probability in terms of itself. This problem can be resolved in two
different ways, neither entirely satisfactory. The first is to

define the empixical probability Pr (A) that an individual selected

from a population will fall into a particular class A as the limit of
the relative frequency of A for a series of n selections, as n tends
to infinity. The second is to accept "probability" as an undefinable
concept, and proceed to state the rules governing probabilities as

axioms.

2.2 FREQUENCY FUNCTIONS

This discussion will be restricted to continuous variates only.
Most of the results can be applied to discrete variates simply by

replacing integrals by summations.
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The frequency function ¢ (x) (also called the probability density

function or p.d.f.) of the variate x is the relative frequency of x

(assuming a class interval dx) as a function of the value of x, that is

¢ (xo) dx = Pr(xb < x g_xo+ dx) , 2-1

where the term on the right is read '"the probability that the value of
the variate x lies between X and X + dx inclusive'".

The cumulative frequency function ¢ (x) (also called the

distribution function, the cumulative distribution function or c.d.f.,

and the cumulative probability function), of the variate x is the

integral of the frequency function ¢ (x)
e (x_) =/ ¢ (x) ax=Pp (x <x) 2-2

where the term on the right is read '"the probability that the value of
the variate x is less than or equal to xo".

The dependency of the frequency function ¢ (x) on x is called the

frequency distribution. A typical frequency distribution is shown in

Figure 2-1.-
Probability is represented by an area under this curve. For
example, the probability that x lies between X and x,is shown as the

shaded area

Pl
P (x <x<x )= /¢ (x)ax. 2-3

0o 1

Note that the probability that x lies somewhere between the extreme

limits is certainty (or probability of unity).

oo

P (-= < x <+ ) =7 ¢(x) ax =1 . 2-4

00
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Figure 2-1.
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The probability that x is less than or equal to X, is the value of

¢ (xo) and is represented by the total area under the curve from -«

to X shown as the shaded area in Figure 2-2. Note &(-w)=0; &(+e)=1,
Frequency distributions have two important characteristics called

central tendency and dispersion, and two less important characteristics

called skewness (or departure from symmetry) and kurtosis (or peakedness).
Measures of central tendency include the arithmetic mean (or simply
the mean), the median (the value dividing the distribution in two
equal halves), the mode (the most frequently occurring value), the
geometric mean and the harmonic mean, of which the mean is most often
used. Measures of dispersion include the standard deviation, the mean

deviation and the range, of which the standard deviation is most often

used.

The expected value of a function f(x) is an arithmetic average of

f(x) weighted according to the frequency distribution of the variate x

and is defined

E [£f(x)] = 5 £(x) ¢(x) dx . 2-5

Expected values have the following properties

E [k f(x)]= x E[f(x)] , 2-6a

E [fl(x) + fg(x)] =E [fl(x)]+ E[fz(x)] , 2-6b
E [E[f(x)]] = E [f(x)] , 2-6c

E [zf(x)] = 2B [f(x)] . 2-64

The mean u of a distribution is the expected value of the variate

x itself

[ee]

u==E|[x]=/7x¢ (x)ax . 2-7
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Figure 2-2.
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The nth moment of a distribution about its origin is defined

(o]

E[x"1=/x"¢ (x) ax . 2-8

The nth moment of a distribution about its mean 1s defined

E [(x=1)"] =/ (x=1)™ ¢(x) d x . 2-9

OO

The second moment about the mean is called the variance.

02 = var (x) = E[(x—u)z] = E[xg] - u2 2-10

and the standard deviation o is defined as the positive square root

of the variance.

The moment generating function or m.g.f. of a variate x is defined

as

] =7 e ¢(x) ax , 2-10a

-0

M(t) = Efe

Moments of a distribution can be deduced directly from the moment
generating function. For example, the mean of a distribution is

=M (0) |, 2-10b
t=o

- p2 =M" (0) - [M (0)1° . 2-10c

A distribution can be completely defined by specifying any one
of ;the frequency function ¢(x) (or p.d.f.); the cumulative distribution

function ¢(x); or the moment generating function M(t).

2.3 MULTIVARIATE FREQUENCY FUNCTIONS

Thus far we have considered only univariate distributions (dis-
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tributions of a single variate x). We will now extend the above

results to multivariate distributions (distributions having several

variates X s X - X associated with each individual in the

23
population). Let

be the vector of variates. Then the multivariate frequency function

(also called the joint density function) is defined

¢ (X°) ax, ax, . . . ax = P.(X°<X<X°+dX) , 2-11
where
- o -
xl-‘ f_dxl
o o =
X® = x2 , a4xX d¥2
x° L anJ
[ n :

and P,.(X° < X < X° + dX) is the probability that

(o] o]
xY < x. < X2 + dx
1 —"1—"1 1
x° < x < x° + dx
n—"n-—"n n

all hold simultaneously. The multivariate cumulative frequency function

(also called the joint cumulative distribution function) is defined

x9 X
Je o o [ $(X) dx, dx

Pr (X = X°)

If the variate vector X can be partitioned into two vectors

3 (x°) 5 v dxn . 2-12

1]

xl Xm+l
Xl = ) and X2 = )
X X

m n
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such that
$(X) = (%) 6,(%)

are called statistically

then the two sets of variates Xl and X2

independent.

The expected value of a multivariate function f(X) is defined

E[£f(X)] =_i .._i £{X) ¢(X) dxl dx2 . . dxn . 2-13

My Elx, ] *1
UX = || = E[%g] = E ?2 = E[X] . 2-14
Uy E[xn] X,

The second moments of the elements of X about their means forms a

symmetric matrix called the covariance matrix (also called the variance-

covariance matrix).

2

99 T10° + * I1p

s = m[(xU) (xU)T1= |o.. 02 .. .0 2-15
X X 21 "2 * 2n|
2
:ﬂﬂ»OnQ' . . OnJ
where o% is called the variance of xi
02 = var (x.) = E[(x.-u )2] = E[xe]—u2 2-16
i i i i i i?

and Oij is called the covariance between xi and Xj

0;5 = cov (xi xj) = E[(xi—ui) (xj—uj)]= E[xi Xj] - E[xi} E[Xj] , 2-17

and o,. = o0.. since ¥_ is symmetric.
ij Ji X

The correlation coefficient between Xi and Xj is

o, = —= 2-1Ta
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and has values
L2y 2l 2-17b
If X, and xj are statistically independent
00xpx)) = 0y (x;) 0,(x,)
and

E[xi xj]

n
=
®
=
e

so that
Oij = pij =0
In fact the covariance cij and the correlation coefficient pij are

measures of the statistical dependence or correlation between X, and

X..
J
2.4 THE COVARIANCE LAW
Assume we have a second variate vector Y linearly related to X
by
Y=¢cXx . 2-18
Then
Uy = E(Y] = E[cX] = ¢ E[X] = C Uy 2-19
and
I, = E[(Y-U,) (¥-U )T] = E[(Cc X - ¢ Uy)(CX-CU )T]
Y Y Y % £
T T T,.T
= E[C(X-Uy) (X-Uy)” c7] = ¢ E[(X-Uyg) (X-Uy) ]
or
_ T
L, = C ZK cT . 2-20

This is known as the covariance law (also called the law of covariances

and law of propagation of covariances).
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If Y is nonlinearly related to X
Y = F(X) , 2-21
then we choose some value X° and replace F(X) by its Taylor's series

linear approximation about X°, that is

Y = F(X) = F(X°) + %E-I (x - x°)
X "o
X
Then
U, = E[Y] = B[F(x°) + of | (x - x°)]
X o
- 0 _B_F_ _ wO) = o BF _¥° _
= F(X°) + 5% O(E[x] X°) = F(X°) +'5§| O(UX X°), 2-22
X X
and
Y - U, = c(x - g() ,
where
oF
C == .
=
Thus
_ T, _ T _
Ly = E[(Y—UY) (Y—UY) l=c,c , 2-23

which is identical to the covariance law (equation 2-20), with

oF

C =3

XO

2.5 STATISTICAL POINT ESTIMATION

A characteristic of a given distribution (for example its mean
or variance) is a statistic of that distribution. A distinction is

drawn between population statistics (also called population parameters,

or simply Earameters), which are usually denoted by Greek letters,
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and sample statistics (also called simply statistics), which.are usually

denoted by Latin letters. For example, the population standard
deviation is denoted by o,and the sample standard deviation by s.

Statistical estimation is that branch of the statistical method

which is concerned with the problem of inferring the nature of a
population from a knowledge of samples drawn from the population. A
sample statistic e vhose value is used to infer the value of a population

statistic e is called an estimator (or point estimator) of e, and is

denoted g. The value of e is called an estimate of the value of e.
Sample statistics which might be used as estimators include sample
mean, sample variance, sample standard deviation, sample median, and
sample range. The most often used estimators are the sample mean and
the sample variance, which for a sample consisting of n observations

of a single variate x are usually defined

i=izx, 2-2k
ni i

2 _ 1 =2

s =17 ! (x;-x) 2-25

If we were to draw another sample from the same population, it
would be surprising if the sample mean and variance of this new sample
were identical to the mean and variance of the original sample. We
see that the value of a sample statistic will in general vary from
sample to sample, that is the sample statistic itself is a variate and

will have a distribution, called its sampling distribution. We now

have three distributions under consideration: the distribution of
individuals in the population; the distribution of individuals in a
single sample; and the distribution of the value of a sample statistic

over all possible samples.
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Consider the sampling distribution of the sample mean statistic,

called the sampling distribution of means. This distribution

itself hag a mean and variance. The mean (or expected value) is

=1 = wrd - L =1 = -
E[x] = E[n % x.] = " ? E(x.] = Sru=u o, 2-26

that is the expected value of the sample mean is the population mean.

The variance is

var (%) = B[ (5-u)2] = E[(F° - 2xu + u2)] = E[x°] -2

1 2 1
=E[(=1 x,)7] - u? =“'2—E[(Z x (% x,)] - p?
ny; 1 n i 1 J J
=L (e + 3, Elx, x,]) - w2
n2 i i iéj i
But
E[xf] = g2 + p2 , and E[x. xj] = E[x.] E[x,] = u2,
and
- _ 2
1; Elx, xj] n(n-1)u
Therefore

var(x) = lg (n(o?+u2) + n(n-1)p?) - u2 = . 2;27

=]

Consider now the sampling distribution of the sample variance

statistic, called the sampling distribution of variances. The mean

(or expected value) of this distribution is

B[s°] = B[ P (x - x)°]

1 2 o= .22y, _ 1 RIS
— E[)il(xi 2xix + x7)] n_l(gE[xi] nE[x<]) .

1

But
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Therefore
Bls2) = 2= (n(o2r2) - n(% + y2)) = o2 2-28
n-1 n
that is the expected value of the sample variance is the population

variance.

An unbiased estimator is an estimator whose expected value (that

is the mean of the sampling distribution of the estimator) is equal to
the population statistic it is estimating. We have seen that the
sample mean as defined above is an unbiased estimator of the population
mean and that the sample variance as defined above is an unbiased

estimator of the population variance, that is

E[d] = u
where
A—-——-]; _
H=x= - E Xi . 2-29
E[62] = o2
where
52 = g2 = L _3)° -
o s ) E (xi x)° . 2-30

A particular population statistic may have several possible
estimators. There are a number of criteria for deciding which of these

is the "best" estimator. The minimum variance estimator is the

estimator whose variance (that is the variance of the sampling
distribution of the estimator) is less than that of the other possible

estimators. Another criterion is the maximum likelihood estimator,

the definition of which we will leave until Chapter 6.
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2.6 STATISTICAL INTERVAL ESTIMATION AND HYPOTHESIS TESTING

So far we have discussed only point estimation, that is the
inference of the value of a population statistic e from the value of
a sample statistic e. Statistical estimation includes two other
procedures, called interval estimation and hypothesis testing.

In point estimation, we specify an estimate € r the population

statistic €. In interval estimation we specify a range of values

bounded by an upper and lower limit.

e, < g < e
l.._ —

2
within which the population statistic is estimated to lie. If the
probability

P (e

P (epsece) =0 2-31

then the interval between el and e2 is called the 100a% confidence

0.95, the interval is the 95%

1

interval for €. TFor example if a
confidence interval. This means that the statemént that € lies
between el and e2 will be true 95% of the time that such a claim is

made.

In hypothesis testing we make an a priori statement (hypothesis)

about the population (for example that it is normally distributed
with mean y and variance 02), and then based on the value of the sample
statistics, test whether to accept or reject the hypothesis. There
are four possibilities
a) hypothesis true and accepted,
b) hypthesis true but rejected (called a Type I error),
c) hypothesis false and rejected,

d) hypothesis false but accepted (called a Type II error).
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If the probability of a Type I error is
Pr (hypothesis true but rejected) = o 2-32

then 1000% is called the significance level of the test. This

probability can often be determined from the sampling distribution,
and is the probability that a sample from the hypothesized population
will have values for the sample statistics whiéh indicate that the
sample is from some other population.

If the probability of a Type II error is

P, (hypothesis false but accepted) = B 2-33

then (1-B) is called the power of the test. This probability can be
determined 6nly for a restricted class of hypotheses. Therefore,
although a Type II error is more serious than a Type I error, usually
less can be said about its probability of occurrence.

To summarize statistical estimation, point estimates can be
made without assuming a particular population distribution, however,
both interval estimation: and hypothesis testing require that a

particular population distribution be assumed or specified.
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3. STATISTICAL DISTRIBUTION FUNCTIONS

In this Chapter we introduce several distribution functions each
of which serves as a mathematical representation of the variation of
a8 given random variable over some domain. When one random variable is
involved, the distribution is called univariate, while in the case of

several random variables the distribution is called multivariate.

We will discuss some special distributions which are derived from
basic mathematical functions; they are the normal,chi-square, student's
(t), and F distributions.

This Chapter is based on Hogg and Craig [1965] and Hamilton [196k].

3.1 THE NORMAL DISTRIBUTION
3.1.1 The Distribution Function

The basic mathematical function from which the normal distribution

function is deduced, is

I =/ exp (—y2/2) dy . 3-1

0O

The integral is evaluated by first squaring it, that is

oo o

2, 2
I=7 J exp (- X~%E—J dy dz , 3-2

-0 00
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and then transforming from Cartesian to polar coordinates as follows:

Yy cosb
=r . 3_3
Z sin®

Thus 3-2 becomes

) 2
I" =17 I exp(—§~0 r dr 46
o) o
2w
=/ dé =2m , 3-L
o
and
1
I = (o) /2 . 3-5
Knowing the value of the integral I, 3-1 becomes
o 1 _2
s 37 éxp(—%;ﬁ dy = 1 . 3-6
~o  (2m)
By making the following change of variable in the integration,
X-a
y:-—-——-—_b 5 b > 0 3“7
we see that the integral now becomes
o (2
1 . (x—=a)
AXe) = -8
L ostentrz e [ = 3

This integral has the properties of a cummulative distribution function

(c.d.f.); its corresponding probability density function (p.d.f.) is

2

1 —
__——_172 exp [- LE_Q%_ 1 . 3~9
b(am) 2b
where -o < x < o

o(x) =

This p.d.f. is said to be that of a continuous normal random variable.

3.1.2 The Moment Generating Function

The moment generating function (m.g.f.) of a normal distribution is



29

[0

M(t) = 5 ™ ¢(x) ax

P o)

L 2
= [ etX __;—_E7é exp [—LE:E%—-] dx 3-10
~oo b(2m) 2b
. X—8a,
and by letting y = - - bt we have

x = by + b2t +a |,

® 2,42
M(t) = S exp[t(by + bt + a)]——i——37é exp[—(b +b2t) ] bdy
—o b(2rm) 2b
2,2 )
= exp [at + bt ] s S exp(—ii—) dy, 3-11
2 1/2 2
00 (2-”)
and the final result for M(t) is:
2,2
M(t) = explat + 2 ; J. 3-12

From equation 2-10b, the mean u of distribution is related to its
moment generating function by

n = M(0).

For the normal distribution
M'(t) = M(t) (a + Dt

By setting t=0, the result is

p=M(0) = a 3-13

From equation 2-10¢the variance o2 of a distribution is related to the
m.g.f. by
02 = M"(0) - [M'(0)1% .
For the normal distribution
2) 2 )2

M"(t) = M(t) (p°) + M(t) (a + bt

thus

2 2 2

+a2) -a" =5D 3-1h

62 = M"(0) - [M'(0)1°% = (b
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proof for the above is as follows.
Given the cumulative distribution function

X-u
g

¢(w) = Pp ( < w) = Pp (x < wo + u)

or in integral form

Tds (x=n)?
¢ {w)= f “———*i7§~exp [-~=—~] dax .
-2 of(2n) 202

With the change of variable y = (x—u))&

o2
exp(=5-) ay,

N

w
3 (w) = f
—c0 (2'"')

1/2

and the corresponding p.d.f. is

6 (0) = o'(w)

¢ (w) = M(zi)l/é exp(i"éi? . 3-17

Comparing the above equation to 3-15 it is evident that u = O and

o2 = 1, thus the proof is completed.

The graph of n(0, 1) has similar characteristics to n(m, o2)

5
that is substituting p = 0 and 02 = 1 we get:
1) symmetry about the vertical axis through x=0,

l/2] at x=0,

2) maximum value of 1/[(2w)
3) x axis as horizontal asymtote,

4) points of inflection at x = #o.
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3.1.5 Computations Involving the Normal Distribution

We have seen that the mean y and variance a2

are two parameters

of a univariate normal p.d.f. To facilitate computations, precomputed
tables have been prepared by statisticians, the arguments of which are
in part a function of the parameters of the distribution. The arguments

of the normal distribution (Appendix B-1) are the probability Pr and

the abscissa value c. The abscissa value is a particular value of the

independent variable of the p.d.f. which corresponds to a given prob-
ability wvalue.

The direct problem is to enter the table with an abscissa value

and exit the table with a probability value; while the inverse problem

is to enter with a probability and exit with an abscissa value c.

Basic to the solution of problems associated with the normal
distribution is the following relationship between the theoretical
probability Pr, the abscissa value c¢, . and the tabulated probability N.
If a random variable x is n(u, 02), then the probability that x is less

than or equal to some value ¢ is computed from (see Figure 3-2):

Pr(x < ¢) = pr(XE i_c_“)

- o o
(c-u)/o
= _i E;_%i7§ exp(_gz) dw
m
= (&)

(¢



Figure 3-2

f(w) P- (x < C’) = hatched area

PRoBABnuTY - NoRmAL DisTRIBUTION
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The value N for the above integral is tabulated for a random

variable n(0, 1). Normalization, that is (x-p)/o, allows probabilities

associated with x[n(u, 02)] to be expressed and computed in terms of

probabilities of w[n(0, 1)].

Example 1 - Direct Problem, One Abscissa

Given: x is n(2, 16) that is w=2, 02=16

Required: Pr (x < L)
Solution:

pe (52 < 52 <

from Table B-1 N(0.5) = 0.6915,

b

&) = w (8) = n(0.5)

Example 2 - Direct Problem, Two Abscissa

Given: x is n(2, 16) that is p=2, 02=16

Required: Pr (1< x < L)

Solution:
Pr (cl < x §_C2) = Pr (
CH—H

- XY 2 -
Pr (5252 ——) - Pr (

c, —u c.-u
- 2 1 -
=w (E—) o () =

N(0.5) - [1-N(0.25)]

1

From Table B-1 N(0.5) + N(0.25) -

il

1

*E—) = N(0.5) - N(-0.25)

N(0.5) + N(0.25) - 1

= 0.6915+ 0.5987- 1 = 0.2902.

Example 3 - Inverse Problem, One Abscissa

Given: x is n(2, 16) that is p=2, 02=16

Required: Find c¢ such that Pr (x <€) = 0.95

Solution:

Pr (ZE < &) = 0.95

g
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ooy o
N(=") = 0.95

From Table B-1 (EEE) 1.645

1.645¢0 + u = 8.56.

(el
]

Example 4 - Inverse Problem Two Abscissa

Given: x is n(u, o2)

Prl-(c-p) < x-p< c-yu] =
0.95

Required: Find c such that Exi(lx—u] < c= u)

Solution:

X Coly Bl T e TR
Pr(gf_c) Pr(0 < 0) 0.95

cmdy _emuy
N(o) N(o) 0.95

N(ER) - [1- 1w (58] = 0.95

N (C"']J) _ 1+ 0-95

S BE = 0.975

From Table B-1 (9—;14-) = 1.96

1.96 0 + u

(]
]

(Note when u = 0, ¢ = 20 for Pr = 0.95).

3.1.6 Multivariate Normal Distribution

The normal distribution pertaining to a single random variable
has been given. When several parameters (random variables) are being

estimated simultaneously, the normal distribution characterizing all
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these parameters together is called a multivariate normal distribution.

An example of this is in the case of a geodetic control network where
the coordinates of all the stations are being estimated and are thus
considered as random variables and are said to have a multivariate
normal distribution.

For m random variables, the m-dimensional multivariate normal

p.d.f. is
(X—U)T z;l (x-U)
¢ (x) = Cexp [- > ], 3-22
where the vector of random variables is
il
X = X, , 3-23
mx1 .
X,
m
with corresponding means
EN
S L ’ 3-2h
ey
and covariance matrix
-
o2 o_ ]
Xl X1X2 s o o Xl)(m
. 2
X = o] g
X ngl X2 . 3 3“25
: 2
o} o
Em¥1 Xm
o p
the constant
[det (E;l)]l/g
= 3-26
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Note the similarities of the univariate normal p.d.f. (3-15) with the

multivariate normal p.d.f. (3-22), namely

a) (;%) 1/2 vs. [det (Z;l )]l/2 3
1 1
o) (zm1/2 S a2 ;
¢) (x-u) 2 (x - U'fi;l (X - U)
202 ve: 2 5

For zero means the multivariate normal, p.d.f. is

$(X) = C exp (- K;ng; ) . 3-27

3.2 THE CHI-SQUARE DISTRIBUTION

3.2.1 The Distribution Function

The Chi-Square distribution is a special case of the gamma
distribution, with the latter being derived from the following

integral called the gamma function of a:

Ma) =5 y* eV ay , 3-28
(o]

where the integral exists for o > 0 and has a positive value. When
o =1

(o]

Ny =reYay=1 , 3-29

o

and if o > 1, then integration by parts shows that

Mo) = (a-1) £ 3% 2 eV gy = (a-1) [(a-1).  3-30
(o]
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Further, if a is a positive integer and greater than one,

I'(a) = (a-1) (a=2) . . . (3) (2) (1)r(1) = (a-1)!
Making the change of variable y = x/B in the integral for I'(a) for

B > 0 yields,

and

) dx 3-31

T 1 1
é — %7 exp (-

Note the integral equals unity. Since the above integral meets the
requirements of a cumulative distribution function, the corresponding

p.d.f. is

$(x) = —L ot exp (-

I'(a) B

)¢ (0 < x < ») 3-32

™[N

0 elsewhere

and is said to have a gamma distribution with parameters o and B.

As mentioned earlier, the Chi-square distribution is a special case
of a gamma distribution in which

Y
(1-—'5,

Vv being a positive integer, and B 2. Thus from 3-32, a random variable
x of the continuous type is said to have a Chi-square p.d.f. if it has

the form

1 X(v/2—l) e—x/2 (

v, .v/2 :
P(§92

¢(x) = 0<x < ) 3-33

0 elsewhere .

Note the distribution is defined by the parameter v which is called the

number of degrees of freedom. The number of degrees of freedom is a very

practical quantity and has a relationship to the least squares estim-
ation problem discussed in Chapter 6. A continuous random variable having

the above p.d.f. is written in abbreviated form as x2(v).
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3.2.2 The Moment Generating Function

The moment generating function for the Chi-square distribution

is derived from the basic definition as

M(t) = [ etx ¢(x) ax
(o]
oo (2 -1)
tx L 2
= [ e X exp (-=) dx
o r(%eYf
w (% -1)
= J (v)l‘i/"é“ 08 e (B ax 3
ol 5'2

The change of variable y = x(1-2t)/2 or x=2y/(1-2t), yields

oo

2/(1-2t) (=21 )—‘2141

MEt) = S v/2 \T_ot eV dy
°r¥)e2
2
Y% .
=/l ) f'l %—])e—ydy
\1 - 2t r(—\é—)
V
(1-2t)2
Computing
M'(t) = (=3) <1-et§(? i ])(—2)
and

v
M'(8) = (-2) (=% - 1) (1-2t)(2 5)(_2)2

n

the mean and variance of the Chi-squared distribution respectively

become

u=M (0) =v 3-36
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g2 = M" (0) - [M;(O)]%=(v2+2v)—v2 = 2v 3-37

3.2.3 The Graph of the Chi-Square Distribution

The graph of a x2 distribution has the following characteristics
(see Figure 3-3):
a) a value of zero when x=0,
b) a maximum value in the interval 0 < x < =,
c) the positive x-axis as an asymtote,

d) has one point of inflection on each side of the maximum.

3.2.4 Computations Involving the Chi-Square Distribution

The possible arguments with which to enter the Chi-square table
are the Probability Pr, the abscissa value xé and chi-square distribution
parameter - the degrees of freedom V. The direct problem is to
enter the table with XS and v and exit with Pr, while the inverse
problem is to enter with Pr and v and exit with X;'

The use of the tables (Appendix B-2) is based on the following
relationship between the probability Pr, X%, and v. If a random

variable x is x2(v), then the

2
P31 (7:‘5 -7 - 329
_"_'\) —‘—\)/1 X e

F(E)Q

X

2y =
pr (xixp) ! ax

The above integral has been precomputed and the results tabulated in
the body of the table for particular values of xé which correspond
to different values of v and Pr; these values xg are called percentiles

of the chi square distribution, and Pr takes on certain probability
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values between O and 1.

Example 1 -~ Direct Problem, One Abscissa

Given: x is x2 (10) that is v = 10
Required: Pr (x < 18.31)
Solution: From Table B-2

x2  (10) = 18.31
0.95

Pr = 0.95

Example 2 - Direct Problem, Two Abscissa

Given: x as x2 (20) that is v =20
Required: Pr (3L4.17 > x > 9.59)

Solution: From Table B-2

x2 = 34.17 and x2 = 9.59
0.975 0.025
Pr (x? > x> x2 )
0.975 0.025

= Pr (x < x2 ) - Pr (x < x2 )
0.975 0.025

1

0.975 - 0.025 = 0.95

Example 3 - Inverse Problem, One Abscissa

Given: x is x2(10) that is v = 10

Required: x; such that Pr (x E-XS) = 0.90

Solution:
Pr ( x < x2 ) = 0.90
0.90
From Table B-2 xz = 15.99
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Example 4 - Inverse Problem, Two Abscissa

Given: x is x°(20) that is v = 20

2 2 2 2
Required: such that Pr ( < x< ) = 0.99
q 1&¢p2 X, S EZX

1 Py

Solution: 5 5
X and x_ will be chosen such that the
Py Py

remaining probability of 0.01 is divided

equally, thus

P. = 0.005 and P, = 0.995.
1 2

PI’ (XS.OOS f_X iXé‘995> = 0‘99

2., _
0.995) - Pr (X f_

= 0.995 - 0.005 = 0.99

P, (x < x

From Table B-2 xg 005 = T.43

2
X0.995

40.00

3.3 The Student's t Distribution

3.3.1 The Distribution Function

The (student's) t distribution is derived on the basis of
the normal and chi-square distributions, and is useful in the statis-
tical procedures to be described in Chapter 5.

Let us first consider two random variables w, which is n(0,1)
and v, which is x2(v); w and Vv are stipulated to be statistically
independent. The joint p.d.f. of w and v is the product of the two

individual p.d.f.'s, namely

v
¢(w,v) — @XP( > ) r(%)z“VZ v exp_(-g)

3-38




Ly

- 00 < gy < ™
0 < V< ®
= o0 elsewhere.

Next consider the definition of third variable t as

W

t =
(vw/¥

)1/2 . 3-39

The p.d.f. corresponding to the two original variables w and v
can be transformed into a new p.d.f., e.g. in terms of the new

variables t and u through the transformation equations

— _____—U.)_— = —
t = (vyv)l/g , U= W, 3-40
or
1/2
_ tu - -
w = vl/2 L] \f_* . . 3 hl

The Jacobian of the transformation (see Wells [1971]) is

al,g) 3L'J (:E)l/2 _E(‘ )_1/2
9t ou v il
1/2
[3]= = - e, s
v oV 0 1 . 4
ot du

and the new p.d.f. is

1/2
o(em) = o(w, 7] = o575 u)|J|
V

- 1 u@/r')

(em) /2 1 (2)2¥/2

2

eoxp [2 (12) (&)1

3-43
AY
- © < t € ®

O < u < o«

= o0 elsewhere.
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Since we are interested in t only, u is integrated out of the
above expression; the following result is then the marginal p.d.f.

corresponding to t:

(o]

o(t) = 1 ¢(t,u)du
i 1 uEWl)/Q—lj
2
exp [- 5 (1 + Z)]au . 3-45

The change of variable in the integration

42
7 = u[l + (;— )1/2 3-L46
yields
- (v + 1)/2-1 >
o(t) =1 = ( 2z ) NQ(———-———)dZ
o (2ﬂv)l/2 F(%??P/g 1+ t2/v ex 1+ t2/v
3-L7
s(t) = LLlvri)/2] 1 ce <t <w 3-18

)(V+l)/2 ?

WMD) (Pl

The random variable t is said to have the above t distribution if

NN R

t =
(vy

where w is n(0,1) and v is xi(v), and is written in the abbreviated form
t(v). Note that the degrees of freedom v is the single parameter

defining the distribution.

3.3.2 The Graph of the t Distribution

The graph of the t distribution is rather complicated in that it

is an intricate combination of a normal curve and a chi-square
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curve. It is similar to the normal curve in the following respects
(Figure 3-L):

1) ¢(t) has values for —o < t < o

2) the maximum value of ¢(t) is at t = 0 ,

3) has the t axis as its horizontal asymtote,

4) has two points of inflection one on each side of the

maximum.

3.3.3 Computations Involving the t Distribution

As for the chi-square distribution, the arguments for entering
the t table (Appendix B-3) are Pr, tp, and v. The direct and inverse
problems are the same.

The use of the tables is based on the following relationship

between Pr, tp, and v. If a random variable x is t(v), then the

tp
Pr (x < tp) =/ ¢(t) at ,
where ¢(t) is the t p.d.f. of 3-48. The body of the table contains

percentiles tp of the t distribution corresponding to certain degrees

of freedom and probability wvalues between 0 and 1.

Example 1 - Direct Problem, One Abscissa

Given: x is t(10) that is v = 10

Required: Pr (x 5_1.372)

U

Solution: from Table B-3 t 1.372

0.90
‘ Pr = 0.90

o o
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Figure 3-L.

$4)
1 P,. ( t £ {:F‘) = hatched avea

A

+ Y

(] tP

GRAPH OF THE -t DISTRIBUTION
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Example 2 - Direct Probilem

Given: x is t(10) that is v = 10
Required: Pr ( |{ > 2.228)

Solution: From Table B-3 t = 2,228
0.975

therefore Pr (x > %

0.975)

1 -Pr (x <t )

0.975
1 - 0.975 = 0.025

since x can also be negative Pr = 2(0.025)=0.05

Example 3 - Inverse Problem, Two Abscissa

Given: x as t(1l4) that is v = 1L

Required: t_ such that Pr(-t <X i_tp) = 0.90

p p
Solution: Pr(-tp < x j_tp)
=Pr (x < tp) - Pr (x < —tp)
=Pr (x < tp) - [1 - Pr (X< tp)]
=2 Pr (X <ty) -~1=0.90

P
or Pr (x < tp) = 0.95

From Table B-3 t0.95 = 1.761

3.4 THE F DISTRIBUTION
3.4.1 The Distribution Function

The F distribution is derived on the basis of two chi-square
distributions and is the last of the basic distributions to be

covered in this Chapter.
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Let us first consider two independent chi-square random variables
u and v having vy and v, degrees of freedom, respectively. The joint

p.d.f. of u and v is

¢(u, v) & LS:% - )v(% - Qe—(u+V)/2

1}

v v, (v +v.)/2 3-49
iz G et ?

0 < u< o

0 < v < »

0 elsewhere.

]

Next consider a new random variable

u/\)l

f= 3-50

v/\)2

whose marginal p.d.f. ¢(f) is to be determined. The transformation

equations are

u/vl
f = , 2=V 3-51
v/v2
or
f‘vlz
u = , v =2 N 3-52
Vo
with the Jacobian of the transfermation being
Tau 2w oz uf
af 3Z v2 02 . zvl
9] - . -5
Vo
v v
T " 0 1 3-53

The Jjoint p.d.f. of the random variables f and z is then
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v_zf
¢(f,2) = ¢(u,v) det(J) = - ( ) ( 3 l Z
v v v +v_)/2 2
1 2 1 2
r( 2)1"( 2) 2
3-54
- vlf vlz
exp -——-(—--——-—+l) e R
[ 2 v 5 v2

The marginal p.d.f. ¢(f) is obtained by integrated out z, nanely

o(f) = 7 ¢(f, z) dz

v, /2
St e =) 3-55
o ‘y (£) (vl+v2)/2-l v,f
= f 2 - : y -z exp[-—-z—(;-—— + 1)] dz.
© VvV _, V v, +v 2 2 2
r(—EOr(—gJ o 1 2
2 2

By making the following change of variable

2 v, f
y=73 (?2"‘ +1) , 3-56
(f) becomes
\)1\)1/2 6'1/2 - l) (\) +v )/2_1
LG @ oy 1"V
_ 2 -y
o(£) = J ( vlf/\)2+l ) ¢
° A (vl+v2)/2
I‘('-2—)I‘(‘2“') 2
2
( ) ay » 3"'57
vlf/v2 + 1
and after integrating,
V72 v /2-1
r[(vl+v2)/2] (v /v,) ()
o) = (v +v,)/
vl v2 vl+v2 2
I‘(—é' ) I’('2—' ) (1+\)lf'/\)2)

(o < f < m) 3-58

= 0 elsewhere.
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The random variable

u/vl

v/v2

f =

where u is xz(vl) and v is xz(v2), is said to have the above F distribu-
tion, and is written in the abbreviated form F(vl,vz). Note that two

degrees of freedom 2 and v, are the sole defining parameters of this

distribution.
A very useful fact is that 1/f has an F distribution with parameters

v, and vy This result can be proved by a procedure similar to the one

used above. That is, — e = F, (v, v.). N '
= . ote also
Fp(vl,wyz) l-p' 2’ 1

T ) = 2 N
v, r(ul, ) =X (vl)
3.4.2 The Graph of the F Distribution
The graph of the F distribution is rather complicated as it is

an intricaﬁe combination of two chi-square distributions. It hés the

characteristics (Figure 3-5) similar to the chi-square distribution.

3.4.3 Computations Involving the F Distribution

The possible arguments with which to enter the F-tables (Appendix
B-4) are the probability Pr, the abscissa value FP, and the two

degrees of freedom vy and v, The direct problem is to enter the

table with F and Vo and exit with Pr. The inverse problem is

p> V1

to enter with Pr, vy and Vs and exit with Fp.

The use of the tables is based on the relationship between Pr,

Fy, Vq» and v,, that is, if x is F(vl, v2), then

2,

Fp
Pr(x < Fp) = /7 ¢(f) af ,
o



Figure 3-5.

$(#)

P'_(x < F;,) = ha‘khecl aveo.

7.

0 /-;3

GRAPH oF THE F DIsTRI BUTION



53

where ¢(f) is the F p.d.f. given by 3-58. The above integral has been
precomputed and the results tabulated for particular values of F
which correspond to different values of vy and Vs and Pr; these values

are called the percentiles of the F distribution, where Pr takes on

certain probability values between O and 1.

Example 1 - Direct Problem, One Abscissa

Given: x is F(5, 10) that is v, = 5 and v, = 10

1 2

Required: Pr (x §_2.52)
Solution: From the first of Tables B-lL

FO.QO (5, 10) = 2.52
Pr = 0.90

Example 2 - Inverse Problem, One Abscissa

Given: x is F(4, 8) that is v, = L and v, = 8

1

Required: F, such that Pr (x < F_) = 0.95

D b

Solution: From the second set of Tables B-UL

F0’95 (4, 8) = 3.8k

Example 3 - Inverse Problem, One Abscissa

Given: x is F(L4, 8)

Required: F, such that Pr (x < F_) = 0.05

P P
. 1 1
Solution: Pr (x < Fp) =Pr (=> =)
— X —-Fp
=1-pPr (2<%)=0.05
x —F
D
or
1 1
Pr(xin) = 0.95
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Recall that if x is F(4,8) then %-is F(8,4), which gives a second

I_l

probability statement for Py that is

l —
Pr (;-5_F0'95(8,h)) = 0.95 .
From the second of Tables B-k
(8,4) = 6.0k

¥o.95

therefore, equating the two probability statements for %-we can solve for

F , that is
P
1 1
F o= = = 0.166
P FO_95(8,M) 6.0k
Example 4 - Inverse Problem, Two Abscissa
Given: x is F(5,10)
Required: F_ and F_ such that Pr (F. <x <F_ ) = 0.90
p p P+ — — P
1 2 1 2
Solution: Pr (F. <x <F_ )=Pr (x <F_)-Pr (x <F_)
151 Po Po Py

Fp and Fp will be chosen such that the remaining probability of
1 2
0.10 is divided egually, thus

a) Pr (x <Fy ) = 0.95 where Fo, = FO.95(5’10)
2 2
b) Pr (x 5_Fpl) = 0.05 where Fpl = FO.05(5,10)
Taking a) from the second of Tables B-k
F0.95(5,10) = 3.33
. _ 1 1
Taking b) Pr (x <F_ ) =Pr (= > -—)
- P x — F
Py
=1 - Pr (i- g_Fl ) = 0.05
Py
101, _
Pr (x <7 ) = 0.95
Py
1 _ .
and Pr (x 5_F0.95(10,5)) = 0.95 as in example 3.
From the second of Tables B-L Fy 95(10,5) = 4.74 and from
F (n,, n,) = —=———  we have F_ (5, 10) = —= = 0.211.
p 1l 2 P (n.n) 0.05"7? L.Th ’
l1-p 271
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3.5 SUMMARY OF THE BASIC DISTRIBUTIONS

Normal n (0, 1) >
Chi-square x2 (v) >
Student's t(v) = __r_1___(_0_,___l_)72 . Y
(xz(v)/v)1
2
F .- x2(v ) /vy | N
x2(v, ) /v
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4. DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES

We have introduced the normal, chi-square, student's (t), and
F distributions in Chapter 3. Any random variable having a p.d.f.
corresponding to any of these distributions was said to have that
particular distribution. We now introduce several very useful
random variables which are functions of these random variables. A
function containing one or more random variables that does not
depend upon any unknown parameter is called a statistic. Two examples

of statistics are

where p and o are known.

Two other statistics are the mean of the sample

n

X, +x.+ . .x Y X
}—( - 1 2 n - ‘!;' 1
n n

and the variance of the sample

.2
(x, - x)
i

n-1
'

n
s2 = %
i=
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In thiz Chapter, we will derive thé distributioné of these and
other statistics.which serve two purposes:
1) wused in the derivations of the distributions of other
functions of random variablés,
2) used as "test statistics" in Chapter 5 on hypothesis

testing.

4.1 DISTRIBUTION OF A NORMALIZED NORMAL RANDOM VARIABLE

Given: A random sample X Xy o o 0 X5 where the xi are all

1 72

) d 2
independent and Xy > n(u, 0%)

Required to prove:

x4 S a (0, 1)

Proof: The proof was given in section 3.1 where thé main idea
was to take the p.d.f. of x and make the change of variable y=(x—ﬁ)/0
in the integration. The resultant p.d.f. had p = 0 and 02 = 1 (3-17).

Comment: This result is used for further derivations in Sections

4-3, 4=k, and 4-{0, and for hypothesis testing in Chapter S.

4.2 DISTRIBUTION OF THE SAMPLE MEAN

Given: A random sample Xps X5 0 e X s where x, are independent
d
and X, > n (u, o2)

Required to prove:

2
$ o= )

n(U3n

X

Proof: The moment generating function of X is
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t
M(t) = E{eXp [ (et +xn)]} and for x, statistically
t L o
independent M(t )= EfeR *1] E [en 2] . . E [en "M} .|

For X, distributed as n (u, g), the m.g.f. is (3-4L)

2.2
M(t) = E[étx = exp [ut + 02t ]
thus in the present case for X
2
n t °§(%)
M(t) =T exp [u, =+ ]
. n 2
i=1 n
Loy 242
12 2’1 1
= - +
exp[(ng u.)t 73 ]
2
il
M(t) = exp [ut + —mm ] ,
2
i = = = = 2: 2: 2: 2
since ul u2 e e un U and 01 02 e e on o<. We

recognize that the form of the m.g.f. is still normal and has
parameters y and 02/n, thus it is proved that x is n(u, 0%/n).
Comment: We use the above result in a subsequent derivation in

Section 4.3.

4.3 DISTRIBUTION OF A NORMALIZED SAMPLE MEAN

Given: A sample mean X g, (u, 02/n)

Required to Prove:

i_.:__]ig;n (0, ]_)
0//—5

Proof: From section 4.1, if X, g, (u, 02) then

(x, = w/o $n(0, 1).
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The only difference in this case is that the variances are scaled by
1/n.
Comment: We use this result in further derivations in Section

4-8 and in Chapter 8.

4.4 DISTRIBUTION OF THE SQUARE OF A NORMALIZED NORMAL RANDOM VARIABLE

Given: x g n (u, 02)
Xx= 2d
Required to Prove: (fgg) > x2 (1)
. , d
Proof: From section 4.1 w= (xLu)/c +n (0, 1), so the c.d.f. of

. 2 .
v W 1s

o(v) = Pr (w2 <v)=Pr (- NVgwsg W)

o .2
-—~li7§' e /2 aw 0<vwv
(2m)

=0 , V<0 .
1/2

Next we perform the change of variable w = y ; the result is

v
¢ (v) =/ ———l—“—-§l/2 e—y/2 dy 0 <w.
(o] (2")1/2
The associated p.d.f. is ¢(v) = ¢'(v), namely
o(v) = 1 vﬂ/Q—ﬁ e—v/2, 0 <v <o,

(m)1/2(2)1/2

=0 elsewhere
Comparing the last expression with that of the basic form of x2 p.d.f.

(3-33), we see that the degrees of freedom v = 1, and knowing that the
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1/2 *
/ , the y2 p.d.f. form of [(x—u)/o]2 is verified.

gamma function F(%J = q
Comment: We will use this result for further derivations in

Sections 4-6.and L-T.:

L.5 DISTRIBUTION OF THE SUM OF SEVERAL CHI-SQUARE RANDOM VARIABLES

Given: A random sample yl, yei; - -V, where y; are independent
4 . .
and y; x2 (vi) .

Required to prove:

n d

2 + v, ...
iyi—*x (vl v, * . v )
Proof: The moment generating function of

n
. is
yl

s

M(t)

[

E [éxp [t(y1.+ Yo + . .. yn)i]

E [éty%] E {ety?] - . . E [etyn].

Since the m.g.f. of a x2 variable is (3-35)

M(t) = (1-2¢)™%/2 |

the m.g.f. for this case is

- + + .. .
M(t) = (1 - 2t) (v + v, v)/2
which corresponds to a chi-square random variable with
v, + v, + ., . vy degrees of freedom.

Comment: We use this result for a further derivation in Section

L-6.

4.6 DISTRIBUTION OF THE SUM OF SQUARES OF SEVERAL NORMALIZED

NORMAL, RANDOM VARIABLES

Given: A random sample Xx

1 x2 o o e xn, where xi are independent .
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‘ d
and x; ¥ n (u, 02)

Required to Prove:

2

H(Iy G
1 g

Proof: From section 4.L if vy = [(XiTU)/ilz then y, g x2(1).

From Section L.5

o
2 +
2y S oy * vy %)
In our case yl = v2 = ., v =1, thus
2
n X, - U
n i ol
Ly, = (———) > x*n)
1 1

Comment: We use this result for a further derivation in Sections

4-7 and 4-10, as well as for hypothesis testing in Chapter 8.

4.7 DISTRIBUTION OF A FUNCTION OF THE SAMPLE VARIANCE

(x,-%)°

Given: The sample variance s = where the

R ~B

n-1

x. $ 10 (u, 02)

i
Required to Prove:
-2
(1) 82 2 05x)" g
e = L ——— ¥ x*(n-1)
2 g
o 1
Proof: We begin by writing
n n
—-u)2 = - % - 2
z(x,-u) Lo(x, - x+x-u)
1 1
n — — - —
= 2[(x.-x)2 + (Xx-u)? + 2(x.-x) (x-n)]
i i
1
n _ n _ n o
= 2(x-x)2 + D(x-u)? + T 2(x,-x) (x-u)
1 1 1

n

?(xi_i)z + n(Za)2 + 2(F-u) ? (x4 %)
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But
n _ n hXi n nnxi n n
Z(xi—x) = z(xi-z 5—0 = ¥ X, = LI == Ix;~ I x; =0 .
1 1 1 1 11 1 1
Therefore

n n _2 _
X (xi—-u)2 =z (xi—x) + n(x-pn)
1 1 ’

Dividing by o2 yields
n n 5
(x,-w)? ¢ (x,-x = 42
l(xl U) § ( ) . n(x—u)
02 - G 02
_ (n-1) s° N n(E-u)?
02 o2
Writing the m.g.f. of this equation
n
L (x,-u)?
1 * { 2 = én
M(t) = Eqexp [t ———— ] = Efexp [t n-1)s + n(x-u)
02 \ o2 02/(j

and we can ite¥

2 - 2
M(t) = & {exp [t _(_n:_L)_s_]} E{exp [t E_(R_‘:Ji_)__]} .
52 52

From section 4.6

I3 2
n \x.—u)
5 — ¢ x? (n)
1 02

and section L.k

so that these have the corresponding m.g.f.'s

n/2 -1/2

(1-2t)" and (1-2t)

% Qs n-1 2 =1\ 2 s os .
Since =z s andmﬁ*;—) are statistically independent [see Hogg
and Craig, 1965, p. 233].°
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Therefore

(1-2t)™/2 2 (1-26)71/? g {;xp [t 515£¥E531}' ‘
02

Thus the m.g.f. of (n—l)sg/o2 is

B [;t(n~l)52/0%] _ (l_gt)-(n»l)/2

This m.g.f. corresponds to a chi~square random variable with n-1

degrees of freedom. Therefore

2
(n-1)s 4

2

x2 (n - 1) .
(o]

Comment: This result is used for a subsequent derivation in

Section k-9 and for hypothesis testing in Chapter 8.

4.8 DISTRIBUTION OF THE RATIO OF THE NORMALIZED SAMPLE MEAN

70 (s /o)
_ 2
Given: a) X $ n(u, g; )
p) Xou $n (0, 1),
ez
(n-1) s° & 2
c) —F——> x* (n-1)
0—2
Required to Prove:
_ Xy

o T _ Zwda/?
(n-1) s° }1/2 s
(=2

Proof: The result for the above follows immediately from the

= ¥ t(n-1)

definition of a t random variable. Recall from Section 3.3 that
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n(0, 1) g . (v)

[x2 (v )/v1Y/2

and in the present case we have
n (0, 1)

[x2 (n-1)/(a-1}"/°

$¢ (n-1)

Comment: This result is used in hypothesis testing in Chapter 5.

4.9 DISTRIBUTION OF THE RATIO OF TWO SAMPLE VARTANCES FROM THE SAME POPULATION

2
(n -1) s3
Given: a)——j;—————— ¢ x2 (nl~l)
02
2
(n.-1)s
2 2 d
b) * x2  (ng-1)
02
Required to Prove:
(n,-1) 82/02 o
: L L 2 I (X X )2
(n.-1) S i 71 (n.~1)
1 "--—“:l 2 ‘d*F(n -1 n"'l)
{n,-1) s2/o2 s e ) (nl«l) B T
2 2 T 3 (X.,X)"
1 i 2
(n2—l)

Proof: The above result follows immediately from the definition of

an F random variable. Recall from Section 3.. that

xz(vl)/vl 4

> Fv v
RTRYY (vis v,)
2 2
and in the present case we have
x?(n,-1)/(n 1) 4
-+ F(nl—l, n2~l)

xz(ng—l)/(n2~l)

Comiment: This result is used in Chapter 5.
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4,10 DISTRIBUTION OF A MULTIVARIATE NORMAL QUADRATIC FORM

Given: The quadratic form < ot ox (equation 3-27), where X

lxm mxm  mx1
is a vector of m normally distributed random variables with zero means

and variance - covariance matrix Zx.
mxm
Required to Prove:

xT ;2; x ¢ x? (m)
lxm mxm mx1

Proof: First make the orthogonal transformation of X to Y by

mxl mxl
-1
Y = T X T
mxl mxm mx1l TX; X=T4

X

made independent. The quadratic form becomes

such that in the process I is diagonalized and the variables Y are

mx1

XT z;l X = yr ( TT z;l T)Y

Ixm mxm mxl 1xm mxXmmxm mxm mxl

vy v
Y,

2 2 2

99 9% m

N .
Zi_g n (0, 1) according to Section 4.1, and that (3302 ¢ ¥

. i
according to Section 4.k, and finally according to Section 4.6, it follows

(1)

where each

that the sum of m random variables (each distributed x2(1)) is distribu-
ted as x%(m).

Comments: This result for quadratic forms is the basis for statis-
tical testing in multivariate least squares estimation problems discussed

in Chapter 8.

4.11 SUMMARY OF DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES

This is a summary of all distributions introduced thus far. 1In

Chapter 3 we derived the normal, chi square, Student's (t), and F
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distributions; these are special distributions and are the basis for
the distributions of functions of random variables given in this €hapter.
The latter are summarized in Table L-1 in such a way as to show their
uses in:

1) subsequent derivations,

2) Thypothesis testing.
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Table 4-1. Interplay of Random Variables - Their Uses

Used For
Section Used in Statistical
Derived Random Variable Derivation Test(Chap.5)
X.-U
.1 X, g n(u, o?) 14 n(0, 1) ’ 0] 5.2
i o
5.3
n
L X,
- 1 1 d L2
.o x, > n(y, o2) X = S n(u, 02/n) no
)4.3 ;& 'd)' n(u; Gz/n) ——)'{—:1‘{']‘_7—2.'9; n(OJ l) o * S'h
o/(n) 5.5
X.,-u 2
b xg % nlu, 0?) (=) % () o +| mo
d |
2 2
4.5 Yy X (vi) i v 7 X (vl+v2+..vn) . .| no
n x,-g 2 X
b6 | x, $nlu, o?) r (—) $ x2(n) . Y *| 5.8
i o
1
n
-2
5 pX (xi—x)
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5. UNIVARIATE INTERVAL ESTIMATION AND HYPOTHESIS TESTING
5.1 INTRODUCTION

Recall from Section 2.5 that point estimation deals with the

estimation of population parameters from a knowledge of sample
statistics. For example the sample mean x and sample variance 82 are
unbiased point estimators for the population mean p and population

. 2 .
variance o , that is,

n
I X.
—}-(—:'.Azl l-———’
H n
n

T (x, - x)2
2 _ "2 _1
S =0 = S

In this chapter we treat interval estimation which is the determination

of the region or limits associated with point estimates.
Recall from section 2.6 that interval estimation involves a

probability statement

Pr (el € 2%

(Y]
A
®
—
i
e
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where € is a statistic of a known p.d.f., a is a probability value between

0 and 1 which must be specified (often o = 0.95), and e, and e, are

abscissa values of the known p.d.f. which are determined by the

specified a. Note, finding ey and e, given the p.d.f. and o is the

inverse problem described in sections 3.1.5, 3.2.k, 3.3.3 and 3.4.3
for the normal, chi-square, t and F distributions respectively. The
interval

[e1 <eE€ §_e2]

is called the confidence interval. If a = 0.95 for exampleygit is called
the 95% confidence interval. In general € is not a single statistic,
but is a function of several statistics, the values of all but one of
which are computed or specified. Therefore, the confidence interval
for the unknown statistic (say p) in € is found by operations on the

inequalities in the above confidence interval to yield

[f (e)se) 2w <ot (e2,€)] .

It often happens that an a pfiori hypothesis about the value of

the unknown statistic p can be made. The hypothesis

o : uH

is called the null hypothesis HO and is read "the mean p is hypothesized
to have the particular value uH." The alternative hypothesis is

Hl HERY] + uH .
The confidence interval can be used to determine whether the null

hypothesis should be rejected. If the hypothesis is rejected, then the

probability value o in the probability statement is called the significance

level of the test. Failure to reject the hypothesis does not mean that

the hypothesis is true. No statement about the hypothesis, the hypothesis
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test, or the significance level can be made if the hypothesis is not
rejected.

In this chapter, we will restrict our discussions to population
distribution functions which involve only one random variable-univariate
case (for example the set of measurements of the distance between two
points). This concept is extended in Chapter 8 to include population
distribution functions involving several random variables, and is

called multivariate interval estimation.

Interval estimates are the basis for hypothesis testing and are
developed in this chapter for the following quantities:

1. a single observation, Xi

2. the population mean, u

3. the sample mean, x

4. +the population variance, e

5. the sample variance, 82

6. the ratio of two population variances, (og/oi)

7. the ratio of two sample variances, (32/35).

We make extensive use of the distributions of random variables

given in Chapter 4 in the remaining portion of this chapter.

5.2 EXAMINATION OF A SINGLE MEASUREMENT Xﬁ

IN TERMS OF THE MEAN p AND VARIANCE 02

Consider a single measurement X; as being a sample drawn from a normal

population with known mean p and known variance 02, that is

Xi 'd)‘ n (U,02) .

From section 4.1, we know that



while the confidence interval for xi is

[u-= c o i_xi <u+ec o]

The bounds of this confidence interval are evaluated from
(1) the known value for the mean u
(2) the known value for the variance o2
(3) the tabulated value of c (Appendix B-1) corresponding
to n(0,1) and a.

This confidence interval is used to test the hypothesis

T . =
do. xi XH.

5.3 EXAMINATION OF THE MEAN u IN TERMS
2

OF AN OBSERVATION X& AND VARIANCE o
The mean u can be examined in terms of the variance 02 and an

observation x; as follows. Consider a random sample where

a 2
x; > n(u,o7)

From section 4.1, we know that

x5 -vw 3 1(0,1)

g

The associated probability statement is

X. — U

i
Pr (- ¢ < <ec)=a,



T2

while the confidence interval for u is

- < +
[xi cou<x *tec o]

The bounds of the interval are evaluated from:
(1) the measurement value x,
(2) the known value for the variance 02
(3) the tabulated (Table B-1 Appendix) value of c corresponding
to n(0,1) and a.

The above is used to test the hypothesis

5.4 EXAMINATION OF THE MEAN u IN TERMS

OF THE SAMPLE MEAN X AND VARIANCE Oefh

. . . 2
The mean M can be examined in terms of the known variance o /n

and sample mean x . TFrom section .3, we know that

while the confidence interval for u is



__0__]
(n)/?

The bounds of the interval are evaluated from:
(1) the computed value for the sample mean x,
(2) +the known value for the variance &? n .
(3) +the tabulated value for c (Table B-1 Appendix corresponding
to n(0,1) and a.
This confidence interval is used to test the hypothesis

HO Ty = UH'

5.5 EXAMINATION OF THE SAMPLE MEAN X IN TERMS

OF THE MEAN u AND VARIANCE 02/n

The sample mean x can be examined in terms of mean u and variance

02/n as follows. Again we begin by considering that from section 4.3

X g
n (0,1)

The associated probability statement is

X -
Pr (— c 5_-——-Ji— i_é) = 0,

o/ V7

while the confidence interval for X is




(ks

The bounds of the interval are evaluated from:
(1) the known mean u,
(2) the known variance og/n,
(3) the tabulated value for ¢ (Appendix B-1) corresponding
to n(0,1) and o.
The above is used to test the hypothesis

Ho: X = XH .

5.6 EXAMINATION OF THE MEAN p IN TERMS

OF THE SAMPLE MEAN X AND SAMPLE VAKIAWCE 52

The mean u can be examined in terms of the sample mean x and saMfJe

2
variance S as follows. From section 4.8

d

X =i + t(n-1)

s/

The associate probability statement is

Pr (- tpf_%_;—‘/—-“_m-—f_tp) =a,

while the confidence interval for u is

- S - S
X -t —=———<pu<x+t ——=—m{-°
[F-o » m]

The bounds of the interval are evaluated from:
(1) the computed value for the sample mean X,
(2) the computed value for the sample variance 82,

(3) the sample size n,
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(4) the tabulated value of tp (Appendix B-3) corresponding

to t{n-1) and a.

The above is used to test the hypothesis

5.7 EXAMINATION OF THE SAMPLE MEAN X IN TERMS

OF THE MEAN p AND SAMPLE VARIANCE 52

The sample mean X can be examined in terms of the mean p and
. sample variance 32 as follows. Again - . from section 4.8
- d

Xx=-y t{n-1) .

s/n'
The associated probability statement is

Pr ‘(__t <____3E_:_E._it

= ) =,
P s/Ve P

while the confidence interval for ;iis
. - s
-1t S <x<uy+t — .
[ P75 P (n )Y 2}
(n ) :

The bounds of the interval are evaluated from:

(1) the known mean u,
(2) the computed value for the sample variance 52, and sample size n,
(3) the tabulated value tp (Appéndix B-3) corresponding
to t(n-1) and «.
The above is used to test the hypothesis

HO: X = xH.
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5.8 EXAMINATION OF THE VARIANCE 02 IN TERMS OF THE

X

MEAN u AND SEVERAL MEASUREMENTS X5 Xpseees X

The variance 02 can be examined in terms of the mean g and

several measurements Xy X > X as follows. From section 4.6,

25

we know that

x Pj;_—~) > x(n)

while the confidence interval for 02 is

0 n
> 2
5 2 (x, - n)
| (xi - ) . 02 L1 ]
[ — - )
X2 X b
Ps 1

The bounds of the interval are evaluated from:
(1) the known mean u,

(2) the several measurements X5 X5 wees X

(3) the tabulated values X2p and X2 (Appendix B-2) corresponding

P
1 2
2 1l -0 .
to x"(n), P, =73 > and P, =Léfé

The above is used to test the hypothesis

2 2
H : = .
le) o o H



T
5.9 EXAMINATION OF THE VARIANCE 02 IN TERMS

OF THE SAMPLE VARIANCE 32

The variance &2 can be examined in terms of the sample variance
2 .
8" as follows. From section 4.7, we know that
2 d
.

ﬁEL;;;%%ii_ x< (n-1)

o
The associated probability statement is
e l-nst 2
Py 7 g P2,

while the confidence interval for 62 is

n-1)8 2. (-1)s°
X" T
D, 1

The bounds of the interval are evaluated from:
(1) the computed value of the sample variance 32,
(2) +the sample size n,

(3) the tabulated values X2 and x2 (Appendix B-2) corresponding
Py Po
1l -0 and _ 1 +<&
Po =5

2
tox(n—l),pl= >

The above is used to test the hypothesis

Ho: o =0 H O
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5.10 EXAMINATION OF THE SAMPLE VARIANCE 82

IN TERMS OF THE VARIANCE 02

. 2 . . .
The sample variance S can be examined in terms of the variance

02 as follows. Again from section 4.7, we know that

2 d
(n-l%s > 12 - 1)

g

The associated probability statement is

2
Pr (42 iiil_:_l_;_i_if )
Py o

while the confidence interval for 82 is

2 02 2 2 02 ]

[Xplzg‘:r)is <X

The bounds of the interval are evaluated from:
(1) the known value of the variance 02,
(2) the sample size n,

(3) the tabulated values X2p and X2p (Appendix B-2)
1 2

corresponding toTX? (n -~ 1), p, = 1 5 % and D, =Lééﬁ

The above is used to test the hypothesis
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2)

5.11 EXAMINATION OF THE RATIO OF TWO VARTANCES (0;/01

IN TERMS OF THE SAMPLE VARIANCES Si AND Sg

The ratio of two variances og/ci can be examined in terms of the

sample variances Si and Sg as follows. Using section 4.9, we can

write that
<nl_1)s§
( 5 )/ (nl - 1)
01 d
5 > F(nl—l,ng—l),
(n2 - 1) 32
( = )/ (n2 -1)
2
Si/oi d
52/02 > T ( n, -1, n, - 1)
2" 72

The bounds of the interval are evaluated from:
(1) the computed values of the sample variances Si and Sg )

(2) +the tabulated values of Fp and Fp (Appendix B-U) corresponding
1 2

+d.

2

1l - aq
2

to F(nl -1, n,. -1), p, = , and p, =

2
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The above is used to test the hypothesis

2, 2 2,2
HO: (02/01) = (02/01)H .

Note that if in the above oi = 02 = 02, then Si and Sg are

simply sample variances of the same population (n (u,oz)), and the

.2, 2
ratio 9, / o, = 1.

5.12 EXAMINATION OF THE RATIO OF TWO SAMPLE VARIANCES (si/sg)

2

IN TERMS OF THE VARIANCES Oi AND 05 -

The ratio of two sample variances si/sg can be examined in terms

of the variances oi and Og as follows. Again using section 4.9, we
can write that

Si/oi a
> F (n

l—-l,n2—1>

2, 2
S2/02
The associated probability statement is

2
S /0l

2
L <F )=a,

Pr (F
P, T2, 2P
1 32/02 2

while the confidence interval for si/sg is

02 32 02

[ F _l.< _l.< F .;L ]
pl 02 _.52 - 02
2 2 2

The bounds of the interval are evaluated from:

(1) the values of the variances Gi and og ,
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(2) the tabulated values of Fp and Fp (Appendix B-k)

1 2
i - - =E—Oi =L.t-.?$
corresponding to F(n:L 1, n, 1), P, > and p, =5

The above is used to test the hypothesis
2 10l _ (e el
H: S1/8, = (sl/sg)H .

the bounds of the confidence interval

Note that when Gi = 02,

become described by the F percentilies.

5.13 EXAMINATION OF THE RATIO OF TWO VARIANCES (52/05)

IN TERMS OF SEVERAL MEASUREMENTS FROM TWO SAMPLES

The ratio of two varilances og/oi can be examined in terms of

measurements Xl’ X X sampled from a population which is
1

2
n(ui, ol), and measurements X

PLIREEE

X sampled from a population
2
which is n(ug, 0-). Using section 4.6, we know that

1° X2, es ey

+R-,

and

e -
no

Further, using section 3.4, we know that
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Pr (F

Py

< < F
(2 P,

)

while the confidence interval for o%/%% is

n n2
2 2 2
n, D0 = wp) ok o Do0xg - )
11 2 1 1
[F — < 5 < F & ]
Py Moy 2 g Py By Ty
L (xi - ul) L T (x, - )2
1 i 1
1
The bounds of the confidence interval are evaluated from:
(1) the sample sizesn, and n,,
(2) the

of
the sum, squares of the differences of the measurements from

means U, and Uy of the two populations,

each of the respective means ul and u2,

the tabulated values of F

corresponding to F(nl, n

Py

2), 1

and F
p

1l -a
2

2

The above is used to test the hypothesis

(62/6%) = (02/

Ho 271 2

2
o)
1y

(Appendix B-4)

=L.—t—§
and p2 5
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5:14 SUMMARY OF UNIVARIATE CONFIDENCE INTERVALS

In table 5-1 we summarize univariate confidence intervals and
hypothesis testing according to

a) column one - the chapter section discussing thé particular
confidence interval,

b) column two - the quantity being examined by the confidence
interval,

c) column three - the quantities which must be known for the con-
fidence interval,

d) column four - the statistic,

e) column five - the confidence interval.
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6. LEAST SQUARES POINT ESTIMATORS:

LINEAR MATHEMATTICAL MODELS

In this Chapter we follow the approaches of Schwarz [1967] and

Hamilton [1964] in discussing the linear mathematical model
AX-L=V (6.1)

where nLl is called the observation vector and is the column vector

whose elements are the observed values, nVl is called the residual vector

and is the column vector whose elements are the unknown measurement

errors (inconsistencies), uxl is called the solution vector for which we

want a point estimate and whose elements are the unknown parameters,

and nAu is known and is called the design matrix. Note that there are n

observations and u unknowns. The least squares estimation process is
applied only when there are redundant measurements, that is n > u. The

number (n - u) is called the redundancy or number of degrees of freedom.

In addition to these quantities we also have weights associated with

each of the observations L. The weight matrix P is the matrix whose

elements are these weights.
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6.1 THE LEAST SQUARES UNBIASED ESTIMATOR FOR X

~

The least squares criterion states that the "best" estimator X of X
is the estimator which will minimize the sum of the squares of the

weighted residuals, that is

T

V' PV = minimum (6.2)

where from Equation 6.1 we have

A

V=AX-1 . (6.3)

Combining Equations 6.2 and 6.3 we have the criterion

6=0AX-1)T P(AX-1) = minimm . (6.1)

To minimize this function we set

89 _ 3¢ 3(AX-L)
% 3(AX-L) X
3 T
=2(AX—L) PA=0, ,
or after transposing and separating
Alpax-aTPpr=0 . (6.5)

Fquations 6.5 are called the normal equations. If (AT P A),called the

matrix of the normal equations, is nonsingular then there is a unique

least squares estimator for X which is
x=pa)ytatrrL . (6.6)
An estimator i of X is called unbiased if
E[X] =X . (6.7)

The estimator X of Equation 6.6 will be unbiased if

the expected value of the residuals is zero, that is
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E[vl=0 |, (6.8)
in which case, from Equation 6.1

E [V] = E[AX-L] = E[AX] - E[L] = AX - E[L] = 0
or

E [L] = AX , (6.9)

where we have used the relation E [X] = X, which is trivial since X is
the "true" value.

From Equation 6.6

-1,T

E [i] E [(ATPA)‘lATPL] = (ATPA) AP E[L]

(ATPA)"lATP AX = X

~

thus by definition X is an unbiased estimator of X.¥

6.2 CHOICE OF THE WEIGHT MATRIX P

So far we have not specified how the weight matrix P should be
chosen. If E [V] = 0 then the covariance matrix of the "true" values of
the residuals is

g = B LO-E (VD (v= [v))'] = & [v'] . (6.10)
Also if E [V] = 0, from Equation 6.9
E[L] =AX

and from Equation 6.1

L-EJ[L] = -V

and the covariance matrix of the observations

* Note that we have made no statements about the weight matrix P as yet.
Hence X is unbiased, independent of the choice of P.
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T (6.11)

5, = B [(-B[L))(-E [L])T] =B [W'] =15, |,

L

that is the observations and the "true" values of the observation errors
have the same covariance matrix, as should be expected. This does not

mean that ZL = ZV where ¥ is the estimator of ¥ which results from the

least squares process.

We set
- _
2
o1 %12
= 2
Ly, 921 % !
.02
n
- .
where ¢? is variance,

i

and Oi is the standard deviation associated with the observation Qi,

and Oij is the covariance between observations zi and Qj.

The variance of an observation is larger when it is less accurately
determined. In combining many observations more importance should be
attached to those having smaller variances. One reasonable choice for

the weight matrix P therefore would be to set

P=2¢% (6.12)

In this case values must be assigned to the variances and covariances
in ZL before a least squares estimation can be made. The values arise
from a knowledge of the measuring instruments and procedures being used.

It is often possible only to assign relative values among the variances

and covariances, so that we know ZL only to within a scale factor, that
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is if
= g2 6.1
I =02 Q ‘ (6.13)
we know the relative covariance matrix Q but not the wvariance factor 05.
In such a case if we use
=1 - 2 o1
P=Q" =021 (6.1k)
in Equation 6.6, then we have
N L et § -1 T 5, -1 _ T -1 -1 7T -1
X =(A ol I A) T A of %7 L= (A I A) T A I L (6.15)

that is, the variance factor drops out and either weights 6.12 or 6.1k

~

result in the same estimator X.

6.3 THE MINIMUM VARIANCE POINT ESTIMATOR FOR X

~

If for an estimator X of X, a matrix B exists such that

i =B L (6.16)

~

that is, the elements of X are linear functions of the observations, then

X is called a linear estimator of X.

~

The minimum variance estimator X of X is the linear unbiased

estimator whose covariance matrix

. A Aoyl ALNT
iz = BE[(X - E [X]){X - E [X])7] (6.17)
is "less than" that of any other linear unbiased estimator of X. We

need some criterion by which we can decide when one matrix is "less than"

another matrix. One such criterion useful for square matrices, which is



91

conveniently a scalar quantity, is the sum of the diagonal elements,
called the trace of the matrix. Therefore we will define the minimum

variance condition to be
Trace (Zi) = minimum (6.18)

and we will now proceed to find the matrix B in Equation 6.16 which will
satisfy this condition.

We have already seen that if E [V] = 0 then X is unbiased, that is
E[Xx] =X .
From the linear condition of Equation 6.16 | and from the assumption E[V] = 0
E [i] = E [BL] = ﬁ E[L]=BAX .

Therefore

BA=T (6.19)
From the covariance law, since
X = BL

then

A T ’
Zx = BXLB . (6.20)

The problem may now be stated that we want to find that value of B

such that

Trace (BZLBT) = pinimum
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under the constraint
BA-I=0

We will use the standard method for solving such minimization problems,
called the method of Lagrange, which will be fully explained in Chapter

T. The procedure is that we form the variation function

¢ = BZLBT + 2(BA-1I)K

where K is a matrix of undetermined constants, called Lagrange multi-

pliers, and we then set

3 Tr(¢) _
9B

and from the peroperties of traces (Appendix E) we have
T
Tr (¢) = Tr (BI;B")
T
oTr (BI B)

0B

+ 2 Tr (BAK) - 2Tr (k)

3Tr (BAK) T T
9B

oTr (K) _
OB -

so that

3TEB( ) - 2B3 + oxtal = o

or

B=-xl alxt

But from Equation 6.19
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T T -1

BA=I=-K A 5~ A
or
= (AT -1 A)~1
L
and
B = (ar 57t oAyt AT 5Tt (6.21)
'L L
finally giving us
X=BL= (AT zil A)'l AT zil L (6.22)

as the minimum variance estimator of X. By comparing Equations 6.6 and

6.22 we see that the least squares estimator is the minimum variance

L

estimator when P=Z£l

. Note that when P=O§Z the equivalence between

equations 6.22 and 6.6 is still valid, since the variance factor drops

out of equation 6.6.

6.4 THE MAXIMUM LIKELIHOOD POINT ESTIMATOR FOR X

If the observation errors V have a normal (Gaussian) distribution,
then their probability density function can be written
1 T -1
¢(v) = Cexp [- 5 (V- EIV])" 2. (V - E[V])] (6.23)

where the constant C has been defined in equation 3.26. If

E[V]=o0

(V) = Cexp [- 2V IV V] . (6.2L)

It can be seen that the least squares criterion

V2™t v = minimum (6.25)
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leads to a maximum probability density ¢(V), also called a maximum likeli-
hood. Therefore the estimator X of X which satisfies 6.25 is called the

maximum likelihood estimator of X.

6.5 UNBIASED POINT ESTIMATORS FOR THE VARIANCE FACTOR
AND THE COVARTANCE MATRIX OF X

In this section we will show that unbiased estimators exist for the

variance factor og and the covariance matrix of the unknowns Zi given by
I\T ~
2 = Y PV (6.26)
o n-u
12 = 02 (AT pa)7t (6.27)
X o
where
= g2 7t
P ol I, . (6.28)
The covariance matrix for X is given by
S > > 44\ T
iy = E[(X-E[XDE-EXDT] . (6.29)

If E [V] = 0 we have seen‘that X is an unbiased estimator, that is

E [X] =X (6.30)
therefore

22 =B [(X - X)X - X)°] . (6.31)

X
Now from Equation 6.6 the expression for X is
T P

x= T p )yt AT py (6.32)

which can be written

B L (6.33)

>
1]
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From the covariance law we have

and thus

and if

then

and

£y = BI B
iy = (aTpa)~t TPZLPA (aTpa)L
P = og zil
I o= og p~t
Ly = (A?PA) -1 ,Tp G -1 pa (A?PA)"l

]

o2 (aTpa)™t .

(6.34)

(6.k0)

(6.41)

(6.42)

(6.43)
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Therefore

VRN S S |
zX ol (A7PA)

is an unbiased estimator of L] if and only if an unbiased estimator o5

X

(6.4L)

~

2

of og can be found. We will spend the remainder of this section showing

that such an unbiased estimator is given by Equation 6.26, that is we

will show that

ap
~ " A ~
E [0%] = E [V P V] = —— E [VPV] = o2
n-u (o]
or

E [VP V] = og (n-u)

First we recall the normal equations (Equation 6.5)

AT pA X = AT PL

which can be written

ATP (AX - L)

1
o

or

(AX - L)T PA

1
o

and from which

AT PL = AT PAX

and

LT PA = XT AT PA

Based on these relations we now show that

VT PV - vT PV=(X- x)T AT PA(X - X)
where
V=AX -1
V=AX - L

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)
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We begin by considering

T

Ve v = (aX - L)Y P(AX - L)

=(ax - 1) Ppax - X AT pL+ 1Y PL .
From Equation 6.49 the first term is zero. From Equation 6.50 the

second term is XT AT PAX. Therefore

vipv=r1rpn-xt A pax . (6.55)
Next we consider
VT PV = (AX - L)T P(AX - L)

= xT AT pax - 1T pax - xT AT PL + LC PL.

From Equation 6.51 the second term is X% AT PAX. From Equation 6.50 the

third term is XT AT PAX. Theréfore

Vipvovipv=xtaloax + x% AT pax - %% AT pax - x© AT pax

1

x - x)T AT PA(X - X) R (6.56)

il

which can be written

T

G P G =V PV - (ﬁ - X)T AT PA (i - X) . (6.57)

- The next step is to prove that the value of the guadratic form
NE a4y is eqiial to the trace of the product Y xT A, that is

YL A Y = Trace (Y YT A) . (6.58)
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The quadratic form

YT AY
is a scalar, therefore it is equal to its trace
Tr (Y A Y) =Y A Y.

From the properties of traces (Appendix E) we see

Tr ((YTA)Y) = Tr (Y(YTA))

so that

Trace (YY'A) = Y'AY .
Applying this to Equation 6.57 we have

GTPG = Trace (VVTP) - Trace ((i - X)(i - X)T ATPA) . (6.59)

This is true for any weight P. If we define P as in Equation 6.28 then

from Equations 6.38 and 6.43

ATpa = o257t (6.60)
0¥

and using Equation 6.11;-Equation 6.59 becomes

VTPV = Trace (VVT cgz;l) - Trace ((X—X)(X—X)T ogz—}) (6.61)
X

and the expected value of this equation is
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T

i}

E[{} P{}] gg E[Trace (VVTZ\—,]—)] - O'g E[Trace (()E“X)(}E‘X)Tzi;zl ))J

— ~ ~ T
02 Trace (E[vale]) - 02 Trace (B[ (X-X)(X-X)

-1
1)

02 Trace (E[VVT]Z\—/l) - o2 Trace (E[({c-x)(i-x)T]g;l ) . (6.62)

B

Therefore if there are n observations and u

unknowns (taking into consideration Equations 6.11 and 6.31)

S “1, _ .opml
E [VPV] = ol (Trace (ZVZV ) = Trace (%X ‘%X }))
= g2 (Trace I - Trace I )
o n u
= og (n - u) . (6.63)

Therefore the correct P must be used to obtain an unbiased 82,

and . we have shown Equation 6.46 is true, which means that Equation
6.26 defines an unbiased estimator of cg, and from Equation 6.4L we see
that Equation 6.27 defines an unbiased estimator of IJ.

X

6.6 SUMMARY

In this Chapter we have shown that for the linear mathematical model
AX-L=YV

i) the least squares estimator X of X is

X = (ATPA)'IATPL

ii) this estimator is unique if (ATPA) is nonsingular
iii) this estimator is unbiased if E [V] = 0

iv) this estimator is the minimum variance estimator of X if
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v) this estimator is the maximum likelihood estimator of X if V has a

normal distribution

vi) +the least squares unbiased estimator V of V is

~

V=AX-1L

vii) the least squares unbiased estimator og of the variance factor o2

e}
is
R ATA
G2 = Y PV
o n-u
where
-1
- 2
P 00 ZL

viii)the least squares unbiased estimator Zi of Zi is

T o= og (ATPA)"1

where
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T. LEAST SQUARES POINT ESTIMATORS:

NONLINEAR MATHEMATICAL MODELS

In Chapter 6 we concentrated on demonstrating the statistical sig-
nificance of the least squares pointvestimators under a variety of
assumptions, and assuming a linear mathematical model.

Nonlinear mathematical models occur far more frequently than do
linear models. Therefore in this Chapter the emphasis is shifted to
considering the steps required to obtain expressions which can be used
for numerical calculations from nonlinear mathematical models. There

are three steps: Linearization of the mathematical model; derivation

of the normal equations from the least squares criterion; and derivation

of expressions for the least squares point estimators from the normal

equations. It is only these last expressions which are coded into a
computer program , or otherwise set up for numerical computation.

In dealing with nonlinear mathematical models it is usual to specify
an initial approximation to the solution vector, which we will denote by
X°, and then to determine a correction to this value, which we will denote

by X. We will call the sum of the two the total solution vector

X=X°+X . (7.1)

Similarly we will often want to refer to the sum of the observation
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vector L and the residual vector V as the total observation vector

L=L+V. _ (7.2)

7.1 LINEARIZING THE MATHEMATICAL MODEL

Mathematical models expressing the relationship between the total
observed and solution vectors X and L have the general form

,L)=0, (7.3)

<l

F(

which is the mathematical model of what is known as the combined method

for reasons which will soon be clear. The vector function F represents
r equations relating n observations and u unknowns. The method of least
squares can be applied only when n + u > r > u. The quantity (r - u) is

called the redundancy or number of degrees of freedom.

If the observed quantities can be explicitly expressed as functions
of the parameters X the mathematical model becomes
F(X) =L, (7.4)

and the method is called the parametric method (also called the method

of observation equations, the method of parametric equations, and the

method of indirect observations). In this case the vector function F

represents n equations (one equation per observation), and the redundancy
is given by (n - u).
If the mathematical model consists of conditions between the
observed quantities, that is
F(L) = 0, (7.5)

then the method is called the condition method (also called the method

of condition equations, the method of conditional observations, and the

method of correlates). In this case the vector function F represents
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(n - u) equations (one equation per degree of freedom).

Linearization of these models is accomplished by replacing the
nonlinear functions F by their Taylor's series linear approximation,
expanded about the point defined by the initial approximation to the
solution vector (X°), and the measured values of the observation vector

(L).

For the combined method linearization gives

FX, T) = F(x°, 1) + & x+ & V=0
Klxo 1, 0Lixo 1,
or
W+ AX + BV =0 , (7.6)

where rWl = F(X°, L) is called the misclosure vector and

A = oF and B = OF are called the design matrices.

r u = T n -
X 3T | yo

X°,L ,L

For- the parametric method linearization gives

FX) - =7) + & x-@m+v)=o0
0% | o
or
W+ AX -V =0, (7.7)
P
where Wl = F(X°) - L and A = 2:
n nu 5% Xo

For the condition method linearization gives

2F
oL

V=20
L

F(L) = F(L) +

or
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W+ BV =0, (7.8)
F
where = W, = F(L) and _ B = a_ .
n-u n-u n Aol L

The parametric and condition methods are the classical methods of
least squares estimation and are special cases of the combined method.
Many problems can be solved by either method. The condition method has
two drawbacks. Specifying the (n - u) conditions to be used is usually
difficult compared to writing the parametric equations involved. If a
solution for the unknown parameters are desired, as is usually the case,
then after the condition method solution is complete, further work must
be done to obtain this solution.

On the other hand the condition method requires the solution of
only (n - u) equations rather than n equations for the parametric method.
This consideration overrode the drawbacks in the days of hand computations,
and most least squares work was done by the condition method. However
with the use of the digital computer the advantage of fewer equations has
been erased, so now the parametric and more recently the combined methods

are usually used. The three methods are summarized in the following

table.
Combined Parametric Condition
Mathematical Model F(X, L) =0 FX) -L=o0 F(L) =0
number of equations r n n-u
number of observations n n n
number of unknowns u u -
linearized math model W+ AX + BV =0 W+ AX -V =0 W+ BV =0
special case special case
of combined of combined
with with
B = -I {A =0
r =n r=n-1u
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7.2 LINEARTZATION EXAMPLES

In this section we give two examples of mathematical models and
their linearization: One using the combined method only; one using both
parametric and condition methods. A third numerical example, using both
combined and parametric methods is given in section A.2 of the Appendix.

Example One. This example is the fitting of the "best" straight
line to a set of data points, using the least squares criterion. The
combined method is the only one which can be used. The mathematical
model

= +
yi mxi b

relates r sets of observed coordinates (xi, yi) to a straight line with
slope m and intercept b. There are r equations, n = 2r observations, and

2 unknowns. The total solution vector is

m m° m
ST (o] — —
2X| X + X = = +
b b° b
the total observation vector is
F - ) r 9 r -
% % V1
Iy 51 Vo
L=L+V= = +
2r | .
X X
r T
_yr_ _yi'a —VQI'J

and the combined method mathematical model consists of r equations like

fi(X, L) =m x; + b - y; = 0
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which, after linearizing about (X°, L) becomes

AX + BV + W =20

where
B ]
xl 1
rA2 = ?
X 1
L T -
m® -1 . 0 0
B, = .
r 2r 0 0 : m® -1
and

m®x. + b° -y

m°x + b° -y
- r r-

Example Two. This example illustrates the use of both parametric
and condition methods. The triangle ABC has known points A and B at
(0, 0) and (xB, 0) and unknown point C at (XC, yc). The three interior

angles of the triangle are measured.

Yy + Cx‘,gﬁ)

of
\_3,/'

d. q/l




The total solution vector is

the total observation vector

L+V

and the parametric equations

o
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X X
C (0]
= +
¥, v, y
is
% % Vi
5 = -+
%o %o Vo
%3 %3 V3
are

1" arctan (yc/xc)
a, = arctan (yc/(xB - xc))
Uy = arctan (xc/yc) + arctan((xB - xg/yc)
which, when linearized about (X°, L) becomes
V=AK-+W
where
- —
R *o
2, 2 2 2
+ +
XY XY
A = yo XB_Xo
32 - 2 _ 2
(XB Xo) * yo (XB Xo) * yo
Y v -X (xp-x )
2. 2 2 2 2 - 2
- - +
L xo+yo (XB xo) * Yo Xo+y (XB xo) yo_d

and
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- -

arctan (yo/xo) - oy

W = | arctan (yo«gB—x&) - o,

arctan (Xo/yo) + arctan &FB—xg/yo) - oy
L J

Applying the condition method, there is only (n - u) = (3 - 2) =1
condition which is

F(L) = a, +a. +a, - 180° = 0

1 2 3
or
BV + W=20,
where
| B3= (1 1 1]
and

= _ o
'W’— ay + o, + og 180

Note however that once this has been solved for V we will still have no

knowledge of X.

7.3 DERIVATION OF THE NORMAL RQUATIONS

The normal equations express the relationship between the least
squares estimators i of the solution vector X and G of the residual
vector V (and as we shall soon see the estimator ﬁ of the vector of
Lagrange multipliers K) and the known quantities P, A, B and W. The

normal equations result from applying the least squares criterion

VPV = minimum (7.9)

to the linearized mathematical model, which for the general case in this
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Chapter is the cumbined method

AX + BV + W =20 . (7.10)

Mathematically this is called the extremal problem with constraints;

that is we wish to find an extremum (a maximum or minimum value) for one

function when the variables are related to each other by other functions.

The standard method for handling such problems is called Lagrange's

method. We will describe this method using a simple two dimensional

example.

Suppose we want to minimize the function

fl(x, y) = ax® + by2 (7.11)
subject to the constraint
f (x, y) =ax +by +¢=0. (7.12)

Applying Lagrange's method we perform three steps:

i) form the variation function

¢ = £ (x, y) + kf,(x, y) = ax® + by> + k(ax + by + ¢)

where k is an undetermined constant called the Lagrange multiplier.

ii) set the derivatives of the variation function to zero

-

L 2ax + ka = 0 and 3% 2by + kb = 0
X ay

iii) solve the three equations

for the three unknowns x, y, k.

The point (x, y) so determined is an extreme point of fl(x, y).

The
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value of k so determined is closely related to the value of fl(x, v)

at the extreme point. For our example the solution is

-C - -c K = 2c
a+b » Y a+b ’ a+b

and fl(x, y) = —xf-k .

Let us interpret this process geometrically. The first function
(Equation T-11) is a family of ellipses, and the second function
(Equation 7.12) is a single straight line. What we have done is to find
the particular ellipse which just touches the straight line, and the
solution (x, y) is the point of tangency between the ellipse and the
straight line, as shown in Figure T.1.

Y
£ (x,4) = constant

—

ey =
colution £ Gog) =
POln‘t ,

Figure T.1

Extending this method to the combined case we want to minimize the
- function
VTPV

subject to the r constraints (because we have r equations)

AX +BV +W=0 . (7.13)

Geometrically we want to find the solution point (X, V) in hyperspace

which is the point of tangency between one of the family of hyperellipsoids
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defined by

AT ~

V'PV = constant
and the hyperplane defined by Equation T.13.

Following the same procedure as in the simple example above, we

form the variation function

¢=VTPV+2KT(AX+BV+W), (7.14)

where K is the least squares estimator of K, a column vector of r Lagrange

multipliers, and has been multiplied by a factor 2 for convenience.

~ ~

Setting the derivatives of ¢ with respect to X and V to zero we have

% - 2VT P+ 2KT B=20

~

ov
which, when transposed and divided by 2 becomes

T

P\?+BI§=0 R (7.15)

and

LI QKT A=0

~

X

which when transposed and divided by 2 becomes

ATK=0. (7.16)

We now want to find a simultaneous .solution of the three equations

AX + BV + W=20
PV + BT K=20
AT K=20

~

for X, V and K. These three equations can be combined into the single
hypermatrix equation (a hypermatrix being a matrix whose elements are

themselves matrices)
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P Bt 0 ' 0
B 0 A K| + |w| =0. (7.17)
0 AT 0 0

This hypermatrix equation represents the normal equations for the combined
T
method in their most expanded form. For the parametric method B and B

are replaced by -I to get the normal equations in hypermatrix form

P -T 0 i 0
-I 0 A K| + |W| =o0. (7.18)
0 AT 0 X 0

+ =0 . (7.19)

Note that in all three cases the hypercoefficient matrix has been con-

structed to be symmetric, with a nonsingular upper left element. This

is a necessary condition on the structure of the hypercoefficient matrix.
It would be possible (for small problems at least) merely to program

this one equation directly to solve for X, K, and V as partitions of the

hypersolution vector (for the combined case)

v P BT ol -1 1]o
K| =- |B 0 A W (7.20)
X 0 AT 0 0

However, the time required to invert matrices goes up as the cube of
their size, so it always is more efficient to invert the smallest

possible matrix, not the largest as we have here. Also this hyper-
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coefficient matrix consists in large part of zero elements, the storage
of which in a computer is unnecessarily wasteful. Therefore in the next
section we will derive more explicit expressions for the solutions for

~

X, K and V.

7.4 DERIVATION OF EXPLICIT EXPRESSIONS FOR
THE SOLUTION TO THE NORMAL EQUATIONS

In this section we will derive expressions for the estimator i of
the solution vector X, the estimator ﬁ of the vector of Lagrange multi-
pliers K, and the estimator G of the residual vector V. We start with
the hypermatrix equation 7.17, treat the hypercoefficient matrix as a
partitioned matrix, and use the rules for inverting partitioned matrices
to eliminate G and ﬁ from the solution. Once an expression for i is
obtained it is back-substituted to obtain expressions for ﬁ and G. This
procedure is equivalent to the more familiar elimination and back-sub-
stitution technique which does not use hypermatrices. However the
approach used here is a standard step by step procedure which will be of
great advantage when we consider more complicated mathematical models in

Chapter 9.

The hypermatrix Equation T.1lT7

P BT 0 v 0
B 0 A K| + |w] =0 (7.21)
0 AT 0 0

is of the form
NY + U=0 ,

“which ‘can ‘be -partitioned
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11 12 1 1

21 ) 2 2

N.. Y +N,.Y +U, =0 (7.23)

0. (7.24)

=
[
+
=
&
+
(=
i

It Nll-ls nonsingular, .then from Equation T.23

Y,)

-] .
Y = - Nll (Ul + N12 5

1

and eliminating Y. from Equation T.2k

1

“Nop 11 (U + W5 ¥y) + N, Y, + U, =0
or
(V- N21N11N12) Y, + (U~ NQlNllUl) =0 (7.25)

To eliminate V we partition hypermatrix Equation T.21 so that

Yl =V
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Then from Equation T7.25

0 A 8] Pt (8% ol [k W g] Pt [ o
- + - = Q0 s
AT 0 0 X 0 0
or
—pp~ 18t A K W
+ =0 . (7.26)
P A
A 0 X 0
To eliminate K we partition hypermatrix Equation 7.26 so that
Yl =K
5 e K W
_________ ‘.___._.. J— + _— = Q0
at | o X 0

Then from Equation T.25

(AT e )T mx + AT @)t w=o0,

or

X = - (AT (p i)t A)_l At Tyt w . (7.27a)

The first equation from hypermatrix Equation T7.26 is
- (BP’lBT)K + AX +W=0,

from which

K = (sp~ 1Tyt (A% + W) . (7.270)

The first equation from hypermatrix Equation T7.21 is

PV + BK =0 ,

from which
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v =-p 1Tk . (1.27¢)

Equations T.27 are the expressions for the least squares estimators
using the combined method. For the parametric method B = - I, therefore

equations T7.27 become

X = - (aTpa)"t aTpy
K="P (AX + W) (7.28)
V=pPlKk=naX+VW.

For the condition method A = 0, therefore Equations T.27b and T.2Tc

become

_ (BP—lBT)-l

=
|

W

>

L (7.29)

15Tk = _ p71p (BP'l T)'l W

- P

<
1

A

These solutions for X and V must be added to the initial approx-

>

imation X° and measured values L to obtain estimates of the total

solution vector

A

§ = X° + X (7.30)

and the total observation vector

S

T=L+vV. (7.31)

7.5 DERIVATION OF EXPRESSIONS FOR COVARIANCE MATRICES

In this section we will apply the covariance law (Equation 2.23) to

derive expressions for the covariance matrices of the random variables

A

W, X, K, V, given the covariance matrix ZL for the observations L.

From the definition of the misclosure vector W, the design matrix

B, and the total observation vector L
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W= F(X°, L)
b=

oL XL
L=L+V,

it is obvious that from the covariance law

T
Zw = CWZL CW”
where
8 "~ O 8 = = —
wa SE- F(X°, L) = = F(X, L) =B .
oL X°,L
Therefore
T
Ly, =B I B . (1.32)
From Equation T-2T7a
X = cxw ,
and therefore from the covariance law
~ _ T
Iy = Cx Iy S
T.T
= CX BZL B CX .
where
_ T T,-1 -1 T T,-1
¢, = - (" o 8O )T ATy, 87T
and
= g2 pt
ZL Oo P

Therefore
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$o = (AT( T)—l

B
X L. B

L

which cancels to become

A)'lAT(BzLBT)‘l[BzLBTJ(BzLBT)'lA(AT(Bz B

5ty

L

(7.33)

. _ .7 Ty=1, =1
Iy = (A (BZLB ) TA) .
From Equations T-27b
K = C*¥(AX + W)

and therefore from the covariance law

. T
Ip = Cx Iy Ok
T.T
CKBZLB cK
where
- *
CK C (AcX + 1)

og(BzLBT)"ll:I - A(AT(B

Therefore, after simplifying

C*(ACX + I)W = C W

K b

T-1 =1 T T, -1
I B ) TA) T A (BZLB ) ]

=

= (03)2(BZLBT)'l [I - A(AT(BELBT)"lA)'lAT(BzLBT)'l] .

(7.34)

From FEquation T-2Tc

V=-P B™ K

therefore from the covariance law

ZK B

or

z
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B T T\-1 T T-1 ,-1,T T,-1
Zv = ZLB (BZLB ) [BZL A(A (BZLB ) TA) A (BZLB ) B%J (7.35)
Setting
= g2 pt
ZL o P

in Equations 7.32, 7.33 and T7.35

= og(BP_l'BT) (7.36a)
= og(AT(BP_l T)_lA)"1 (7.36b)

USP_lBT(BP_lBT)_l[rBP_l - A(AT(BP_lBT)—lA)—lAT(BP—lBT)_lBP—;]

(7.36¢)

Recalling the discussion of section 6.5, equations T7.36 become

unbiased estimators only when the a priori variance factor o2 is

o}

replaced by the unbiased estimator

where v i1s the number of degrees of freedom.

For the parametric method B = - I and EquationsT.36 become

_ 2 p-1
L, =02P (7.37a)
~ _ 2 ¢,T -1
iy =02 (A" P A) (7.37b)
Ig = og (P’l - A(ATP A)—lAT) . (7.37c)

For the condition method A = 0 and Equations 7.36 become
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1}

o? (BP'l B
()

2
o2 (P

Ty

Bp~'8") ™ ppl)

(7.38a)

(7.38b)
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8. MULTIVARIATE INTERVAL ESTIMATION AND HYPOTHESIS TESTING
8.1 INTRODUCTION

In Chapter 5 we treated the problem of univariate interval
estimation which involved population distribution functions containing

only one random variable. In this Chapter we treat multivariate interval

estimation, which is an extension of the univariate concept to include
population distribution functions containing several random variables.
Multivariate point estimation was discussed in detail in Chapters 6
and 7. An example of this type of problem is the solution for the
coordinates of points in a network containing a redundant set of obser-
vations among the points. On.the other hand, multivariate intefval
estimation involves these many points or the determination of a confidence
region for these points taken all together, taken in groups, or considered
one at a time (for example, an error ellipse about a point in two dimensions,
or an error ellipsoid for a point in three dimensioné), We will develop
confidence regions for the following quantities (assuming the observations

to be normally distributed):

1) the variance factor og,

. . _ 2 2
2) ratio of two variance factors (00)2 /(co)l,

3) the quadratic form for deviations from the estimated solution

vector X when the variance factor is known:
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~ T 21,0
(-X - X) ZX (X - X) ’
4) the quadratic form for the deviations from the estimated

A .
solution vector X when the variance factor iz not known:
AA T A-.l ~ )
[x-x)7 1" X =-X)]/u.

Before we begin the Chapter proper, a brief statement on quadratic

forms is in order [Wells 1971, pp. 36-40]. A quadratic form is presented

by
XT A X =k
1xu uxu uxl
where
%1
x = |%
uxl
X
u

is a uxl vector of random variables, A is a uxu symmetric matrix, and
k is the value of the quadratic form. The quadratic form can be taken
as the equation of an ellipsoid in u dimensions; this aspect will receive

special attention in Section 8.5.

8.2 EXAMINATION OF THE VARIANCE FACTOR

2

The variance factor, 00 can be examined in terms of the estimated

residual vector V and weights P. Recall the relationship of the

covariance (;) and weight (P) matrices, namely

- 2 piL
L= oo P

and

P= G I
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The estimated variance factor 32 is computed from
.~y _ VTP
g - ]
o v

where V is the estimated residual vector and v is the degrees of freedom.

Recall for the univariate case with known mean u (Section 4.6) that

n x.,-u 2

(-
1

Note that the number of observations n equals the degrees of freedom.
With unknown mean, that is X taken as an estimator of u, the random

variable

S2 n
(n-1) =—=¢
02 1

i_i ld
(X —] > x*(a-1) ; 8-1
Note in this case that the degrees of freedom is n-~l1 instead of n as

the degrees of freedom have been reduced by one due to the fact that u

is unknown and is estimated by X.

For the multivariate case, u unknown paraméters are to be estimated,

that is
T - (%, %, % ]
1xW

The combined and parametric cases are used as the estimation technique;
in the combined case of r equations, the degrees of freedom v = r-u,

while in the parametric case v = n-u.

o8 %% v 1.

v — = = I v x2(v) , 8-2
52 52
] (e}

The probability statement for the above chi-square random variable

is
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~2
Vo
Pr ( A 9. l‘) = q
Xp = X >
1 02 b2
o
while the associated confidence interval for oi is
Vo2 vo2
[ 20 <o? < —2—0 ]
X X
8-3
[ 7'y C 2 7lpf ]
—_— O‘0 —
x2 x?2
P2 IS

The bounds of the interval are evaluated from:

1) the known degrees of freedom v,

2) the computed value of the estimated variance factor ag,

3) the tabulated values of x2, and X2p2 (Appendix B-2)
1

b
z -
corresponding toX(\))’Pl = .1_2.9. and P, = lgﬂx .

The above confidence interval is used to test the null hypothesis

2 - (.2
HO: o (0?)

The relevance of the above relate§ to the choice of the weight matrix,
that is P = Q?le. If cg is taken as unity then P = EI}. Hypothesized
values of oé may be made which implies a change of scale of the covariance
matrix %, since L= Gg P-l. It should be noted that rejection of HO
could be due to phenomena other than the incorrect scale of the covariance
matrix, that is

1) shortcomings in the mathematical model,

2) non-normal distribution of the random variables in the

residual vector.

The above two items can also be treated as null hypotheses-of course
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keeping in mind that it is only possible to test one at a time.

~ AT A
The confidence interval can as well be written for 62 or V PV as

o
follows:
) Og ~y U2
. 2 o -
[ x 1] v i-Oo =X j%2) —C'] 8-k

8.3 EXAMINATION OF THE RATIO OF TWO VARIANCE FACTORS

The ratio of two variance factors (02)2/(02)1 can be examined in

terms of two sets of estimated residuals: (a) § with a n.xn

1 X0y weight

matrix

)t
Pl= &%ZZL"

where Zlﬂand (og)l are the covariance matrix and variance factor respect-

ively for measurement set one, (b) 02 with a ngxn2 weight matrix

[ 2 -
Fo = ‘%)z Ly

where ZL and (og) are the covariance matrix and variance factor,
A

2
respectively for measurement set two.

Recall from section9.l} for the univariate case that

(nl—l) s2

(—————;g——ﬁ/(nl—l) Si/ci 4

o e = 52/02 > F (nl -1, n, 1)
(—E—=—5)/(ny-1) 2P

2
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For the multivariate case in which u unknown parameters are to be

estimated, the statistic of interest is

~2
vy (00),
( 2) ! (62) / (02)
g o / (o
( 0’1 - o)l o'1 d F(v v.)
~2 ~2 2 17 et
v, (02), (00)2 / (co)2
( )/v,
2
(00)1
that is vy = nl—u or vl = rl—u, and v2 = nl—u or v2 = r2—u for the

parametric and combined cases, respectively.

The probability statement involving the above random variable is

(82)_ / (o2)
Pr (F, < —21 °l<r )=ua 8-5
L7T(62), / (02) T P2
o’'o o’o
with associated confidence interval for (cg)g/(cg)'being
=2 2 =2
(a2),  (02), (og),
( D, < < Fp, . 8-6
~2 2 ~2
(Oo)l (00)1 (Oo)l

The bounds of the interval are evaluated from:

1) the computed values of the two estimated variance factors

(Gg)l and (62)

o2’
2) the tabulated value of Fpq and Fp2 (Appendix B-L) corresponding

_1l - _ 1+
1= 5 and P2 = > .

to F(vl,vg), P

The null hypothesis to be tested is

. (02), . (62), ]
© (og)l (cg)l H

8.4 EXAMINATION OF DEVIATIONS FROM THE ESTIMATED SOLUTION

VECTOR X WFEN THE VARTANCE FACTOR IS KNOWN

We can test deviations from the least squares estimate X of the
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parameters)(,These deviations are represented as the difference between

~

the two uxl vectors, X-X. The quadratic form (see Sections 3.1.6 and 4.10).

(%-x)T z,:el'(fux) $ 42 (u)

2
e}

Note that the variance factor o< is assumed known since

ZQ og %ﬁ s
where Qﬂ is the weight coefficient matrix computed from the design and
welght matrices. In the next section, we will introduce a test where
oé need not be known, that is its estimateﬁg is used.
The probability statement is
Pr (0 < (%-x)T

The associated confidence region is simply the argument of the
probability statement whose bound is the tabulated value XZP
(Appendix B-2) corresponding to x2(u) and p = a.

The null hypothesis is

that is if the computed value

(Rxy T 2g (R-X,) > %2 8-7

p >

then the null hypothesis is rejected.

8.5 EXAMINATION OF DEVIATIONS FROM TFF ESTIMATTD SOLUTION

VECTOR X WHEN THE VARIANCE FACTOR IS NOT KNOWN

A

The estimated solution vector X can be examined even when the

variance factor og is not known, that is only the relative variances
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of the measurements need be known and not the absolute variances. We

will use the relations:

A= a2 an s = ~2 an
X 0o QX end ZX oo QX

below.

The ratio of two chi-squared random variables divided by their

respective degrees of freedom defines the F-statistic we need, namely

(R-X) 157 (2-X)/u )
AX E} X (u)/u _Cl P (u, \))
a2 x2(v) /v
v(=2) /v
0.2
(@]

(i—X)%&/oé)Q%l (X-x)/u  (R-x) @y (R-%) o2
i A2 g2
62 " % %
02
o] AT Al
(X-X) %é (X-x) a
= > R(w, V)

The probability statement involving the above random variable is
x0T 55 (%=x)

Pr (0 < X <F ) =aqa 8-8
£ a =%

while the associated confidence region is given by
(R-x)" §§l (X-X)

[0= - 5_Fp ] 8-9

The bound of the region is computed by table look-up of Fp (Appendix B-k4)
corresponding to F(u,v) and p = o. The limits of this confidence region are given

by the equation of the hyper-ellipsoid,

SN P R
(X-X) Zﬁ (X-X) = u Fp , 8-10
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where u FP is the constant of the hyper-ellipsoid. Note l-o is the probability

that this region does not include the true value X.
If the origin of coordinate system is translated to correspond to
the position described by the vector ﬁ, then the above equation becomes

T

Wit x = wE . 8-11

Sa
X P
In two dimensions u = 2 and

T acl ~
X 8 X =2F

1x2  2x2 2x1 p

o o} X
x. x,] |+ 2 H -2r 8-12
e G 81 X P
21 2 2
is the equation of an ellipse.
Similarly in three dimensions
83 ox =3 Fy
1x3 3x3 3x1
2 5 6 T [
1 12 13 1
o 52 5 = -
[k %y x3) | oy 05 0yg *2 3% 8-13
6, 5., o2 x
31 32 3 3

is the equation of a tri-axial ellipsoid. DNote that in the above two
examples, the equations will contain cross product terms since the off
diagonal elements are non zero. An equation without cross product
terms can be found by rotating the coordinate system through a special
angle 0, where 6 is computed from the components of one of the eigen
vectors [Wells 1971]. The eigen vectors give the direction of maximum
and minimum variances, the latter are the eigen values. For example

after performing the eigen value problem on the two dimensional case
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above, the equation for the limits of the confidence region is given by

the equation

~ -1
2 )
qmax 0 yl
' 2
0 qhin Yo

where (yl,ya) lie along the axes of the rotated coordinate system defined
by the eigenvectors of ii;.

To summarize the results for this confidence region, first the origin
of the coordinate systém was translated to the position given by the
vector i, and secondly this coordinaté system was rotated bhrough an
angle 6, given by the eigen vectors. Tests of hypothesis are made by

considering the null hypothesis

H: X=X, ,

that is, if the computed value

(F-x) i3 (R-x)
u z FP ?

thén the null hypothesis is rejected.

8.6 SUMMARY OF MULTIVARIATE CONFIDENCE REGIONS

Table 8-1 summarizes the multivariate confidence regions
discussed in this Chapter. The first column of the table gives the
quantity examined, the second indic¢ates whether the variance factor is
assumed known, the third gives the statistic or random variable upon
which the confidence region is based, and finally the fourth column

gives the confidence region itself.
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9. PARTITIONING THE MATHEMATICAL MODEL

Not all problems in least squares estimation can be conveniently

represented by the combined method mathematical model of Chapter 7T
F(X, L) =0 .

The additions to this model which can and have been made are
innumerable. These "additions" are in fact really different schemes for
partitioning the above mathematical model. In this Chapter we will
consider four of these partitioning schemes, and subject each to the
three steps of Chapter T7: Linearization, formation of the normal
equations, and derivations of expressions for estimators.

We will illustrate the use of each of these four additions by con-
sidering their application in positioning by satellite. We will assume
that observations L have been made on satellites from one or more ground
stations by some means which we need not specify here. These observations
are related both to the ground station coordinates and to the satellite

coordinates, which together make up the elements of X.

9.1 ELIMINATION OF "NUISANCE'" PARAMETERS

If we are not particularly interested in the satellite coordinates,
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except for their role in determining the ground station coordinates, we
refer to them as "nuisance'" parameters. We want to eliminate them from

the solution, so we partition X into the ground station coordinates,

denoted by Xl’ and the satellite coordinates, denoted by Xg‘ Then our
mathematical model is
F()“cl, )’(2, L)=0 , (9.1)
where
il = Xi + X,
ig = X3 + X,
L =L +v

and the observations L have weight matrix

= g2 5t
P 00 ZL

We linearize by replacing F(il, X5, L) by its Taylor's series linear

approximation, expanded about the initial approximations X; and XZ and

the observed values L.

oF oF JF

F(X,,X,,0L)=F(X°,X°,L)+— X+ — X, + — V=0
e X S 2 o
1x2,X5,L 2[x3,%3,L X$,X3,L
or
+ = .
W+ AX +AX,+BV=0 , (9.2)
where the misclosure vector W = F(X°, Xg, L) and the design matrices
ay - B o emane .
%y X9, X3, L Ky X2 ,X3,L oL X9 ,X3,L

This mathematical model is equivalent to partitioning the A matrix
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and X vector in the linearized combined method mathematical model
W+ AX+BV=0
such that A = [AEA ] X = Xl and A and A X. are conformable for
1hol X, w1 3o
multiplication.

The normal equations are derived by setting

VT P V = minimum (9.3)
under the constraint
W+ AX) + AKX, + BV =0 . (9.4)

The variation function is

AT ~ AT ~ A ~
=V + + + AX +BYV
¢ PV + 2K (W AX) + AX, ),
where K is the estimator for the vector of Lagrange multipliers.

Setting the derivatives of ¢ to zero we have:

3%— =2V P+ 2K B =0
oV
or
Ao
PV+B K=0 , (9.5)
29 - ok"a =0
X 1
1
or
AI K=0 |, (9.6)
3 - oxfa =0
aX 2
2
or
Ag K=0 . (9.7)
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The normal equations are

~ A I
P BT 0 0 v 0
B 0 A2 Al K w
T ~ + = O 9 (9'8)
0 A2 0 0 X2 0
T ~
'_O Al 0 O._J -XL th

which can again be seen to be a partitioned version of the normal equations

for the combined method

I L v 0
B0 A k| + {w| =0
o AT o X 0

B b ] 1
-1.T
~-BP "B A, A K W
AL 0 0 X +l0o] =0 . (9.9)
2 e
. R
A 0 0 | | X)) | 0]

Eliminating K from Equation 9.9

T, -1 _T.~1 T, -1T,-1 " T, -1.T.-1
;A2(BP B7) A2 A2(BP B™) Al X, AQ(BP BY) "W
+ = 0.(9.10)
T, =1 _T\-1 T, ~1.T,-1 - T, -1.T,~
Al(BP BY) A2 Al(BP B™) Al Xl Al(BP B7) Ly
Rewriting Equation 9.10 in simpler notation
Noo Nop X, Us
+ = 0 . (9011)
N N X U

12 11 1 1
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where
T\-1
)

=
1

= AT(pp tBT) .
1 J

ij

c
I

= A?(BP_lBT)—lw

FEliminating X, from Equation 9.11

>
~ 1 -1 1
Xy == (N = NN oWy ) (U = NN 00,) (9.12)
From the first of Equations 9.11
Nop X5 + Ny Xy + U, =0
or
X = - N> (N X. + U ) (9.13)
> op WMoy Xy +Ux)

From the first of equations 9.9

-1 T~ . o _
-BP B K+A2X2+A1X1+W~O

or
1,01, 2
)

K= (BP~ B (A%, + Alx1+-v/) (9.14)

From the first of equations 9.8

>
3

or

>

i
.
H

v=-prpalg . (9.15)

The estimators for the total solution vectors are given by

2 0.3
Xl Xl + Xl
X =3X° +X

2 2 2
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9.2 ADDITIONAL OBSERVATIONS

If both ground and satellite coordinates are of interest then the

mathematical model is again

F(X, L) =0
However let us assume that we have two sets of observations from the same
ground stations. These may be separated by time ("o0ld" and "new"

observations) or by technique (two different kinds of observations). The

mathematical model now is

Fl(X, Ll) =0
. (9.16)
F2(X9 LQ) =0 ’
where
X=X°+X
= .
Ll Ll Vl
L2 = L2 + V2 .
and the observations Ll have weight matrix Pl = cg Zgl and L2 have
1
-1
P =021 " .
2 o L2

)

We linearize by replacing the functions F. (X, ﬂl) and F2(X, ig

1

by their Taylor's series linear approximations, expanded about the

initial approximation X° and the observed values Ll and L2

) . oF, oF
) = Fl(X , Ll) + —= X + — vy
ok yo 1, oLy Ixo 1,

1
o

F_(X, El

1 1
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3F2 8F2
FZ(X’ L2) = F2(X°, L2) + — X + — V2 =0,
X : oL
X°,L2 2 X°,L2
or
wl+Alx+BlVl=o
(9.17)

W, + AX+B\V, =0 ,

2 2 22

- - o - o
where the misclosure vectors Wl Fl(X , Ll) and W2 F2(X , L2) and
the design matrices
oF oF oF oF
Al = _:l , AQ = _:g , Bl = —:l , and B2 =
X oX oL oL
X, L, X°,L, 1x°,1, 2|x°,L,

This mathematical model is equivalent to partitioning the A and B

matrices in the mathematical model

W+ AX + BV = 0,

so that

A= and

which is the same as Equations 9.17T.
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The normal equations are derived by setting

o
<< >

P

VPV = [VI Vg] = VP V. + VTP V. = minimum

under the constraints

Wl + AlX + BlVl =0
+ + =
w2 A2X B2V2 0
The variation function is
AT A
= + + +
¢ V P Vl V2P2V2 + 2K1 W A X+B Vl) + 2K,2(W2 A2X+B VE) ,
where K = ~ is the estimator for the Lagrange multipliers.
K
2
Then
% = ovTp 4 okTB. = 0
a7 171 171
1
or
P.V. + BIK, = 0
1'1 171 >
Qg—' 2VTP + 2K B, =0
5V 22 22
2
or
P V + BTﬁ, 0
22 22 ?

i
(@)

39 _ T o
Bi 2K1Al + 2K2A2

(9.18)

(9.19)

(9.20)

(9.21)
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or

T T
AJK, + AK, =0 . (9.22)
The normal equations are
~ T - [~ 7 r -
Pl 0 Bl 0 0 Vl 0
0 P 0 BT 0 G 0
2 2 2
B, 0 0 0 A Kyl + [ W] =0, (9.23)
0 32 0 0 A2 K2 W2
T T S
| O 0 Al A2 0 | | X ] L O]

which are a partitioned version of the normal equations for the combined
method of Chapter T.

Eliminating V., from Equation 9.23

1

[p 0 BL 0] FG 1 [ 0]
2 2 2
~1.T ~
0 -B,P"B, 0 A K, Wy
. + =0 . (9.24)
B, 0 0 A, K, W,
T T »
0 A A, 0 ] | X | | 0]
Eliminating V2 from Equation 9.2k
o -1.T - 5 ro
-B,PI"B] 0 A K, W,
-1.T - _
0 -B,P, B, A, K| + |W,| =0. (9.25)
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Eliminating Kl from Equation 9.25

-1.T -
-B,. P B A K W
22 72 2 2| . 2 = 0
T T, _~1_T,-1 - T -1.T\-1
A2 Al(BlPl Bl) Al X Al(BlPl Bl) wl
R (9.26)
Eliminating K2 from Equation 9.26
T -1.T\-1 T -1.T\-1, \3 T -1_T,~-1
(Al(BlPl Bl) Al + A2(B2P2 B2) AQ)X + Al(BlPl Bl) wl
T -1 T\-1. _
+ A2(32P2 B2) w2 =0 |,
or
o T -1_T,-1 T -1, 17 \-17.T -1_T\~1
x=- (Al(BlPl By) "A) + AL(BP, Be)Az) Ay (ByPy7By) "Wy
T -1_T,\~1 )
+ A2(B2P2 Bg) W) - (9.27)
From the first Equation of 9.26
5 -1_T,-1 o
K, = (B2P2 32) (A2X + wg) . (9.28)
From the first Equation of 9.25
s -1_T,-1 o
K, = (BlPl Bl) (AlX + wl) . (9.29)
From the first Equation of 9.23
V,=- P BK, . (9.30)
From the first Equation of 9.23
v. = - pTi8Tk . (9.31)
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The estimator for the total solution vector is

~

T=x0+x . (9.32)

9.3 ADDITTONAL CONSTRAINTS BETWEEN UNKNOWN PARAMETERS

Assume we have knowledge of some relationship between the unknown

parameters other than that contained in the mathematical model

F(X, L) =0
(for example we know that the satellite coordinates all fall on an
elliptical trajectory). If this relationship is represented by a math-

ematical model

F(X) =0

then the complete relationship between X and L is specified

F(X,L)=0
* (9.33)
F(0) =0
where
X=X +X
L=L+V
and the observations L have weight matrix P = og Z;l .

We linearize both Fl(i, L) and FE(X) by replacing them by their
Taylor's series linear approximations, expanded about the initial

approximation X° and the observed values L

o oF oF
Fl(X, L) = Fl(X°, L) + — X + — V=0
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or

W, + A X+ BV =0

1 1
(9.3k)
W2 + AEX =0,
where the misclosure vectors Wl = Fl(XO, L) and W2 = F2(X°) and the
design matrices
oF oF oF
Al = —:l- . A2 = _:2_ , and B = —
% |yo 1 X | o oL (yo g

This mathematical model is equivalent to partitioning the A matrix
in the mathematical model
W+ AX + BV =0

so that

A= and setting B =
A2 0 0

and W must be also partitioned, giving

W Al B (0] I
+ x + V =0 R

which is the same as Equations 9. 34
The normal equations are derived by setting

GTPG = minimum (9.35)

under the constraints



1Lh

=
+
=
>
i}
(@]

The variation function is

o=V
~ K1
where K = R
K2
Then
or
or

R A N
PV + 2K1(Wl + AlX

is the estimator for

99 - oyTp 4 2K_EEB= 0
3V

PV + BTKl =0 ,

A

2 - 2KTA + 2KTA =0
X 1

T T
AlKl + A2K2

1]
(@]

The normal equations are

P B
B 0
0 A

K 0

- T
+ BV) + 2K2(w2 + A

the Lagrange multipliers.

(9.36)
EX) s
(9.37)
(9.38)
= 0 . (9-39)

which are a partitioned version of the normal equation for the combined
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method of Chapter 7.
Eliminating V from Equation 9. 39

r -

~Bp BT A 0] ﬁl [ W |
Af 0 A; X + |0 =0 . (9.40)
| O Ay O] -ﬁz- | Yyl
Eliminating ﬁl from Equation 9. 40
Arf(BP'lBT)‘lAl Ag X Ai(BP"lBT)'lwl
. + =0 .(9.41)
A, 0 K, W,
Eliminating i from Equation 9.41
- AQ(AT(BP“lBT)'lAl) lAgKQ +
(w2 - 2(A$(BP tpTy- lAl)'lAf(BP ety 1y l) =0,

or

K_ = (A (AT(BP lBT)—lAl)—lAg)_l(W -A (A (BP™ -1 T) 1y )'lA )BP“lBT) lwi).

2 271 2271 1 1
. . (9.42)
From the first Equation in 9. .41
X = (A (ep18T) ™A ) l(A K, + A (ep~18T) lwl) (9.43)
From the first Equation in 9. 40
A ~1T-1,, 2
K, = (B UBT)T(AX + W) . (9.4k)
From the first Equation in 9. 39
v =-rpigTk . (9.45)

1



146

The estimator for the total solution vector is

A

X=X+ X . (9.46)

9.4 WEIGHTING UNKNOWN PARAMETERS

One tacit assumption which we have made all through these notes is
that the mathematical model itself is complete - that is it perfectly
represents the relationship between the unknown parameters and the
observations. In many simpler and well established applications of least
squares estimation this is no doubt true. However for very complex
relationships, and particularly in new applications where the relation-
ships may not yet be fully known, this is not a valid assumption to make.
For example in the previous section we assumed that satellites follow an
elliptical trajectory. 1In fact the trajectory is only approximated by
an ellipse, so that in this case our mathematical model was incomplete.

One way in which to incorporate this uncertainty into the least
squares estimation process is to treat the unknown parameters not as
completely unknown, but as partially known. That is our "initial
approximation" X° is no longer the arbitrary thing it used to be, but
is now a "preliminary estimate". And rather than having infinite a
priori variances, we assign a priori variances to
this preliminary estimate X°, which reflect the uncertainties we feel
might exist in the mathematical model. What this accomplishes in effect
is to assert that the resulting least squares estimates for the unknown
parameters must fall within the limits specified by these variances of

the preliminary estimate. In other words the unknowns have become
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"pseudo-measurements" .

In practice this means that our mathematical model

F(X, L) =0, (9.47)
where

X=%x°+X

L=L +V
will have a linearized form

W+ AX + BV = 0, (9.u48)

but that the "residual vector" is now

¥

and the weight matrix is now

P 0
P = v
0 PX
where
- 2 s
PV OO ZL 9
and
= o2 571
PX O'O zxo

(Zxdbeing the a priori covariance matrix of the unknowns).
This mathematical model is equivalent to partitioning the B matrix
in the condition method mathematical model
W+ BV =20
so that
B =[B 4]

and
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W+ [B A] [V]=z=0 , P = .
X

The normal equations are derived by setting

\ T ' A A ap
" P | =VPV+ XP.X = minimum (9.49)
v X
X
under the constraint
W+ AX + BV =0 . (9.50)

The variation function is

T

¢=VPV+XPXX+2KT(W+AX+BV),

~

where K is the estimator for the Lagrange multipliers.

Then
2 - 2VTPV + 2K'B = 0
v
or
 + BK = (9.51)
PV +BK=0 , 9.5
3 _ 2XTPX + 2KTA = 0
aX
or
. .
P X+ AK=0 . (9.52)

The normal equations are
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o U r A~ - -
P, 0 B v 0
7 N
0 P, A x{ + ol =0, (9.53)
B A 0 | | K | | W

which are a partitioned version of the normal equation for the condition
method of Chapter T.

Eliminating V from Equation 9.53

Py A X 0
+ =0 (9.5L4)
A —BP\;lBT K W

Eliminating X from Equation 9.5k

= (13:9'113T + AP’lAT)K +W=0
v X
or
K = (BP;lBT + AP}ZlAT)_lW . (9.55)
From the first of Equation 9.5k
X = - P;(IATK . (9.56)
From the first of Equation 9.53
V= - P;lBTK . (9.57)

These expressions are unsatisfactory however, because they should reduce

to the simpler expressions for unweighted parameters by merely setting

However in that case PX is singular and PX does not exist. There-

fore we will reformulate the normal equations in such a way that our
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expressions will not include PX , that is
T ~
PV B 0 v 0
B 0 A K| +|w| =0 (9.58)
T ~
0 A PX X 0
Eliminating V from Equation 9.58
—BP;lBT A K W
+ =0 . (9.59)
T ~
A PX X 0
Eliminating K from Equation 9.59
e, + at(ee-teT) talx + AT eT) = 0
X v \')
or
x = - (o, + a7 (sp7'8")™a) ™ A" (me ") (9.60)
and
K = (BP;lBT)-l (AX + W) (9.61)
v = - PIBK (9.62)

and the final estimator for the weighted solution vector is

~

=30 +%x ° (9.63)
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10. STEP BY STEP LEAST SQUARES ESTIMATION

As mentioned in Chapter 1, even the largest fastest digital
computer is incapable of simultaneously solving systems which may
incorporate several thousand equations. In this Chapter, the problem
of chopping a large system into smaller systems is discussed. We will
take it for granted that any chopping scheme must yield the same final
result as would have been obtained from a simultaneous solution.

Step by step least squares estimation is not a new concept [see for
example Tobey 1930; Tienstra 1956; Schmid and Schmid 1965; and Kalman

1960]. It has gone under many names, some of which are differential

adjustment, phased adjustment, sequential adjustment and Kalman filtering.

There are differences in detail between some of these methods, but
basically they all involve the derivation of expressions for the current
least squares estimate in terms of the previous estimate plus a
"ecorrection" term, using the rules of matrix partitioning.

In this Chapter, we will not attempt to be exhaustive, but will
derive a sequential expression for the solution vector X following
Krakiwsky [1968]. We will then show this result to be equivalent to
the Kalman filter equations for the case where the unknown parameters

are not time variable.
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10.1 SEQUENTIAL LEAST SQUARES EXPRESSIONS

We will consider the parametric mathematical model
FX) -L=0 ,

which when linearized becocomes

AX -V + W

i
(@)

Applying the least squares criterion

QTP ﬁ = minimum,
we obtain the normal equations
P I 0 i 0
-1 0 A k| + |w| =0 10-1
o A" o X 0

We now partition the system into the previous set of equations
(quantities subscripted k-1) and those that have just been added to
obtain the current estimate (quantities subscripted k). Note that P, A,

W, V and R are partitioned because there are new observations and thus

A~

new equations, however X is not partitioned because it is assumed that

the new observations are related to the same parameters.

~ ' - - ey B -
P, o I -I 0 ' 0 Vi1 0
|
0 P I 0 ;I | 0 Vi 0 1022
- — = _; - - =g - - ~§__ -
-1 0 | 0 0 | Ay 1 * w4 =0
l ~
- [
0 I 0 0 ' A K, W,
T T e o
e o | Ay Ae 0 O X 0 |

kel the estimate obtained only when the previous

We will denote by X

We will denote by X

observations are used. the estimate obtained when

k
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all observations are used. The problem now is to find a sequential

~

expression for Xk'

The first step is to find the previous solution by setting

Pk = Ak = Wk = 0. The normal equations then reduce to
Pk—l -1 0 Vk-l 0
-1 0 ] K| o+ | Me-1| =0 10-3
T A
0 Akml 0 Xk~l 0

and the solution is

e = -} -
Xk—l Jk—l Uk—l 10-ha
¢ Poa L% o ew ) o
= + -
Kk~l k-1"" k-1 Xk~l k-1 10
7 AR W 10-k
Vicr T Ay fer P o e
where
-1 T -1
I = P “)‘
Ny (Ak_l P 1 Ak_l) 10-kd
U - W 10-lke
k-1 k-1 "k-1 k-1
Next we rearrange the current system, equation 10-2
- - R - -
P, O I 0 0 [V, 0
0 Pk 0 0 -I Vk 0
-1 0 0 Ak-l 0 Kk~l + wk_l =0
T T - 10-5
0 0 Ak—l 0 A Xk 0
0 I 0 A 0 ‘% W.
L k i Lk L k]

Eliminating § and ﬁk from equation 10-5

k-1
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-1 N
‘Pk—l Ak~l 0 Kk—l wk—l
T T ~
+
Ay 0 A X, 0
-1 A
0 Ay "Pk K Wy
Eliminating kk_l from 10-6
T ~
N1 A o Ut
A pt K ’ W -’
k k k k

Eliminating Xk from 10-T7

-1 -1 .7
—(Pk + Ak Nk_l Ak)

but from equation 10-lLa

Therefore

- -1 -1 T\-l,, . s
= (P, 7+ N 2 +
_K ('h Ak ]kml Ak) (Ak Kk—l wk)

From the first of equations 10-T

N, ik + Ai kk +U_, =0
or

X, = "N;il U1 Niil T K,
or

X =% -n' ATk

k k-1 k-1 "k k

or

10-6

10-7

10-8

10-9

10-10



155

To find a sequential expression for the covariance matrix of the estimated

solution vector, we have from equations 10-8 and 10-9

'
o k-1
X, = [cl 02] ,
.k
where
, -1
_ -1 T 1 -1 T
Cp =T -Ny A (Pk Ay N1 Ak) By
c.o=-nt Al (et et T)—l
2 k-1 Ak k k k-1 Ak -
By the covariance law
-1 T
N Nk-l 0 Cl
0 Pk C2

1T 1T
SO N LGP R C s

where we have ignored the variance factor and set

-1
N ;=Zf~
k-1 Xy 1
-1
P = I .
k Y

Multiplying out

-1 _ -1 N I R | S N |
N = My - M A Bt A M A A Ty Hfro-Le

And lastly from equation 10-10

N PSP S '
VPV =K PUK . 10-12

We will now compare equations 10-8, 10-9 and 10-11 with the Kalman

Filter equations, as given for example by Sorenson [1970].
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10.2 THE KAIMAN FILTER EQUATIONS

For a broad class of problems in electrical engineering, usually
called "optimal control problems'", not only does the estimate of the
"state-space vector" (analogous to the unknown vector X in these least
squares estimation notes) change as new data becomes available for
least squares estimation, but also the actual value of this vector
itself changes with time. Therefore, in optimal control problems there
are two time dependent factors - the actual value of the state-space
vector is changing continuously, and new observed data is being accumulated

continuously from which new estimates of the new value of the state-

space vector can be made.

During the past ten years, the big news in optimal control has been
the Kalman filter [Kalman 1960].

We will noW review Kalman's equations (using optimal control
notation) and then simplify the equations by dropping the time dependence
and rewriting in our notation.

The time dependence of“the state vector is expressed by the math-
ematical model

= +
S S I

10-13
where x is the state-space vector (solution vector),
®k+l, K is the transfer function between kth and (k+1)th states
(plant model),
{wk} is the plant white noise sequence (residual vector).
The linearized mathematical model between the state vector and the

measurement data is expressed by

= -+ —
Z Hk X vV 10-1k
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where z, is the measurement vector (misclosure vector),

Hk is the design matrix,

{Vk}is the measurement white noise sequence (residual vector).

The covariance matrices of W, and V. are denoted Qk and R

k k k

respectively. The Kalman least squared estimation problem can now be
stated as follows: defining the estimate (not necessarily least

squares) of the state xi found by using all data Zq» Zl e . Zj as

X. .., the problem is
i/3 P

a) to find the least squares estimate X of the current

k/k

state x, using all data up to and including the current set z

k k)

b) to express this estimate only in terms of the current

measurement z. and the previous best estimate x

k k-1/k-1

c) to ensure that this solution is as rigorous as that

7. simultaneously.

obtained by processing all the data Zgs By v e By

In the absence of new data the predicted estimate is

e /k-1 = Yk, k-1 Fko1/x-1 10-15
The Kalman equations can now be stated as
B ™ % el fkermer T K DEcHp O g Ropgpop110-16
_ T T -1
Kk = Pk/k—l Hk (Hk Pk/k_l Hk + Rk) 10-17
P = 0 P T 10-18
k/k-1" %k, k-1 Tk-1/k-1 %k, k-1 T -1
Pk = Pr/k-1 K, 5 P k/k-1 ° 10-19

where Kk is the "gain matrix",

Pk/k 1 is the covariance matrix of the error in the predicted

estimate ﬁk/ki’

P is the covariance matrix of the error in the least squares

k/k
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estimate Xk/k'
Dropping the time variability of the state vector means we can

ignore equations 10-13, 10-15, and 10-18 above. For the rest, the

notation conversion is

Kalman These notes Kalman These notes
“x Wy *k/k *x
-1
Hk Ak Pk/k Nk
-1
N
*k X P k-1 M1
Vi —Vk Kk no equivalent
R P-l no equivalent K
k X 4 X

Rewriting equations 10-16, 10-17 and 10-19 in our notation:

xk = xk_l - Kk (wk + Ak Xk_l) 10-20
K = n 7t Al (antoal s P'l)"l 10-21
k= Vet Mkt Rk

11 -1

=T - K AN 10-22

which can be seen to be equivalent to equations 10-8, 10-9 and 10-11,

although the definition of Kk is different in the two cases.
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APPENDIX A

NUMERICAL EXAMPLEX

A.1 Statement of the Problem:

An observer on a plane surface measures the directions to distant:
landmarks whose coordinates are known. The observer is close to the
origin of the coordinate system. The values of the measurements made
are tabulated in Figure A-1. All observations have a standard deviation
of 0.1 degrees. The mathematical model relating the measurements to

the unknown parameters is

where (xo, yo) are the unknown observers coordinates, (Xi’ yi) are the
known landmark coordinates, a, are the measured directions from observer
to landmarks, and z is an unknown orientation angle between the measure-
ment coordinate system and the coordinate system to which the landmark
and observers coordinates are referred. See inset in Figure A-1.

We will use units of radians and meters in our example. Then

E = L + V where

— - -~ —
al 26.704k7 % w/180
L = = in radians
% 168.6730 . % m/180
o - e ol

and

¥data taken from Bennet, J.E. and J.C, Hung (1970). "Application of
Statistical Techniques to Landmark Navigation'". Navigation Vol. 17,
No. 4, page 349, Winter.
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LANCMARK MEASURED DIRECTION
No. x (km) v(km) (degrees)
1 2 1l 26,7047
2 A -2 -26.5795
3 -2 8 103.8340
A -5 -2 -157.9978
5 6 8 53.1393
6 2 5 68,2511
7 -6 6 135.0673
8 5 -6 -50,3190
9 -6 -10 120,873,
10 -5 1 168,6730

ILLUSTRATIVE EXAMPLE _
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v, ]
V = where the vi are in radians
|10
and we will choose
0 X
[¢)
X° = 0| so that X = X = Y,
0 A

where (xo, yo) are in meters and z is in radians. Finally ZL = g2 I

2 . . 2
where o2 = (0.] & m/180)° in radians®, since we have assumed all observ-

ations to have the same standard deviation (0.1 degrees).

A.2 Linearization of the Mathematical Model:
We can use either the combined or parametric method. Using the

- combined method, the ith equation is

£ (X,0) = tan(a, + 2) = ————— =0
i i _

where the (xi,yi) are constants and thus unbarred.
After linearization this ©becomes AX + BV + W = 0 where the ith rows of

A, B and W have the form

of . of. of . -y, ]
i i i _ i 2
A = : : = | = ; = 3 sec” a,
1 5% 8y oz x.° .
o o X°,L i 1 B
afi of . o T
B, = — e = = 00O0seca, 60O
* 9a 9a +
i 10] |x°,L 4

ith column.
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N' <
xP.

=

W, = f£.(X°, L) = tan o. -
i i i

Using the parametric method we rewrite the model as

- yi_yo -
ui = arctan I - Z
X, - X
i o
from which
_ . Vi - ¥ -
f.(X) - L, = arctan 2 %) _Z-a =0
i i - i
X, - X
i o)

and after linearization we have AX - V + W = 0 where the ith rows of A

and W have the form

Yy
W. = f.(X°) - L, = arctan{ —]| - a.
i i i X, i

The parametric method was used to produce the computer printouts

which follow.

A.3 ‘Solution

The nonlinear mathematical model

F(X) -L =0
has been linearized about the initial approximation X° and observed

values L to give the linearized model
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— + ]
1083 351 71071 Y 10" T O

with weight matrix of the observations (assuming og = 1)

_ -1
= g2 7L .
10510 = % = 5:-L

Matrices X°, L, A, W and P are shown in Table A-1.

The least squares estimators are:

A
_ T =1 T

Xy = - (A7PA) = ATPW
2 _ o . ~
3X1 X X

19V T A+ W
fo=1+%

1071 T
"o VIpy _V'py
o n-u T
Iy = g2 (ATPA)”l

Matrices X, X, V, L, and Zi are shown in Table A-2

These results may be summarized as follows:

a) The solution vector is

‘xo 0.63 meters
3X1 = yo = -0.25 meters
z -0.32 x 107> radians =-1.1 arcminute

~

b) The variances (diagonal elements of Zi) are
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P = 328 280.635 lOI

10

SIS R

TABLE A-l

! 1
RCw 1 0.0
RCW 2 0.C
RCw 3 O.C
10 Ll

1
RO 1 DeECIEH4CLTOL 20
RCW 2 ~0.4EZECCTEELEST CC
RC W 3 0.181ZZ4S17€C <1 |
RCWw 4 ~0,27S7S81EZ21C C1 !
RCW S 0,9274557472C CQ
FCWw 6 0.11G12C€413C C1
RCw 7 Qs23E7Z€ECSCS7L C1
RCw 8 —Qe87EZIZZZE3ZC C2
RCw 9 _ —0,21CSEZEECEBL 01
RCw 10 0e2G643ECC2(SC C1

10 As

1 z 3
RCw 1 Q0.2CCCLCCLCCOC—-23 ~CeaCCCLCCCCCOD-C2 —-Ce1CCCCOOQCOLC 01
RCw 2 —-0esl1CCCCCCCCOLC—-03 ~-Ces200CCCC0OCCC—-023 —-Q.1030CQA0CQA0CLC 01
RCw 3 Q0e117€47CEECELC~C3 Ce2G4117€471C—-C4 —-C+10CCC000GCOC 01
RE W 4 —NeEACECCL1TZ240-04 Ca1774177G6Z10~03 —C«.1CCCCCAC2CL 01
RCW 5 0e.8CCCCCICCCCC—-C4 —-CeECICCCCONR0OLC~C4 -Ce«1QCC000000OC Q1
RCW [5) Qe 17c4127<S21C~C3 —~CeEBCEST1724C~04 —-0.1CCCCOQCOOLC 01
RCw 7 0e82Z2Z23Z2Z2C-C4 CWEZZ2Z2Z2Z22C~-Co —C+10CCCOQCQO0C C1%
RC 8 ~0.S826CECETLE~Ca ~C81G6£7213211C-04 ~C«10C0O0000000C 01
RCw S —0.72C2%4117€6LC—-C4 Celd4117€47CELC—-CH4 —Ces1CCCCOOCCOLC C1
RCW 10 VDe2BAEN1C2ELELC—-CA CelGZ3C7€SZ23C—-C3 —-C«1CCCCOGQOCOLC 01
- 10 M :

1
RCw 1 ~0e24Z27221757C—-C2
HCw 2 0.25217SEZZCC~-23
RCWw 3 0,252G£144C€EC—-C2
RCw 4 ~0e32€C445CE7CC~-C2
KCw S ,"‘OcICCEZC,ZC:‘QC—CB
KCw 6 —0eGl1EBLEZ4ZEAN-C2
RCw 7 -0.11746C6557E“C2
FCWw 8 0.2174175712C-02
RCw 9 -Ds1577Cl1EGESC-C2
RCW 10 Q2678 €E4C2ZEC—~C 3




1
FCW 1 De€3Z1CZ412EC CO
RC W 2 —0.28523642427C 30
RCWw 3 =0.3z:1C7C4EzC=Cc3
A
X,
3 1
RCWw 1 Ose2Z16Z2412€C €O
®RCW 2 ~0.2523642427C C3
RCW 3 SOVIFZIC7C4ASZT=T3
A
‘ lovl ,
RCW 1 ~0e.1E87€2€252EC—02
RCw 2 0+56144E1CESL—-C3
RCw 3 0.3C1€5C1421C-C2
RCW 4 —0.32€GEZ23CzC~-C2
RCw 5 0.227276G783C~C3
RCW =~ 6  =0.46777E5GSEC-C3
RCw 7 -0.82C7€6zecEL-C3
RCWHE Jeuu~po.?4546895ooc—oey
RCw. —0e¢1312€6C=3224C~C2
RCw 10 0.SCSECTTIRISC—C3
FaS
10 N i
‘v i ‘ 1
RCw 1 NDe4E41S7212SC CC
RCWw 2 —0e48ZZ2E2424C CN
N 3 e l8 10141272 51
RCw 4 ~0.27€E0GES13ZE4C C1
RCw s ND.SZ2TEERL2420 €O
RCW 6 0.11GC7ZEEZEC N1
RCW 7 04232565 4€Z20C 01
RCw 8 —0.8757i/EZ€EELC CC
RCw 9 -2.211CCSS1413C %1
RCWw 10 De2GC44SSCLT70 C1 k
012794507540 (7 —mmmm VTPV A o
Ce 1EZ77EE67G10 C1 0‘3
) ~
5
3 X3
1 2 32
RCw 1  0.53C7141624C €2  C.1645C1zZ4€C _C2 Cs15€0174413C-02
RCw 7 2777 TT0.104561224€C 02 Ce21722€75Z21C 02 ~CeZ2614560551C—~03
3 O 15EC174413C-C2 ~CeZE145€6CEE1D-C3 C+€15102021€C-0¢€

RCWw

TABLE A-2
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Gi = 53 meters2
o
GZ = 21 meters2
yo
9% = 0.62 x 10-6 radian82

¢) The standard deviations are

A
o = T.3 meters

x

0

A

o = W.6 meters

Yo
A

g, = 2.6 arcminutes

d) The 95% confidence interval for the a priori variance factor is

VRV P VPV
2 - - 2
X0.975 X0.025
or
12.79 5 _ 12.79
[16.01 29 271,69 ]
or

[0.80 < o2 5_7.6] .

Therefore the hypothesis

is not rejected.
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APPENDIX B

STATISTICAL TABLES

taken from Natrella, M.G. (1966). "Experimental Statistics", U.S.
National Bureau of Standards Handbook 91.



TABLE B-1.

CUMULATIVE NORMAL DISTRIBUTION ~ VALUES OF Pr

170

Values of Pr corresponding to ¢ for the normal curve.

The value of Pr for (-c) equals one minus the value of Pr for (+c).

Cv 00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359
A .5398 | .5438 5478 | 5517 | .B55T | .5596 | .5636 | .5675 | .5714 | 5753
2 5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141
.3 6179 | L6217 6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517
.4 | .65564 | .6591 .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879
.5 | L6915 | 6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .T190 | .7224
6 | LT2587T | 7201 7324 | 7857 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549
4 7580 | .7611 1642 | L7673 | (7704 | (7734 | 7764 | .T794 | 7823 | .7852
.8 L1881 | .7910 7939 | L7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133
.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389
1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .853 .8554 | .8577 | .8599 | .8621
1.1 .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830
1.2 .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015
1.3 .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177
1.4 | 9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319
1.5 L9332 | L9345 9357 | L9370 | .9382 | .9394 | .9406 | .9418 | .9429 | 9441
1.6 L9452 | .9463 L9474 | L9484 | L9495 | (9505 | .9515 | .9525 | .9535 | .9545
1.7 | .9554 | .9564 L9573 | L9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633
1.8 .9641 | 9649 | 9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706
1.9 | .9718 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767
2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817
2.1 .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857
2.2 | .9861 | .9864 | .9868 | .9871 9875 | .9878 | .9881 | .9884 | .9887 | .9890
2.3 9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916
2.4 | 9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936
2.5 .9938 1 .9940 | .9941 .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952
2.6 L9953 | .9955 | 9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964
2.7 L9965 | .9966 9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974
2.8 9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981
2.9 .9981 9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9936
3.0 | .9987 | .9987 9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990
3.1 29990 | 9991 .9991 9991 L9992 | L9992 | .9992 | .9992 | .9993 | .9993
3.2 .9993 | .9993 9994 | 19994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995
3.3 L9995 . .6995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997
3.4 | .9997 % L0997 | L9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998
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TABLE B-2. PERCENTILES OF THE x2 DISTRIBUTION

Values of sz corresponding to Pr.

\) X 05 X’y Xos X’oq X2y X’ X’ oy X%, X o
1 1.000039.00016 {.00098 | .0039 .0158 2.71 3.84 5.02 6.63 7.88
2 1.0100 {.0201 |.0306 .1026 .2107 4.61 5.99 7.38 9.21 10.60
3 |.0717 |.115 .216 .3h2 .584 6.25 7.81 9.35 11.34 12.84
4 1.207 297 484 711 1.064 7.78 9.49 11.14 13.28 14 .86
5 1.412 554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75
6 676 872 1.24 1.64 2.20 10.64 12.59 14 .45 16.81 18.55
7 ,989) 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.43 20.28
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96
9 1.793 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24 .73 26.76
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24 .74 7.69 29.82
14 4.07 ] 4.66 5.63 6.57 7.79 21.06 23.068 26.12 29.14 | 31.32
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80
16 .14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34 .81 37.16
20 7.43 8.26 9.59 | 10.85 12.44 28 .41 31.41 34.17 37.57 40.00
24 9.89 | 10.86 | 12.40 { 13.85 15.66 33.20 36.42 39.36 42.98 45.56
30 | 13.79 | 14.95 | 16.79 | 18.49 20.60 40.26 43.77 46.98 50.89 53.67
40 | 20.71 | 22.16 | 24.43 | 26.51 29.05 51.81 55.76 59.34 63.69 66.77
60 ; 35.53 | 37.48 | 40.48 543.19 4G.46 74 .40 79.08 83.30 83.38 91.95
120 | 83.85 | 86.92 91.58: 35.70 | 100.62 | 140.23 | 146.57 | 152.21 | 158.95 | 163.64

For large degrees of freedom,

- S—

Xy = § (2p + A/2v — 1)? approximately,

where » = degrees of freedom and z, is given in Table A-2.

Adapted with permission [rom Introdvction to Statistival Analysis (2d #d) by W. J. Dixon and F. J. Massey, Jr., Copyright, 1957,

McGraw-Hill Book Company, Inc.




r\Q 0.995
1 (-5)3.92704
2 (-2)1.00251
3 (-2)7.17212
3 0.206990
5 0.411740
6 0.675727
7 0.989265
8 1.344419
9 1.734926
10 2.15585
11 2.60321
12 3.07382
13 3.56503
14 4.07468
15 4.60094
16 5.14224
17 5.69724
18 6.26481
19 6.84398
20 7.43386
21 8.03366
22 8.64272
23 9.26042
24 9.88623
25 10,5197
26 11.1603
27 11.8076
28 12.4613
29 131211
30 13,7867
40 20,7065
50  27.9907
50 135.5346
70 43.2752
80  51.1720
90 59.1963

100 67.3276

X ~2,5758

From E. S. Pearson and H. O. Hartley (editors), Blometrlka tables for statisticians, vol. 1.

TABLE B-2 cont'd.

2
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X~ DISTRIBUTION

PROBABILITY FUNCTIONS

PERCENTILES OF THE

PERCENTAGE POINTS OF THE x’-DlSTRlBUTlO\—VALUES OF
x2 IN TERMS OF Q AND »

0.99

i—d) 1.57088

-2)2.01007
0.114832
0.297110
0.554300

0.872085
1.239043
1.646482
2.087912
2.55821

3.05347
3.57056
4,10691
4.66043
5.22935

5.81221
6.40776
7.01491
7.63273
8.26040

8.89720

9.54249
10.19567
10.8564
11.5240

12,1981
12,8786
13.5648
14,2565
14,9535

22,1643
29.7067
37.4848
45,4418
53.5400

61,7541
70,0648

-2.3263

0.975 0.95
-4)9.82069 (-3)3.93214
~2) 5.06356 0.102587
0.215795 0.351846
0.484419 0.710721
0,831211 1.145476
1.237347 1.63539
1.68987 2,16735
2.17973 2,73264
2,70039 3.32511
3.24697 3.94030
3.81575 4,57481
4.40379 5.22603
5.00874 5.89186
5.62872 6.57063
6.26214 7.26094
6.90766 7.96164
7.56418 8.67176
8.23075 9.39046
8.90655 10.1170
9.59083 10,8508
10,28293 11.5913
10,9823 12,3380
11.6885 13,0905
12,4011 13.8484
13.1197 14,6114
13.8439 15.3791
14,5733 16,1513
15.3079 16,9279
16,0471 17,7083
16.7908 18.4926
24,4331 26,5093
32,3574 34,7642
40.4817 43,1879
48,7576 51.7393
57.1532 60,3915
65.6466 69.1260
74,2219 77,9295
~1.9600 ~1.6449

Qu2ln = P”(ﬂ

0.9

0.0157908
0.210720
0.584375
1.063622
1.61031

2.20413
2,83311
3.48954
4,16816
4,86518

5.57779
6.30380
7.04150
7.78953
8.54675

9.31223
10,0852
10,8649
11.6509
12,4426

13,2396
14,0415
14,8479
15.6587
16,4734

17.2919
18.1138
18.9392
19.7677
20,5992

29.0505
37.6886
46.4589
55,3290
64,2778

73.2912
82,3581
—1 2816

“e °12 Yt

0.75

0.101531
0.575364
1.212534
1.92255
2.67460

3.45460
4,25485
5.07064
5.89883
6.73720

7.58412

8.43842

9.29906
10.1653
11.0365

11.9122
12.7919
13,6753
14.5620
15.4518

16.3444
17.2396
18,1373
19.0372
19.9393

20,8434
21.7494
22,6572
23,5666
24,4776

33,6603
42,9421
52.2938
61.6983
71.1445

80.6247
90.1332

-0.6745

Univ. Press, Cambridge, England, 1954 (with permission) for @ > 0.0005.

0.5 0.25
0.454937 1,.32330
1.38629 2.77259
2.36597 4,10835
3.35670 5.38527
4,35146 6.62568
5.34812 7.84080
6.3458) 9.03715
7.34412 10,2188
8.34283 11.3887
9.34182 12,5489

10,3410 13,7007
11.3403 14,8454
12.3398 15.9839 °
13,3393 17.1170
14,3389 18.2451
15.3385 19,3688
16.3381 20,4887
17.3379 21.6049
18,3376 22.7178
19.3374  23.8277
20,3372 24,9348
21.3370 26,0393
22,3369 27.1413
23,3367 28,2412
24,3366 29.3389
25,3364 30.4345
26,3363 31,5284
27.3363 32,6205
28,3362 33,7109
29,3360 34,7998
39.3354 45.6160
49.3349 56.3336
59.3347 66.9814
69.3344 77,5766
79.3343 88.1303
89.3342 98.6499
99.3341 109,141
0.0000 0.6745
Cambridge
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TABLE B-3. PERCENTILES OF THE t DISTRIBUTION

) t.00 tx t 50 t a0 t.5s tons £ o £ 05
1 .325 127 1.376 3.078 6.314 12.706 31.821 63.657
2 .289 .617 1.061 1.886 2.920 4.303 6.965 9.925
3 277 .584 .978 1.638 2.353 3.182 4.541 5.841
4 271 .569 .941 1.533 2.132 2.776 3.747 4.604
5 .267 .559 .920 1.47%6 2.015 2.571 3.365 4.032
6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499
8 .262 .546 .889 1.397 1.860 2.306 2.896 3.355
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250

10 .260 .542 .879 1.372 1.812 2.228 2.764 3.169

11 .260 .540 .876 1.368 1.796 2.201 2.718 3.106

12 .259 .539 .873 1.356 1.782 2.179 2.681 3.055

13 .259 .538 .870 1.350 1.771 2.160 2.650 3.012

14 L258 .H37 .868 1.345 1.761 2.145 2.624 2.977

15 .258 .536 .866 1.341 1.753 2.131 2.602 2.947

16 258 .535 .865 1.337 1.746 2.120 2.583 2.921

17 L257 .h34 .863 1.333 1.740 2.110 2.567 2.898

18 257 .534 .862 1.330 1.734 2.101 2.552 2.878

19 257 .533 .861 1.328 1.729 2.093 2.539 2.861

20 257 .533 .860 1.325 1.725 2.086 2.528 2.845

21 J257 .532 .859 1.323 1.721 2.080 2.518 2.831

22 .256 .532 .858 1.321 1.717 2.074 2.508 2.819

23 .256 .532 L858 1.319 1.714 2.069 2.500 2.807

24 .256 .531 857 1.318 1.711 2.064 2.492 2.797

25 256 .531 .856 1.316 1.708 2.060 2.485 2.787

26 .256 .b31 .856 1.315 1.706 2.056 2.479 2.779

27 .256 .531 .855 1.314 1.708 2.052 2.473 2.771

28 . 256 .530 .855 1.313 1.701 2.048 2.467 2.763

29 .256 .530 .854 1.311 1.699 2.045 2.462 2.756

30 .256 .530 .854 1.310 1.697 2.042 2.457 2.750

40 .255 .529 L8561 1.303 1.684 2.021 2.423 2.704

60 254 .527 .848 1.296 1.671 2.000 2.390 2.660

120 .254 .H26 845 1.289 | 1.658 1.980 2.358 2.617

© .253 .H24 .842 1.282 | 1.645 1.960 2.326 2.576

|

Adapted by permission from Introduction (o Statistical Analysis (2d ed.) by W. J. Dixon and F. J. Maasey, Jr., Copyright, 1957, McGraw-Hill Book
Company, Inc. Entries originally from Table HI of Statistical Tables by R. A. Fisher and . Yates, 1938, Oliver and Boyd, l.td., London.
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F-99 (o, n)

nued). PERCENTILES OF THE F DISTRIBUTION
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APPENDIX C

PROPERTIES OF EXPECTED VALUES

Definitions:

Given the random variable x with probability density function ¢,

then the expected value of a function f of x is

[ee]

E [f(x)] = Sf(x) ¢(x) dx for x continuous

- OO

E [f(x)] = % £(x) ¢(x) for x discrete.

Given the random variables x, y with joint probability density

function ¢, then the expected value of a function f of x and y is

0 00

E [f(x,y)]=/ J f(x,y) ¢ (x,y) dx dy for x, y continuous

e 00 e OO

E[f(x,y)] =2 I £(x,y) ¢(x,y) for x, y discrete.

Properties (Theorems) :

Given a constant k
E [x] =k

E [k £f(x)] = x B [£(x)]

E [E[f(x)]]=E [f(x)]

E [z fi(X)] =1IE [fi(X)]
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APPENDIX D

PROPERTIES OF MOMENT GENERATING FUNCTIONS

Definition:
Given the random variable x with probability density function ¢,

the moment generating function of ¢ is

Mx(t) =FE [exp (xt)]

Properties (Theorems):

Given a constant k

(t)

e exp (kt) Mk(t)

Mx(kt)

M (©)

Given constants ki and statisticad4ly independent random variables Xy

(t) =1 M (k.t).
i1 i xi 1
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APPENDIX E

PROPERTTES OF MATRIX TRACES¥

Definitions:

Given a square matrix A, its trace is the sum of its diagonal

elements
Trace A = Tr(A) =L a,. .
. 1i
B

Given a matrix A and a square matrix F which is a product of
matrices including A, the partial derivative of the trace of F with
respect to the matrix A is a matrix whose elements are the partial

derivatives of the trace of F with respect to the corresponding elements

of A, that is if

then

Tr(F) _ [a Tr(F) 1.

9A Ja, .
1J

Properties (Theorems):

Tr(A?) Tr(A)

Given a constant k

Tr(kA) = k Tr(A)

i

Given two matrices A and B conformable under addition
Tr(A + B) = Tr(A) + Tr(B)
Given two matrices A and B conformable under both multiplications AB and BA

Tr( A B) = Tr (B A)

¥ A complete discussion of these properties of traces is found in
Blaha, G. (1971). "Inher Adjustment Constrain:s With Emphasis on
Range Observations", Reports of the 0.S.U. Department of Geodetic
Science, Report No. 1L8.
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Given two matrices A and B conformable under both multiplications ATB
and ABT

Tr (A? B) = Tr (A BT)
From the above properties it is evident that similar matrices have the

same trace, that is for any nonsingular matrix R, and any matrix A of

same order as R

Tr (R"T AR) = Tr (A)
and in particular if R is the orthogonal matrix which diagonalizes A

we have

Tr (A) = § Xi
i

where Ai are the eigenvalues of A.

A property of the derivative of Tr (F ) is

o Tr(F) _ 3 Tr(F) ]T
T
5 A 3A

For specific forms of F we have

3 Tr(AB) _ 3 Tr (B A) T

P = AB Y = - = B
T 3Tr (A B A?) T
F = ABA = A(B + B)
oA
T ) Tr(A?BA) T
F = A BA =l = (B + BO)A
A
T 9 Tr (A B Arc) T T
F = ABAC = C AB~ + CAB

A





