TUTORIAL #5

“ORBITES DE SATELLITES GEODESIQUES DANS LE CHAMP DE GRAVITE TERRESTRE"

G. Balmino

BGI et CNES, Division de Géodésie Spatiale, Touto#sance.

Résumé

Ce cours a pour but, avec un minimum d’outils maudques simples, de familiariser le lecteur
avec les équations fondamentales de la mécaniqesteé&Gauss, Lagrange, Hill) et leur
application au calcul analytique approché des paations subies par les trajectoires de satellites
artificiels de la Terre, principalement dans le dome de la géodésie spatiale.
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Our goal is to give the minimum of what is necegsa understand the gross evolution of
geodetic (i.e. low to medium altitude) satellitdits around the Earth, as they are perturbed by
the spatial variations of the gravitational fiel@hen an overview is given on how global
geopotential models are determined. Finally aniegibn is made on the derivation of orbital
radial perturbations induced by the geopotentidlictv are fundamental for the planning and

analysis of altimetry missions.

This does not pretend to be a course in celestedhanics, and we will use the most

simple mathematical tools whenever possible, mtédserving the rigour of the proofs.

1. INTRODUCTION AND BASIC CONCEPTS

The motion of an Earth artificial satellite is thmtion of a body with very small mass and
negligible dimensions with respect to the planeair Fost forces acting on the satellite, and
especially the gravitational forces, it is suffitieco approximate it by a point mass. Surface
forces, which are more complex due to their natueguire special treatments in which the
shapes and surface properties of all the spacetesitents are modelled ; they will not be treated

in detail in this tutorial.

Other forces, such as the attraction of the SuhNoon, the solid and fluid tidal effects
will also be considered as being very small witbpet to the main gravitational ones. Also, the
equations of motion will be written, with sufficierapproximations, in a reference system

assumed to be fixed in space, corrections to ypsthesis being suitable of a treatment in terms



of small perturbations. Finally, the actual lawfofces will be written according to the classical
mechanics ; the framework of general relativitythe rigourous one but differences with the

classical approach are negligible for our purpa=e.h

Therefore, we consider that a massive p@nwith masdV, exerts on a point mass of

massm, a forceF, . =-GmM OS 08, (whereG is the constant of gravitation and the overbar

denotes a vector), and that the acceleration asdjly S is proportional to the force. This

principle must however be written in a galilearerehce systemgj. If we take a system of axis

(3)) centered aD, with fixed directions in space, we write :

d?0s - |_ 0S
and
Ml =GMmMOS 0O$
Therefore :

4205 oS
gz - C(M+m o

(1)

Of course, in the case of an artificial satelfitec< MandG( M+ nj is replaced b M.

1e1. THE UNPERTURBED SATELLITE ORBIT (two-body pro blem)

This is the orbit oS around a perfectly spherical Earth, of center aés®. This point is

one focus of the conic on whi&moves ; in our case it will always be an ellipest Kepler's

law). The closest point tO is the perige®, the farthest is the apogége O€S is the radius vector

i of modulusr, the ellipse semi-major axis & its eccentricity ise, p= a(l— e) is the

parameterSis positioned : either by the true anomaly (@63 , or by the eccentric anomaly



E=(ﬁ°,@), where S is on the principle circle (of which the ellipss the affine

transformed), or by the mean anomaW=(O_P,@)where S moves on the principal circle

with a uniform velocity at the motion periot (fig. 1).

Fig. 1. The elliptical motion o6 aroundO

In the plane of the orbit, we have for the radiasid coordinates, y of S:

X =rcosv=al coE- ¢

y=rsinv=aJl- €& sinE )
a(1-¢)
= 1+ecosv a(1- ecosH)

(from which sinv, cosv can be expressed in terms of EincosE, and vice versa). From these,

other useful formulas are derived :

v_[ire E
957V1-e92

v-E  pBsinE _ PBsinv
2  1-fBcosE  1+cosv

tg ©)



p=¢/[1+41-¢]

sinv - sinE = B sifv+ E)

The main motiom is defined byn =27/ T and we have :
M =n(t-t,) (4)

t, being an epoch when S passes through perigee.

Finally we have the second Kepler's law :

dv
r’— =na’yJy1- ¢ ,

dt

the kinetic energy integral from which the veloditys such that :

) 2 1
VZ=GM|=-=
r a

and Kepler’s third law :

n‘a®*=GM=u

Practically, in order to computey from t, it is necessary to compuké, thenE from the
Kepler equation :

E-esinE= M
then to apply (2).



Fig. 2. The orbit in space

Actually, the orbit lies in a plane which positisnspace depends on the initial conditions.
The plane intersection with tr(ex,Y) plane of §) is the line of nodes, the ascending ndde

being the point wher§& crosses the equatorial plane wihincreasing ; the longitude o is

counted from 0° to 90° for direct motion and frod°3o 180° for retrograde motion. In the

orbital plane, the direction of the perigéas counted fromN : w = (ON, OP) is the argument

of perigee. These angles are shown on figure 2.
Let us callTthe transformation (a, e 1,Q,w, M) - (T F)

With :

r=[X, X, X;]" =[ xyZ’
we have :

r=R,(QR()R(w)]xyg )

where :



1 0 O c 0 s c -s O
R(a)=|0 ¢ -§,R(a)=| 0 1 0/,R(a)=|s c O
0 s c -s 0 ¢ 0O O
(c:cosa S= sim)
X,y are of course given by (2).

The second part of the transformation is given by

2
r‘:naT(—sinEI3+cosE\/l—e2 (_3) (10)
where :

cosQ cogv— cob siw s
P =|sinQcosv+ co$ sim cd®
sinl sinw

and :
Q=0P/dw
(to derive (10) from (9), one uses the fact tgt/ dt= n a/ r).
The inverse transformation™ can be achieved in different ways. One is the¥aihg :
.a:(2/r—|r‘2 /,u)_1
.computeC =F xF (angular momentum)G|=C is constant
.I=cos' (C3 / C)
ksinQ=C,, kco® =G, with k=( G+ ¢)"” : defineQ.
.computep = C\/ua= e=(1- p/ 3"
.computetgy = F.r‘/[;a(l—ez)]m, thelE is defined byesin E= tg/(1- "7,
ecosE=1-r/a,andM = E —esinE
.computev from resinv= ptgy, recosv= p- r

then(w+v) from:rsinl sifw+v) = X,
rsinl cofw+v) :(Xl cof + X, siQ) sih

= .



For future usage, we now need some series expansia few functions of the two-body
problem. Such expansions may be viewed as powéessaer e, or as Fourier series iM
depending on the utilization. By an application aotheorem by Lagrange applied to Kepler

equation, it can be shown that any functio(E) of the eccentric anomaly may be expanded as

[ el’l dn—l
oy -1
=~ n! dM"

F(E)=F(M)+ [F'(M)sin" M] (11)

which is convergent fore< e, ¢ being defined by1+(1+ e(f)J/2 = eoexp(1+ f%)m, that is
e, =0.6627..

We then find, for example :

n n-1)/2

E= |v|+i2n‘5_'lnl Z -1 (.j(n—Zj)"_lsin(n—Zj)M (12)
2 n (n-1)/2 ~
g—l eCOSM—?(COQM - Zznl oD Zc; ])'( j(n 2i)" cogn-2j) M

(13)
It is obvious that, since the motion is periodiny function of coordinates istzperiodic

in M. For example, coB can be expanded as a cosine serids in

cosE = a, + ) a, cospM
p=1
with :
1 pa2x 1 rox
a, = Z_{LCOSE dM, a, = ;L COSE cop M dM
From E —esin E= M we derivedM = (1— ecosE) dE ; therefore :a, = -¢/2. For a,

we note thatcospM = [d( sian)/dM]/ p and we integrate by part, finding :

p

1 2
a, =———|sinpMd(cosE
pﬂL pM d(cosE)
ReplacingVl by E - e sinE, noting the invariance of the integral limits, vired

a, p2ﬂ-[ [005(p E- peSinE] dE—%%TJ.OZH[ coép+1) E- pe SirE] dE

We define the Bessel function of the first kindlaf ordem as :



J.(%) :2—1nfozncos( nt— xsiny dt (14)

So that :
a, =[3,.(pd- 3.( pdl/ p
and finally :
e vl
COSE === + ZB[Jp_l(pe) - 3 pé] cos pM (15)
p=1

A property of the Bessel functions is that :
Jpa (¥ = Jpa (=234 (16)
which simplifies a little the form of (15).

From this it is easy to find that :

r e’ > 1 d
g=1+7—ZeEFEE[Jp(p@]cospM (7)

Other useful formulas are :

V= M+22%{Jp(pe$+§,8“[J_n( pé+ \;IM( p)%}sin pM (18)

(B:asgivenin (3)).

ji 3,(pg) cosp M (19)

cosv = —e+ 2(
p:

sinv = 2 i [ pé] sinp M (20)

More general formulas will be needed in the exgimesof the gravity field perturbations,

for functions of the fom(r/a)n cosmvand(r/ a)n sinmv for anyn andm, positive or negative. In

complex form we write :

r +o00

(gjn exp(imv) = > X™ ex{ ikM) (21)

k=—c0



This defines the Hansen coefficients. They arefugmtions ofe, and can be evaluated in

many different ways. SincX," is a Fourier coefficient, we have :

Xm = %Tj:@ exp(imv) exd - ikM) dM

Introducingz = exg(iE) , we find that :
exdiM) =z exd-ez-1 3/2],
dM = -i[1-(e/2)(z+ 1 3] ot
i/a=(1-pA12) (1- A)/(1+ B°),

andexpiv) = (1 ﬁ/z)/l ,6’2)
Finally :

Xﬁi r(1-2) () e {kze(iﬂd

From this, the following series expansion candentl (after some laborious algebra!) :
for k=m+ s with = 0

@ =g BTy S 1 ey

g=o0 S+J_ ql
2(2t—n+ s— p- g- j (Zt—n+s— p— q—j (e)Zt
t-j t— ] 2

If <<o, we computeX 7, = X" by the same formula, using the property of symynetr

(22)

of the Hansen function@(;‘m = Xf;['“).

In the above formula, binomial coefficier&s ;;uj where >0, must be computed as

+p-1
being equal td—1)" [,u 5 j p being always positive.

Another expression for the Hansen coefficients is

™ )MZZ(Mm+1j(n_m”j(—ﬁ)"”Jk_wq(ké @3)

xnm( =
“ p=0qg=0 q



which can be more economical to evaluate than @®m (22) and from the symmetry property,

it is obvious thatX;™ (e = o( ék"“‘) .

For large values of the, m, k indices, it is numerically more efficient and psecto

compute the Hansen coefficients by Fourier tramsfédrom their definition (formula 21).
1-2. DISTURBING FORCES ON AN ARTIFICIAL SATELLITE

These forces are of different types :

» (gravitational forces : first, and most important émr purpose here, are the forces due to the
non-sphericity of the Earth in the general senseoifetrical form, internal density
distribution). The main term is related to thet#aing of our planet, the others describe all
lateral density variations. This will be the whelgbject of chapter 2. We then have :

¢ the third-body perturbations due to the Moon, th@,Sand the closest and/or biggest
planets,

¢ the tidal forces of various origins : solid tidasedto the global yielding of the elastic
Earth to the disturbing forces of the Sun and Mooocean tides with numerous
frequencies and varied amplitudes.

¢ atmospheric masses variations associated with ygreeshanges, and effects of these
changes on the solid crust (by elastic deformatidues to loading) and also on the
ocean and large sea and lake surfaces.

» surface forces :

¢ atmospheric drag, which acts in a very complex wag to the variations of the
atmosphere density under the action of the Sumar(sytle, yearly, seasonal, monthly,
daily and hourly variations do exist due to the Swtivity, geomagnetic effects and
induced chemical reactions), also due to the comglt@pes of satellites and the nature
of their surface elements,

¢ radiation pressures : there is the direct solasqume but also the one coming from the

re-radiation of the Sun light by the Earth (albexdfect, the most complex since it is



related to the cloud coverage), plus the infragtiation of the Earth (considered as a

black body), all requiring a careful modeling oé thpacecraft components.

Finally, correction terms to the total accelenatad the satellite must be added to account
for the correct relativistic description of the atjons of motion and, if the reference frame in

which these equations are written is moving, apgaaecelerations have to be included.
1.3. EQUATIONS OF PERTURBED MOTION (LAGRANGE, GAUSS, HILL)

We have already written the cartesian equatiomaaifon, (1), in the reference frame)(
in the case of the two body problem. With initi@nditions (r‘o,r*o) att ,, this is a system of

ordinary differential equations which solution isiquely defined. Actually, (1) is equivalent to

the system :
da _
E = A(O’ , t)
with :

a=[ael,Qw, M|

A=[o0aaap] . n=(u/ 8)"

a, being computed fror(fo,r*o)

This simply reflects the fact that, if one transfie the system (1) b{T) - given by (9)
and (10), one finds the system far. It is therefore quite natural, when introducingtarbing
accelerations which are very small with respect/fo? , to use the same transformation, hoping

that the solution of the transformed system will éogressed as small variations around the

solution of the two body problem, that is around
a, =[a0,e0, 1,,Q ..y, M+ no(t— to)] :
Let us write the equations of motion including tfisturbing accelerationg (one will

often say disturbing “forces”) as :
F=-prfi®+y (24)

with 7(t,)=r, . Fft,)=r



We assume that the right-hand side member satis@ieditions such that (24) has always
one and only one solutic{nT(t),r*(t)] fort —t | large enough for our application (Cauchy-Arzela

conditions).

At any timet in this interval, we can therefore apply the tfansation 7™ to the solution
of (24) and we get quantities(t), e( 1), 1(t),Q(1),w(t), M(t) which are no longer constant (or
linear in time forM). These are called osculating elements. TheiripAlymeaning is simple ; if,
for t' >t we suppresg, then the satellite motion obeys the system :

t'>tF=—u/r withrg)=r , rt)=",
of which the solution is a(t') = a(t), e(t) = €9, 1(t")=1(), Q(t')=Q(t), w(t')=w(t),
M(t") = M(t) +[,u/a(t)3]1/2(t—t’), that is a keplerian ellipse. This ellipse passesugh the

point S(t) of radius vectorr and a mobile on it has the same velocity vedtorbut the
acceleration is different by construction (thatthe term “osculating” is improper from the
geometrical viewpoint).

Thus, using the variables(t),e(t),... M(t) allows to visualize the trajectory evolution
(e.g. rotation of the plane, of the line of apsidgpogee-perigee, ...). Now, we want to deduce

from (24) and from the formulas féf and 7™ the system verified by the osculating elements,

which must be of the form :

d
d—C: = function of@ andy

with :
alt,)=a,=7rF)
The perturbing acceleration is projected on théilaoreference system axis(f,§,\7v)

defined by :f =r/r S unit vector orthogonal té in the osculating plane and in the direction of

A

FW=Fx$; that isw=(Fx f)/|F xf|, andé = wxr (fig. 3).



Fig. 3. The Gauss mobile systeff,$, W)

So : y =RfF+S8+ WWw. Now, by derivation of (6) with respect to timedasince
rt =7 (fromr? = E), we readily find :

(u/a?)a=2fy

Rewriting (10) asr*:na(l—ez)_]/z[esin vr+ (1+ e:osy‘ﬁ]s, obtained by a rotation
aroundw with anglev, we obtain :

a=(2/n)(1- ez)_j/z[ esin R +(1+ eos )/S]

We then use the angular momentum ved@or CW, with C:[,ua(l— é)]]/2 = (,up)j/z;C

verifies dC/ dt= T x (— TP+ ;7) =Fxy= ]/2(,u/p)]/2 |o\7v+(,up)j/2 W
We define the following unit vectorsN in the ascending node directioN,’ orthogonal
to N in the equatorial planeM : orthogonal toN in the (osculating) orbit plane, andj .k :

unit vectors of theX) frame (fig. 4).



X .ﬂsum/fni Node

Fig. 4. The intermediate vectorl, N’, M introduced for the equations fer1,Q

Writing Fxjy=-rW§+rSW, W= Nx M, M= N'cosl+k sinl, noting that N
depends only or, thatN' = Q d N'/ 2 = - N, also thatN= NQ, and taking account that
N'xk=N,Nx N =k Nx k=- "N, we obtain :

Ww=QsinIN-IM

Noting also thatf = N codw+V) + M sifw+V), §=-Nsin(fw+V + Mcodw+V),
and equating the components oC/dt on f,§,w, we find three equations for
p=a(l- &)-2aee BndQ.

The equation foM is obtained throughr. =r (a,e, M) which implies :

r =ad/da+edr/de+ Mar/oM

It is easy to find r :naesin\/(l— é)]/2 &/ =rla, A&/FE =aesinE,
E/de=asinE'r, /M =a/r, &/&=-acosv, &/ =aesinv/(1- €)' ,and this yields

the equation forM .



The last equation, fow, is more tricky. We start frony = « +v, and from the second

Kepler's law : ¢ = na? (1~ &)"*/ which is valid in the osculating motion # is counted

from a fixed direction. But, in the real motionl @lements vary and the directi@N from which

one would like to county varies too ! Therefore, we cannot write =« +v if we apply
Kepler's law. We derivey directly from tgy = /&, that is dy =(Ed/7—/7d£)/({2 +/72),
where OS = EN+7M For gettingdé, d7, we computed OF dt when Q,« +vandl vary ; in
this case :

dO9Y dt= [Q_k+ TN+ (co+ Y A\}/x " 0S

Writing this equality in(N, M, @) with k =sinl M + cod W, we arrive at :

&=-rsin(w+v)(w+v+Qcosl)

71 =rcodw+v)(d+v+Qcosl)
(the 3rd equation would givé == (component odeS/ dt on W) =7l - &sinlQ) ; we then
find :

d¢ = da + dv+ d2cos |

Consequently :

@=na*(1- &)**/ P - v-Qcosl

v is computed asiv(e M)/ dt= edyd e M V7 Mwith :
&/ de=sinv [a/r +1/(1- ez)], /oM = (1-&)"* &/ r* . The equation for. follows ...

We now summarize the six equations, known as Gaggations, which are obtained by

the elementary manipulations shown above :
a = 2[Resinv+S(1+ ecosy]/( nf
e= f[Rsinv+S(cosE+ cos)]/( ng
[ =Wr cofw+v)/(na’ f sinl) (25)

Q=Wr sin(a)+v)/(na2 f)



w=f [— R cosv+S(1+ (1+ecos)™ sirv

~Wrcod sif{w+v)/(na*f siri)]/(naé
M =n+ fz{R[-Ze/(1+ ecos\ + COS\}—S[1+(1+ ecos)/_l] sir}//( nge
(here : f =+1-¢%).

Next, we will derive the Lagrange equations. Tlaeg a particular case of the Gauss

equations when the disturbing acceleratonis the gradient of a functiog (force function) :
y =OR. This is the case of all forces of gravitationaigim and this leads to a simpler

differential system. In théf,$, W) system we can write

dR=0ORM OS=R dr+ Sry+W ¢
or, for any orbital elementr :

ﬁ_Ri-}'Srd—w-FWﬁ
da da da da’

where (dr,rdzp,dZ) are the orthogonal components®fOS. Clearly,dr can be due to changes
da, de, dMonly and we have :&/& =r/a,d/dk =-acosv, o“r/d\/l :aesinv/(l— ez)m,
already used above. Similarlgl¢y can result from changes i©,«, andv as shown in the

derivation of the Gauss equation far, and we have dy/de =1,y /X2 = cod , dy /A =1 ;
. . . . -1 2 2\V2

and sincev is function ofe andM, o”'g[//o‘e=sm\{ al r+1(1- &) ] ay/om :(a/r) (1-€?)*.

Finally, we already obtainedi = 77dl - £sinldQ, from which &7/ =n=rsin(w+v) and

A7/ X = —£sinl = —r cosw+v) sin .

All the other partial derivatives are equal toa&rherefore we have found :

r
=—R
a

r
=—-Racosv+ Ssin\( at 2)
1-e

=rsin(w+v)W (26)

Yy Y Y



=rScod -r W co{w+Vv) sih

=rS

H 2

aesinv _a
+S—+1-¢’

Vi-¢? r

We now transform the Gauss equations one by ooe.af we replacel+ecosv by

>y 2y ¥y

=R

a(l—ez)/r and relate the right-hand side taR/oM. For ¢ we note that
cosE + coy:[a(l— e")/ r- r/a]/e, we haveR sin v in terms of dR/aM andS, which we
replace by(]/r)o‘R/o"w. | is obtained fromdR/X) and dR/dw.. Q is immediately written in

terms of dR/dA . The first two terms in the bracket fe¢ equal (]/a)o'R/deand the last one is

proportional todR/4 . For M, we first expres$ and its factor in terms & and &R/ and then

replace(1-e?)R/(1+ ecosy) by (7 dR = R/Ja
Finally, the six Lagrange equations are :
da_2 R
dt naov
de_1-&€ R J1-& R

dt  na’e M na’e dw

dr _ cosl R 1 R

dt  na’yi1-€esin 19w npady1- € sin IR

dQ 1 R

=2 = 27)
dt  na’vi-€sinl d

dw _V1-€ R cosl R

dt ~ na’e & nazJ1-ésinld

dM 2 R 1-€* R

dt "haa  na’e &

The form of this system is remarquable. If we take M —nt instead oM, we have

R/M =JR/do and :



%[a,e, 1.Q.w0°|=M(ae )[R, R, R R, R, .Ry|

where R!, = dR/da and where is replaced b)(,u/a3)]/2. M is an antisymmetric matrix with

only ten non-zero elements. The system may be Hietpfurther if one adopts the so-called

Delaunay variables :
L =@

G=ua(l-¢)
H=

,ua(l— e2) cosl| (28)
=M
g=c
h=Q
In this case, we simply have, with= R+ ,uz/(ZLz)
a_& dG_o dH_JF
dt 4 ' dt a4 ' dt oh
d__ & dg_ & dh_ oF

- A ' dt & ' dt M

This system is said to be canonical, with the taman 7. It is the best suited one for

(29)

some sophisticated techniques of deriving analysichutions.

In the case of quasi-circular orbits, it may béntérest to describe the real motion in
terms of discrepancies with respect to a refereircalar trajectory whose plane is fixed &) (
and defined by its mean motion the radius of the orbif,, satisfying Kepler's 3rd. law :
AT =p.

The true positiors of the satellite will be given by its three commilies(u,v, V\b in the

mobile system rotating with the fictitious refereqmint S (fig. 5).



re.fe rence orbt
~

X

Fig. 5. The Hill reference orbit and rotating system

We here restrict ourselves to conservative forttet, is = OR. In the rotating system
> ={uww} , which rotation vectop with respect to () i§iw , we have :

— 1 [r +y =[d ?r/dt?] | =[d *F/dt?]. +2p x[dF/dt]. + px(pxF)+pxF

The last term is equal to zero singeand therefor@ are constant. This equation is
projected on>,, in which the coordinates &are +u,v,w. We find :
(e _ R
U-2fv-1(T+ 4= —rﬁs(r +u) +

a
A = H

V+2AU- PP v=—v+—

rs X
PEINE..

an

Hill equations are finally obtained by linearizitigis system around =v=w =0. We

first write : r2 = (F +u)? +Vv2 + W? = 72+ 2uF = 7?(1+ 1/F), from which :r =7 %(1- a1/).



Hence, the first term in the right hand side membef the above equations becomes
—u(F-2u)/F3,— /73, - pw/7 3. Replacingu by 2T ® yields the final Hill system :

- 2nv- 3°° u= AR/Ju

V+2R0U= dR/dv (30)

W+ A% w= AR/ Ow

Note that the last equation is decoupled fronothers, allowing a separate treatment.

1+4. APPROXIMATE ANALYTICAL SOLUTIONS OF THE EQUATI ONS OF
MOTION

For further use in this course, it is sufficieatdonsider only the case of the Lagrange
equations with a disturbing force foncti@an However, much of what follows may be applied to

other cases treated with the Gauss system.

® is a function of the position, hence of the sixuwating elements, and also of the
coordinates of the disturbing bodies (Moon, Sunis & Zzperiodic function in@, w, M since it
must have the same numerical value when these arganthange by 72 the others being

constant. On the other hand, the position of authgtg body may be expressed via the orbital

elements of its trajectorya’, e , I ,Q ,« ,M , with respect to the reference framd 6r to an
intermediate reference frame with given (slowlyywag) Euler angless = (51,52,53) . It will be
assumed, with enough accuracy here, {aate , I') are constant and th&',« ,M" ande are

linear functions of time. Obviousl\g, must also b&7zperiodic inQ",w ,M" and in these Euler
angles. Finally, and as concerned all Earth graditgct and tidal effectsg must be27zperiodic
in @, the sidereal time (we here assume that the eqgaigbéane of £) is the Earth mean equator

and thaté is the mean sidereal time, discrepancies from ligothesis being treated as very

small corrections to the solution).



Therefore® may be expanded as a Fourier series of the form :

R=YB a,el,d,é,])co<p+lw+ M+ JO +kw +*Il\*/|+p9+qs+d>)

ik """ pq (
The summation runs on all indices, for all disingobodies, and the phasgeis a function

of these indices in general. We writein a more compact form, as :
R=XB,_ (mm)codiA+ i A+ hH (31)

wherei stands for(j,k,l), i for (j* KT ),h for(p ,q).mis the triplet 4,e,) of the satellite

metric' elementsA the triplet(Q,w, M) of its angular elementsAlthoughl is an angle, it is
called a “metric* element similar &e,because of the type of equation which governs its
behaviour.)m, A" designate the metric and angular elements oftarliag body ; andH
stands for all other angular parameters (and theels distributed among all pertinent
arguments and indices).

The form of the Lagrange equations is such that :

dm

S = ZCin (m mi)sin(iA+ i A + hH (32)
dA . s
at = 2D (m m)codiA+ i A + hH (33)

In (33) there generally exist terms with all ireBcequal to zero, that is terms which are
independent of the angular elemenaog,o(m, rﬁ).

Many different methods exist for obtaining theusmin of these equations. Modern
approaches all use algebric manipulators, but iissly not too difficult to obtain by hand
calculations a first good idea of the solution eleteristics by retaining only the most significant
terms, in particular by neglecting all the termsattlare of the order of the square of small
guantities characterizing the disturbing functiSach a procedure is called a first order solution

and is simple to apply once the equations areemrits in (32) and (33).

Let us notem, = (ao, &, Io) the mean values o4,g,l), which are obtained if one neglects
all the terms in (32). These are substituted in (@3which we also provisionally neglect the

periodic terms, keeping only theD_ 's. We find : dA/dt=D_, or: QU =nQ(m,),




' =nw(rn,), M) = Ny (r’g) The superscripto) indicates that this is the beginning of the

process of successive approximations. Actually, consists ofn, = (,u/ aff)]/2 and of the term
coming from the development. Integrating these gous, we obtain :

Q=n,(t-t,)+Q,

@=n,(t-t)+w, - A=n(t-t)+A (34)
M=n, (t-t,)+ M,
These are linear, hence unbounded functions & tithey are called secular terms and are

the largest perturbations.

The next step of the process is to substimgeandﬁ in the right hand sides of (32), (33),
taking also into account that m()=n, A(t)= A = nA*(t— to) + A,
H(t)=H=n,(t-t)+H,.

After integration, we obtain :

C.
1 k e .k Tk T
m=m -2 ; A+i"A +hH
m i, +i'n_. +hn, cos(l | ) (35)

D.
A=A+Y- Lk sin(iA +i"A" +hH 36
Z|nA+|nAk+hnH ( ) (36)

Of course, the coefficient€ . ,D.. are different for each of the metric or angular

elements.
In this procedure, we have overlooked the fact the first term ofdM/dt is n and not

n,. We have n*a®*=y, from which 2An/n+3Ag a= o, hence to first order

(o]

n=n, [1— 3/2(Aa/ a)] From (35) we get :

cld o
Na=-y— Lk codiA +i"A" +hH)
in, +in . +hn,
Then :
N cl@ o
n=n +-——=% 1k codiA +i"A" +hH)

+ . -k
2a, ing+in, +hn,



(M)
i’k

So we must add to the solution kM given by (36), withD the integral of these

additional terms, that is :
N c@ L
AM =23 Lk >sin(iA+i"A” +hH) (37)
28, (inA+i*nA*+hnH)

All periodic terms in (35), (36), (37) look similaThey are usually grouped in short,
middle, long period terms depending on their pemyf(inA +i*nA, + hnH) with respect to the
mean period of the satellitgn/n, . It is interesting to note that there may exignbmations of
the indices, i, h such that, fom,,n.,n, being given, the divisomn, +i*nA* +hn, becomes
very small with respect t€_., orD.. , thus enhancing greatly the perturbation. Thisalled a

resonance phenomenon. When the divisor becomesntadl, the linear theory outlined above
becomes meaningless and other techniques areedquir

If one stops the procedure at the stage of thestasations, we usually do not have a full
1st. order theory with respect to the small paramét) of® . There exist additional first order
terms coming from the next step, that is when amesttutesn andA as given by (35), (36) and
also (37), in the Lagrange equations and integrgden.

Finally, the form of the Lagrange (or Gauss) emumst is such that orbits with small
eccentricity and/or with small sincannot be properly treated without care. Either must adopt
another set of variables, such (Esina), ecosw) instead of(e,w) - for which there exist an

equivalent system of equations, or one must exp#ra solution in the vicinity of

e= o or of sinl =0, and properly re-arrange or group saemms (... which we will do later

when dealing with quasi-circular orbits).



20 THE GEOPOTENTIAL AND ITS REPRESENTATION
2¢1. SPHERICAL HARMONIC REPRESENTATION OF THE GEOP OTENTIAL

Let us consider the Eartk)(with its actual shape (grossly approximated bglépsoid of

revolution) and its density distribution such that,the current pointP’, the mass element is
dM' = o(P') dV' in the elementary volumeV'. Let(Zo) be a reference system fixed i).(
The gravitational force at any poil8 outside E) derives from the force function (called
geopotential) :

U= G_[(E)dM'/A (38)

whereA is the distance SP’ (fig. 6).

Fig. 6. The Earth and satellite poi§t

_]/2
/A is written ag '1[1— 2(r ’/r)cosw+(r 'k )2] . Now, if r'<rforalP', the term

[1— 2t cosyy +t2]_]/2 with r'/r =t <1, can be expanded in a convergent Legendre series :

[1—2tcos¢//+t2]_j/2 =it'P|(co$(/) (39)



where P (x) :{d' [(x2 —1)']/d>k}/(2' I!) is the usual Legendre polynomial of degte@hen

P (cosy) can be transformed as follows. Denoting (ig§,A') the latitude and longitude &
and by(¢ 1) those ofS, we have :
cosy = sinp siy + cog cag cos—A')

which is transformed by the operatBr as (Legendre addition formula) :

+|

R (cosp) = 2(-0)" By (sing) R_,( sinp) exbin2 - 4" (40)

m=-1

In this formula, P, (X) is the Legendre associated function of the fitrstlkof degred
and ordem, and is defined by :
m=aR (%= P( X
m> o R, (% =(1- %)Wz d[ A )(]/ dR
m (I =m)!
(=30 p ()

(T+m)

P

l,—m
M being the mass of the Earth (and sii;¢x) = 1), we obtain :

(Ejl il[(_])mf(g)"l:’l,m(squ) exp(—im/\’)dl\/l’} Fl’m( sirw) expini)

r) &=

GM G
=4+ —
r r =

U

This expansion requires th&be exterior to the smallest sphere containkg let us say

a sphere of radiuR. Introducing it as a factor of homogeneity, weait

GM

U=—+R
r

GM & (R) & _ _

R=—r ;(Tj Z_IKlmle(smqf) exdimA) (41)
with :

— (_1)m rl H i ] ' ] ]

Kin = omi” LE)r P, _,(sing) exp—imA") p(r' ¢ A')dV

The K,, coefficients depend on the shape and density ibmaif the Earth. They are
called_harmonicef the geopotential (fdd, and® , are harmonic functions), of degreand order

m. In practice, noting thak, is real, we define real coefficien,,, S, for any m> oby :



KIm 2 (Clm - ISm)

1+4 (I +m)!

=3 (G i) )

I,-m 2 (_ 1)'“ (42)

(where d,, =oif mz qJ,,=1). Whenm= o0, K, = G, and § = oand it is then easy to verify

that® can be written as :

(Bj {Cm P (sing) +|Z(Qm cosmi + S sin rr]) B Sirlp)} (43)

r m=1

_oMs

r =

R

The C,, coefficients are sometimes denoted ak,-and are called zonal harmonics, since

they characterize variations bf which are independent of the longitude. The otfe@monics

(C,m,sm) are called tesseral ; a peculiar case is whem and the(qI ﬁ) are named sectorial

harmonics. Practically, the origin (ﬂEO) is taken at the Earth’s center of mass and thgig a

along the mean Earth axis of rotation, assumeceta principal axis of inertia. This hypothesis
implies thatC,, = C, = S,;= C,,= S,,=0. Furthermore, we have the important relations :

1 A+ B
Czoz_MRz C- 2

1 B-A

C2 =R 4

whereA,B,Care the moments of inertia d&)(in (ZO) .

In the following, equation (43) which gives thepeassion ofg in terms of the spherical

harmonics of the geopotential, will startlat2. It will also be used with normalized Legendre

functions P,, (x) and normalized harmoni((ﬁ_:lm,ém) such that :

P O(Co Su) = RO( G S

112
()| (2-a) @+ 35T | P = () (s

This normalization is such that :



1 — gmi
ZTJ. J.unit spherepIri (Sln¢) |:Zion2 m/]i|cos¢d m/‘ =1
Hence :

(6. cosmi + 5, snr) B s

Pyl
1
‘o

Z

8
7N\
I;U_
M-

:_Mi i (TRJI(C_:ImcosmA +5, sinrpi)_ﬁ’n( Sir{O)

2+2. THE REPRESENTATION OF THE GEOID SHAPE

The geoid is a conventional equipotential surfaicthe total potentiaWw =U +C, where

U is the gravitational potential, an@ is the centrifugal potential of the rotating Earth
(C= [49'2rzcos2 qzi/z with @ = sidereal rotation rate). This equipotehtin the oceanic areas, is

the surface the sea would have if there was noomaif the sea water, even averaged over an
infinite time (this assumes that mass movements) as those due to tectonic motions or internal
convection, are neglected in the “solid“ Earth)histgeoid physical definition is implicity
extended (mathematically valid) over the continkataas. If the Earth was fluid and composed
of (for instance) homogeneous confocal layers,siisface would be a perfect ellipsoid of
revolution. Besides the observed fact that thelEagurface may actually be approximated by
such an ellipsoid flattened at the poles, thishy the shape of the geoid is described with respect
to an ellipsoid of revolution, called a dynamicHipsoid. It is defined as having the same mass,

center of mass and mean rotation axis as the Barthhas a prescribed semi-major axjsand a
flattening a = (ae - ap)/ae (a, : semi-minor (polar) axis) ; it rotates with tharth with the

same sidereal rated and its surface is an equipotential of its ownaltopotential
W, =U. +C (UE = gravitational part) ; conventionally, the valofeWe on its surface is taken

equal to the value of the real potentdbn the geoid surface.



Under these assumptions, the height, usually ddnby N in physical geodesy, of the
geoid with respect to the ellipsoid, counted puslti along the outward normah to the
ellipsoid is given by (Brun’s formula) :
_W-W _U-U,
Yy

N

(45)

with y being the gravity on the eIIipsoidy."=|dNE/dd. As a result, and since the ellipsoid
gravitational potential expansion involves evenrdegonal terms only, we have :

R) &= - —

(—) > (Cr cosma + 5, sinmt) B sig) (46)

r m=0

_om
ry 1=

N

with :
Cr = C, - G, (ellipsoid ... if lis even
=C, ... if | isodd
C. =C, if m>0.
This expression is often used in the simplifiethfqtaking y = GM/r? andr =R = a,

instead of their mathematical expressions at thiase of the reference ellipsoid) :

N = RY. (G, cosm + S, sinm) p( sim) (47)

Figure 7 shows how the geoid is positioned witlpees to the reference ellipsoid. It also shows

other surfaces, close to it, which are relevarsatellite altimetry.

’rs Satfl.te
(al[':m‘z&r)
»
Y
Insigntaneous sea surface
f"“.,“ A RS ':.-;~ h »I

Nh';:":‘ e~ .:—":"-'.a’me“" sea surface
C M o X 920“1
E — refer-enca e//:'/’.sm'a’




Fig. 7. Surfaces to be considered in satellite altimetry

N = EG measures the departure of the geoid shape fromilthsoid.

GI is the dynamic topography (instantaneo@l] its mean value.

An altimeter on board satelli®@measuresSI .

If S is known from ground tracking observations angosteriori orbit determination, theBS is

known ; SI being measuredEl is known.

2¢3. TRANSFORMATION IN ORBITAL ELEMENTS ; KAULA’'S SOLUTION

Our goal is now to use Lagrange equations to ddahe main geopotential perturbations

on a satellite orbit. It is therefore necessaryramsform® as given by (44) and expressed in
(ZO), in a function of all six orbital elements. It dear thatr will involve the elements

(a, e, M), whereasg¢g andA will involvel ,Q,«c andM. The transformation is therefore splitted

into two parts.

2+3.1- Transformation ofP,, (sing cosm and R, (sing) sinmi

There are several ways of achieving it. One, pally due to Kaula (hence the name of
Kaula’s solution) starts from the exact expressibnP, (sin(p) in terms of powers obing,
divided by cos"g, transforms cosmAand sinmd  in  terms of powers of
codw+V), sifw+V) , co$ ,with the factor exp[im(Q—H)]/co§ @. There remains a triple
summation which gives the quantities in terms ofimes and sines of the argument
(I —2p)(a)+v)+ m(Q-6) with the so-called Kaula’s inclination functiorf§,, (1) in factor

(Kaula, 1966).
Another derivation starts from the theorem on tbgtion of the spherical harmonic

functions Ylm((p,/l) = Fl’m(singo) exd im1), when going from a reference systdm) to another



one(c’) by three rotations according to the three ususianglesW¥,®,® ; this theorem states

that :
(-m, (@) = (1= m) 1y, (¢,17) B (.0,0) (48)

m=-1

The Euler function€E” are defined as :
C]

Em(v,0,0)=(-1)"" eX;{i (m - rr)’ﬂ exi(mw + mo)| ¢ (Ej

where theC" are the Clifford trigonometric polynomials :

(O)= ST Jeos @ i
Clm(z _jzh;f( 1) P | .co§25|r? 5

with :

Jing = max(O —m- m)
Jsp = min(l -m,| —m’)
v=2j+m+mn

We apply this transformation tg = ()_(0\_(070) = (Z 0) ando’ =(F,5,W) - fig. 8.

X (Greenwich)
/int ofo noles



Fig. 8. Angles encountered in Kaula’s transformation
Hence : W=Q-6,0=1,d=a+v. In (o), wehavel'=0,¢ =0. We take

advantage of the fact thatP (o) =oif I-m is odd and Rm,(o):(—])[('_m')/z]

(I +m)/{ [ /2] [ |+ m /2] } if | —m' is even. The result is :
P, (sing exdim) = |mz Dy ex;ﬁl ~2p)(w+v) +m(Q - 6?)] (49)

with :

i 5 e (e ()

(50)
(j1 = max(oZp—I—m) Vp = mir(l -m2p)) :
These expressions are easier to evaluate thdfatia’s original ones. They are related to

the classical functions, (1) by(m= o) :

Dlmp( I ) = (_ ]-)I_m+[(l_m)/2] Flmp(l )

SO REIEL s S Y

There exist numerous recursive relations betwhenF, , or theD

mp fUNctions, which

are more efficient for numerical evaluations, eggbcfor large values of m, p
2¢3.2- Transformation of terms containing r and v

We take again formula (41) far with le(sinqa) expliml) being replaced by (49). We

have to transfornr ™~ exp[i ( —2p)(a)+v)] =r™* exp[i (i —2p)v] exp{i ( —aa)a)] .From the

definition of the Hansen coefficients we immedigtstite :



r'1+1 exp[i -2p V] IE ZX' 2% exdikM)

(52)
= Z X5 expli(1 - 2p +q) M]
q=-co
where the second expression is obtained by a chafngdex : k = -2p+ g. Kaula introduced
the notation :
Gpal8) = X511 (53)

From (22), it is clear thaG o(éq‘). For most geodetic satellites, is small

Ipq
(<107), and only terms withg = 0, = +1and sometimeg = +2 need to be taken into account

in (52) for sufficient accuracy in the analyticaligion.

Using (22) and (53), it is easy to get :

ifg>a
o =(-5) S50 20 sole)

Whenp<I:

(e P
Whenp=1:

Gyq —( :)q (_q];)q (q I) +0(e™?)

ifg<o

o= (-5) 2T el
When p>o

o) (P
Whenp=o0

Gioq = (—123) _q% +o(e™?)



.ifg=0,G,, =1+ o( é). One sometimes needs the terngfinit is computed agt =1,s=0 in

formula (22), anch+ m+1=-2pn-m1=2p- 2] ne F 2

ii(_zpj —_) i(zp ZIJ( zp)k(_l)k

L -l

To summarize, we have :

2

Glpo = 1+ glpo% + 0(94)
GIpJ_rl = glpil e+ d é) (54)
2
Glpiz = ngJ_rZ % + 0(94)
so that :
GI;)O = glpo e+ d é)
GI;)tl = 0pur t 0( eg) (55)

GI;)tZ = Op:r €F C( é)

where :
Opo = [1+(4p-3)(1 - 4p)]/2
g, =(3-4p+7/2
g, = (4p-1+1)/2 (56)
95, =(1-p)(21-3p+59+(1- 2+ 3°/ 4

Op» = P(3p- 1+52 +(1- 2p- 2"/ 4

2+3.3- Final form of the geopotential disturbinguhction



Putting together (49) and (52), we obtain :

ZZ( j _z_lil_mKImZDlmp(l ) iGlpq(e) expilplmpq (57)
where :
Winpa = (1 =2p) @+ (1 =20 +0) M+ m(Q - 6) (58)

Actually ® is a real function and, taking account of (42) éit), adopting normalized

coefficients((jm,ém) , we find :

R=§2(§)HZZF,W Zelpq &) Sou (Q. @, M,6)

= =0 p=o (59)
with

Finp(1) = ViFip (1)

(cf. formula (44)).

Sineq = Cin COH o+ SnSINY g
and :

Con =Cp» S, = S, if + miseven,

Cr =-S5 §n = G, if + misodd.



2+3.4- First order perturbations in the elements

The term of the geopotential which dominates thucbing function isR,, sinceC,,
(or - 32) is at least hundred times larger than any ofjeror S, (it has been found empirically

that the magnitude of these coefficients decreppeoaimately asl0®/I? - Kaula’s rule). We

can therefore get a fairly good estimation of treganperturbations by restricting ourselves to :
R, —CZO( j ZFZOp 2pq(e)cos{(2—2p)a)+(2— 2p+ g M] ,

(written here in non normalized form with,, = 1.08262810°).

Following the successive approximation technigescdbed in 1.4, we first get the (main)

secular terms of,«, M from the above, withp =1 andq = o, that is :

K. (RY
Rao10 = gczo(g) F201(| )GZIO(e)

where :
Fo (1) =3/4sin’1 -12
G,,(6 = (1— &), exactly.

From the last three Lagrange equations, we find :
Q.. =n —En (Ejz;cosl
sec— QT 2 C:ZO a (1_e2)2

R\ 1
—| ————(1-5co | 60
)(1_62)2( cos 1) (60)

: 3 (
w.=Nn =—n
sec w 4 CZO a

: 3 R 1
MSECZHM = n—z ngo(gj m(3c05 I —])

These are very important formulas. They show tiw mean orbital plane has a
precession motion which is retrograde ®< 1 <90(sinceC,, < 0) and prograde if
9(°< | £18(° (at this degree of approximation, it is extremshyall for | = 9C°) ; the line of

apsides rotates (motion aj in this orbital plane clockwise if > 1, counterclockwise iffl <1,



with 1, =63 28 ;I is the critical inclination and the periapsis umbes a peculiar libration
motion whenl =1_ (in what follows, we will always assume thiat | ) ; finally, with respect to

the mean motion (in the absence of perturbations), the satelliesgaster on its orbit if <I _,
and slower ifl >1_ with 3cog| , - 1=0 (I ,= 33 16) :

In reality, it is easy to see that other termsnely the zonal harmonic€,, , (of even
degree), fork > 2, also give secular perturbations which can be etetpas above in a first

approximation ; in the following, we will assumeattQ__, ., M . (denoted simplﬁ,fa, M)
contain these perturbations.

One must realize that there is no mean to havelegeperturbations oa, e, Iwith this
type of disturbing function.

To finish with, we apply the remaining of the pedare described in 1.4, and we obtain
(including the variations irM resulting from changes in the mean motignarising from

perturbations of the semi-major axis) :

Aa =) Ay, (61)

Impg
where a represents anyone of the orbital elements, anditingg) set of indices is such that it

does not produce any secular effect (already irclud Q,, M = n), that ISWympq % O-

The Aa,,,, for the metric elements, e, lare of the form :

— a
Aa'lmpq - Clmpq

(2,21,0.5, M| S,(@.0, M6) (62)

and for the angular elements ., M

(a,—e,'l,é,w*, Tvl) S Q. @, M6) (63)
where : a,g, | are the mean values af, e, |, as opposed to their osculating values

a:é+Z(Aampq), etc ..., andQ,@, M are the mean rates d@®,«,M evaluated with the

secular terms as said above ; that is for instaﬁcﬁesculating) =Q, +§( t- 1;) +2AQ, -



Sinpq 1S @s N (59), andy,,; = G SINY g = SnCOY 1mpg Yimpq itSENf is evaluated with
the mean angular element€), +§(t —to), w, +cT)(t—to), M, +ﬁ(t—t0) and with

=6 +9(t —to). In the remaining of this course, we will drop @ik overbars to simplify the

notations since there should be no confusion t @rder perturbations are evaluated with the

values of the mean elements.

The Cy; , coefficients are the following :
Cliwpq = 2AG‘pq (l_ 2 p+ q)/l/jlmpq

e _ﬁ‘Equ[m(l—ZN Cb_(I_Zp)]/wlmpq

Impg — a €
: A 1
C|:npq = gmeq [(| -2 p) cosl — m]/gl/,mpq (64)

o A1

™A e

W _liN1-€¢ cosl ,
Cime =5{ e 1C” sinlv1-¢? A G'pq}/wlmpq

1-¢ (1-2p+a)n
Cln'\qu = E{Z(I + ])Glpq - e Glpq _3Glpq ¢, ‘//|mpq
mpg

>

with :

A= na(g)l Finp(1)

R) -
A = na(g) Fuo(1)
As an example, we have computed the perturbatiorthéof OPEX-POSEIDON satellite

with the following mean elements = 7714410m, e= 9310 ,l= 66 02 They have been

converted to rectangular coordinate perturbations in thesGsstem by the method which is the
subject of chapter 3 for dllm, p, g’s.
R. Rapp’s 1991 global geopotential model truncated at degiterder 60 has been used,

and |q| limited at 2. Then, since the perturbations for gi\(é%,sm) are composed of many



frequencies, the r.m.s. has been computed. Theatiiagn figure 9 shows the r.m.s. perturbation
in position, in meters, for each couple of harmsrffor low degrees and orders, the perturbations

are quite large and their graphic representationtwancated ...).

TOPEX : POSITION (METER)

B Asove 23
[ ] 22 - 23
| 21~ 22
[ ] 20 - 21
[ | 19 - 20
] 18- 19
] 17- 18
. 16 - 17
n 14 - 16
[ ] 13- 14
] 12- 13
[ ] - 12
] 10- U
B o9s- w
| ] 08 - 09
[ ] 07 - 08
Il os- o7
I 05 - 06
Hl o4- 05
[ ] 03 - 0.4
02 - 03

01~ 02

=00 - DJI

-0.1 ~ -0.0

~-03 - -0

—0.4 — -03

[-] -05--04
[] -o6--0s5
] -07~-08
3] -08--07
-08 - -08

% -10 - —0.9

BELOW -10

Fig. 9. Diagram of r.m.s. perturbations in the positioriref Topex-Poseidon satellite.

2+3.5- Choosing the orbit of a satellite

It all depends on the usage of the satellitehefdn board sensors and their operational
constraints.

The mean motion is quite important for it is th@jon angular parameter which very
directly interacts with the sidereal time rafeand it conditions greatly the overall coveragee Th
mean semi-major axis which corresponds to it im@uedy places the spacecraft far enough from
the Earth’s upper atmosphere or directly in it .(dggm 200 to 1 000 km) which may entalil
problems as concerns the mission life-time, th@@roperation of some sensors, the attitude and
orbit controls of the satellite ... ; also, one tmuste the decrease of the geopotential pertunstio

as (R/a)', (apart from sharp resonance cases), of whichnemetake advantage, for instance in

the case of geodynamic satellites (e.g. LAGEOSE ifean eccentricity will usually be rather

small, so as to operate at more or less constttudal, apart from variations due to the radial



orbit perturbations and due to the Earth’s flattgniThe inclination is a very important parameter
since it is through it that the orbital plane pssEs and, for many sensors of geodetic and Earth
observation missions, it governs the coverage imadlyf obtains thoughout the mission.

Important cases are : the polar inclination bycliithe orbital plane is practically fixed in
space (if the altitude is sufficient to neglect &féects of drag) ; the heliosynchronous case in
which the orbit plane follows (approximately) the@ton of the sun with respect to Earth, that is
Q =360°/365.2422d = 098565Hay (it cannot follow the sun exactly since the rigistension
of the sun does not vary linearly but has addifigraiodic terms which depend on the Earth
mean anomaly, eccentricity and obliquity), whichuiees an inclination generally in the range of
96° to 100° :1 (helios) = cos?[-4 7842041077 , witha in km .

In all cases, figure 10 illustrates how successimaeks are placed with respect to the
Earth, from which one can derive algorithms to catepghe coverage of the ground tracks or to
determine repeat orbits. The algorithms are basethe value of the longitude intervahA ,

between two successive tracks, with respect tchEart

G.M(t+ TN )

o

“.ack[i],/‘ track[i+i]

7
, N(t+ Ty )7
2 — (Eq)
A N—— b
1 l(t'i'TN ) '

Fig. 10. Geometry of successive tracks

N : ascending node



Tn : nodal period
G.M.: Greenwich meridian
Eq : Earth equator
We have :
D= A(t+T,)-A(1),
= (Q B ‘9) Ty

where ¥ is the secular drift of the ascending node &qathe nodal (draconitic period), given by

T, =271/(M + )
with, as before :

M = “mean“ mean motiofM > o)

« = secular drift of argument of periapﬁlisj << M)

@ = sidereal time rate

Two types of problems can then be solved :



(a) Resolution at the equator versus time :

Let us call p; the resolution on the equator after a time intedyd counted from the
beginning of the mission (WithAT, <AT,...), that is after an integer number of nodal
revolutions, K .

We have :

AT, = KT,

and we write :
p, = R4,

whereR is the (mean) Earth equatorial radius.
At the beginning, we have :

0, =2/R andK, =1
Then the serie{s,oj ,ATJ.} _is given by the following sequence :
J

- let us define :
Jifj=1 0 A =2m A, =AM
ifj>1 : B;=0;,4,,- A,

A =0,
A, =inf(B,A -8)
- then, forallj =1 : q =[AJ. Y +]] J[..] = integer part

K, =[2mn, +12)

P = RA,
AT, = KT,
This algorithm takes account only of ascendingdescending passes. If both types of
passes are considered, which is reasonable if thigaloeccentricity is small - that is the

spacecraft altitude will be almost the same atdéscending and ascending nodes and sensor

“operation” conditions may be similar too, the attuesolution will be betweem /2 and g.



Finally, if one is interested in the mean resolutad some latitude, resolution numbers must be

multiplied by the cosine of that angle.

(b) Determination of repeat orbits of given repeaperiod :

A repeat orbit is characterized by the existerfceteger solutions{ h, k}, hON, kOZ,

to the following equations :

hTN = Trep
L @w+M _h
h{Q-6)T, =2k, —— =— 65
where notations are as before and the given rgpeaid is T,,. Being givena,,e,, |, (usual

metric elements), and allowed intervals of theirriations : [ao—Aa,aD+Aa]=A,

e, —Agg+A 49: E,[ L=AL L +A I] =J, one searches the possible valbed,...h, and
associated valuek)(which may satisfy the equations farldJA, e OE, | (0J. Actually, thehs
are all consecutive, thatts, <h<h_ (andh =h,, +i-1) and, for a givem, possible values

of k are found to be betweeq,, (h) andk__(H. There may be no such value for a gilign

For any couple of value$,§ and a given value & in &, one then tries to find and
| so thati(a,e, 1), M(a & 1),Q = (2777 T, ) ( K § + 4 satisfy exactly the system.

There may be no solution, or sometimes solutiantside 2 andy.

The physical interpretation of the repeat orbihist the ground track repeats itself after
(nodal) revolutions of the satellite in the orbipddne and aftek revolutions of the orbital plane
itself about the Earth’'s mean rotation axis andhwrespect to the Earth’s surface :
Te, = Ty = KT,

In reality nearly every circular trajectory resdesba repeating one since any real value of
(a')+ M)/(Q - 9) may be approximated by a ratio of two integergréctical problem might be

that the integer values become quite large forcauarate approximation of this ratio ; therefore

one usually limits oneself to repeat periods whaighless than a few months or so.



The longitude spacing of the ground tracks is obsty 360°h. For example, SEASAT
had in its last month a repeat orbit at the me&itudé of 790 km withl = 108°, resulting in
h/k =-43/3, hence a longitude spacing of the ground tracksthat equator equal to
360°/43 = 8.37°, TOPEX-POSEIDON, with= 7714.5 kme = 9.5 10° andl = 66.039°, is such
that (co+ M)/(Q - 9) =-127=-127 10, hence a longitude spacing of 2.83° i@paat period
of 9.92 days.

It is interesting to look at the spectral charasties of repeat arc differences in this case.

All orbital elements being expressed, as in (62) @3), as Fourier series with coefficients which

are functions of the mean (fixed) metric eIemem%t +T ) a(t) is the product of such a

rep

coefficient (independent o¢f by a sine or cosine of :

t/llmpq (t + Trep) - ‘//|mpq( t)
Writing 0 = ( —2p+0)(@ + M)+ m(2-6)-qe,  taking  account  of

T., = h2rf/(@+ M) = k2r/(Q - 6), and then of Q(t +T,ep) Q (1) +QT,,,

M(t+T) M(t) + MT__, we find :

rep rep’

(t+T ) w(t) + T,

rep rep’

Uinpa (t+ Tp) = i) =[(1 =20+ ) h+ M 27— @0,

To the ordem in eccentricity(q = o), we find that the argument aftdy,, differs by a

multiple of 272 ; therefore the differences of any two elemengésemual to zero. In particular, the
radial perturbations are the same on any asceraidgscending arc ... but not necessarily at a
cross-over between an ascending artescending arc (it can be shown how they agtddfer -

see, for instance, Balmino, 1993). The tegnil,, causes this result to be approximate : we can

only say that all short periodic perturbations dgmgeopotential model errors are eliminated in
repeat arc differences. In the case of a frozeeateprbit, we havec = o and we can expect the

effect of qaT,, to be negligible.

2+4. THE DETERMINATION OF A GEOPOTENTIAL MODEL-OVE RVIEW



Global modeling of the Earth’s gravity field haselm a concern since the beginning of the
artificial satellites era. Observing the trajeadsriin space of such proof-masses allows in
principle to determine the forces which act upoamhand compute the coefficients inherent to
their parameterization ; this is the oldest invepseblem of celestial mechanics. In practice,
however, trajectories are observed from groundostat(sometimes from another satellite) by
means of ranging devices (radars, laser systemhwitw reach centimeter precision), range-rate
measurement apparatus (measuring the Doppler eféeen tracking cameras which observed, in
the old days, the directions to the satellites o gky background. All these instruments have
limitations (biases and noise) and, since satelleist be flown at a minimum altitudeif we

want to live long enough (say above 350 km for fa-time of a few months - without

manoeuvering the orbit), the attenuation fac[tl@;‘( R+ H)]I ultimately limits the degrek (and

orderm< ) to which we can determine the spherical harmooi¢he geopotential.

Another important fact lies in the frequency spatt of the geopotential orbital

perturbations, which comes from the decompositioth@ disturbing functiorr as given by (59).
We can re-arrange the quadruple summation cﬁl/,en, p,q) as follows : for a model to be

determined up to degree and ortewe first write that :

Then, changing into k =1 -2p, ginto s= |- 2 p+ q, interchanging the summations oveand

k and finally limiting the series g, (€ to|ds Q we readily find :

Ipq (

U L +L k+Q L . R b
EZ > 2 > il_me(gj Dz (NG gyzeic () eXp(i‘//ksm)(%)
m=ok=-Ls=k-Q (I:max(mzlk\)]

|-k:even

with : ¢, = kw+sM+ n{Q-6), andD,,, being the normalized inclination function.

Imp

From (66) it is obvious that several harmonics if@#mity when L — ) give rise to

perturbations of the same frequency. By varyggone goes from the so-called m-daily



perturbations (perioe 277/ (mé?) whens= o, withw andQ << ) to short period perturbations

(s# o which all involve the sam&,, harmonics. For a given distribution of trackingtiins it

is usually not possible to observe well enough ahat, that is to sample well enough the

perturbations it undergoes, and the resulting oflasen equations are then insufficient to

separate the different harmonics. That is why, Wtk approach of geopotential determination, it
is necessary to have several satellites with vaittides and especially inclinations so as to get
very different coefficients in the bracketted temh (66), hence independent observation
equations for the harmonics. A very favourableaitn is also when the orbit is in shallow

resonance, that is when there exist(, p, q or equivalently K, s, m) sets of indices such that

Wiem << N (¢ may eventually come to zero in cases of sharmeesme, but these are transient

phenomena). Neglectingo andQ with respect ton and &, such a situation occurs when

sn= nd. If n is expressed in revolution per day, we have apprately n=ny s Whenn is an

integer, the main resonant perturbations are with oeffients K,

In

(s=1), thenwithK ,,(s=2), K4, (s= JM; if n=r/2 (r : integer), resonance occurs with
K, (s=2), K, (s=4), and so on ... These enhanced perturbations &fidetter determine the

corresponding class (es) of harmonics. Finally, remnark that, if we have a polar satellite

mission which results, after some time, in a growradk pattern with equatorial inter-track
distanced, and if observations are made along the orb'emtlever)(A/R)/n secondsr(is here
in rd/sec), then the data sample allows, in théepercase, to recover all harmonics up to degree

and orderL = [nR/(ZA)] .

Most accurate geopotential models have also betrdined by combining satellite data
(from which satellite only solutions may be commtevith surface gravity measurements and
also satellite derived geoid heights from pastratry missions (Geos 3, Seasat, Geosat, ERS1-2,
TOPEX-POSEIDON) - after correction for sea surfamgography (the difference between the
ocean surface and the geoid), from a model, oirylsaneously determining it. Equation (46) is
the basis for performing this combination as fartles geoid height is concerned. A similar

equation exists for the gravity anomalidg derived from surface measuremen8g = g, ..cureq



(reduced on the geoid) y . s (ON the ellipsoid) is the basic quantity usedtiis tase yis

the theoretical gravity - it is called “normal git3t) ; the relationship betweerlg and the
geopotential harmonics is :
U< R)'&/~ _ _

Ag=z2(1-1) (T) mzo(c,; cos + §, sinm) R sing (67)
where C, is as in (46). Such equations are in general t@wmrifor mean values which are
derived from real measurements (or sometimes fropdipted anomalies - with a larger
uncertainty, to avoid artefacts in the poorly cegeareas).

As an example of what can be obtained from thevalatescribed techniques, figures 11
and 12 show contour maps of the geoid height aadigted errors of one GRIM 4 (combined)
solution (Schwintzer et al., 1997). Usual featurethe geoidal surface are visible, and the errors
accumulate over land areas not well covered byityraiata (altimetry data were used over the

oceans, thus providing a much better control).

Fig. 11.

Fig. 12.
3e AN APPLICATION : THE RADIAL PERTURBATIONS DUE TO THE

GEOPOTENTIAL

The radial perturbatiordr, on a satellite orbit due to the geopotential rhayderived in
various ways, and with various approximations. @pproach uses the Hill equations (Schrama,
1989), others start from the Lagrange equationskanda’s formulation of the solution (Wagner,
1985 ; Rosborough, 1986, Engelis, 1987). Here, viealgo start from the analytical expressions

of the orbital perturbations derived from the Lagya equations (formulas 64) and from



r(a,e, M) as given by (13) or (17). We will first derive tperturbations of ordey and order 1

in an elementary fashion, to show some of the tvelpish are encountered when working with

almost singular elementg € o usually), also to correct some mistakes made riieeavorks in
the terms of order 1.

We will therefore write :

Ar = Z(Arlr(r:p + ArIr::1p + (A Irl:np (68)

I,m,p

where the superscript stands for the order in ddcép.

Perturbations in the two other orthogonal diretiqtransverse and normal) may be
derived in a similar way. The transverse componest Ar, derived from

AT=rAy =1 (v +Aw+AQcod ) ; it can be evaluated from (18) and from théupeations in
M,a, andQ. The normal component, A, comes from
A = r[AI sin(w+v) - AQ sinl coéa)+v)], requires to expand cesand sirv by (19) and (20).

Perturbations in all three directions will be givarthe conclusion for completeness.

3+1. RADIAL PERTURBATIONS OF ZERO AND FIRST ORDER IN ECCENTRICITY

We start from (13) truncated et r = a[l— ecosM - & (co2 M- :I)/d from which, by
differentiation, we obtain :
Ar =(1-ecosM)Aa+ a(e- cosM- eco® MA e+ asinM&a M

To obtainAr® andAr®, we rewritéy as:

Ar= Aa...... with terms of order 0,1 ine
—eAacosM........ 0
—alecosM ......... 0,1
tedde.....ooinenn. 0
—eaAeco2 M..... 0

+aeAMsin M...... 0,1



Now we use (64). We take advantage of (54), (b8)(&6) and we keep terms with :
.q=o0,+1-1forAa

.q=o,+1-1for eA Mand retaing,, forG, (and- é=)

2
.g =01+ 2for aAeexpanding,/1- é ( -2 pt+ ()—( F 2@ ass —( F 2[)%+q ;
therefore the singularity disappears whegr o ; also, there is no singularity mfor

q=+lduetoeq,, ; finally the remaining1-e* term is replaced by 1, angl= +2

generates a term @

Hence, dropping otheg’ terms which are generated by these choiceg arfd following

the prescribed orders per termdn :

| - - I-2p+1 l-2p-1
Na= ZA{ Smpo e Opt See ¥~ 91 Smp—li|}

lﬂlmpo ¢Imp1 bt et lﬂlmp—l
1-2p
—eAacosM = -2 § Y S,mpo cosM
Impo
glpl Ip-1
—alAecosM = - A m S COSM = Sip-1COSM
Imp1 Imp-1
I-2p Ip Ip-2
+e| - 20 Simpo COSM + Sz COSM + Sip-2 COSM
Impo Imp2 Imp-2

-eaAecox?2 M= - 4 % glpl Smpl cos2 M - ;Ip = Smp 1C082 M} }

t//Impl Imp-1

. glpl * * .
aeAMsin M = - mot SIN M— mo1 SIN M
A{ wlmpl S P lﬂlmp— S P

H 2(1+1) - Opo ~ 3(| 2p)¢/I jl/h Simpo SiN M]}
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Now, recalling the expressions 8f,, and S, and noting thaty, .. £ sM = ¢, . . we

form :
1
Smpq COSSM:E( San*S-}- ﬁﬂpﬁ )
_ 1
SmpqsmsM—E( ngrs” q)
. 1
SmpqcossM:E( cgst %pq) (69)

S*mpqsm SM:%( aﬂnq-s_ ﬁmﬂr )

Collecting the terms of order zero, we get :

20-4p 9 Op-1 :l
arg, = A Sy e g (70)
mP |: t//Impo I/IImpl [/IImp—l P

(four terms, withS, , and §, . ,, have cancelled out ...).

When | -2p = 0 andm= o, the first term is actually zero (the factbr 2p cancels the

term before integration), and there remains a constant:ter

gZ p,p,l gZ p,p,-1 —~
Arp o= A + C
2p P [ pr,o, pl pr,o, p-1

2p,0

This formula also shows that semi-major axis perturbstiomith frequencies
Winpo = (I - 2p) (co+ M)+ m(Q - 6?) produce radial perturbations at the same freqesndit also
implies that perturbations oa at any other frequenc(/q % o) produce much smaller radial

perturbations. It is also seen that the termAm and AM which vyield the largest radial

perturbations have the frequencigg, ., and produce terms at the same (previous) freqegnci
Yimpo- A Major consequence of this is that the longqeeperturbations oa andM result in short

period radial perturbations. For examplemf= oand |- 2p= 1 we have perturbations @and

M with frequency«, due to the odd degree zonals ; radially, theyigeda perturbation with

50



frequencycw+ M (once per revolution). Due to the usually largeplitmde of such long period

perturbations oe andM, the short period radial perturbationmis also quite large.

The terms of order 1 give a more complicated tesdier some algebra, one finds :

+1 +1 +1 +1
Arlrj]"]p - Ae ( Cl + Co + C‘Q C_l ]Smpl
¢Impl wlmpo wlm[ﬁ lplmp—l

ci .G, S ql} N
{wlmp— ¢Impo lplmp-z ¢Imp. Smp— ( )

AN
{wlmpl ¢Imp2 Smp3 wlmp_ wlmp_ Smp— ]

Formula (70 is in agreement with previous worksthier authors. In (71), we have :
=(31-4p+1(1-2p+ 33
3 1 3
Gt =2(p=1) -1+ (4p-3)(1 - 4p) + (1 - 20) Y e

c* =%{(p— |)(2| —3p+§) ‘%(' _op+ 2)2}

oy =%(4p— 1+1)

ct=(ap-1+1(1-2p-33

L3 1 3
C;t =5 pr1=(4p=3) (1~ 4p) = (1-2P) /e

1 5 1
C__; :—§|:p(3p— |+§j +Z (I—2p—2)2}

1
cl= _2(3' ~4p+1)

These are the terms found by Rosborough, witlsg@ms) a missing factor (1/2) for
C;',Cl, ¢t and afactor (- 1/2) fo€7;.
This author forgot the four other terms, which are

C;l-'.3 = glp1/2
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Cz+3 =~ glp2/2
C—_l3 = glp—l/2

C—_z3 == glp—2/2

It is interesting to quote another form of form(I®), derived by Wagner (1985). Making

the substitution of indices(l,m, p)ﬁ(m k,D already encountered in (66), denoting

Yino = Puan= W o(then ., = & 1) and theny, /n = B, = k(L+ayn)+ n{Q-6)/n, it is

easy to transform (70) into :

2ay Sy (R Ball +1) =%
ar _an;Jk:Z—LI:ma%ﬂZ,k) (aj Flm'(l_k)/Z( ) B (ﬁkm_l) Sm’(l_k)/zyo 72

I-k:even

3+2. GENERAL FORMULATION OF THE RADIAL PETURBATION S

We start from (17) for and we follow Rosborough (ibid) :

r :ai H, cossM

S=0

with :
H, =1+¢€?/2
2ed
H, =~ g Js(sé], for s o

We defineH_ = dH /de, and find easily :

Ar = Aa(z Hscosij +al e(z H cossl\/B - a N(Z sH sin srg! (73)
We then apply (64) and, for a particular @em p,q) we find :
Alyog = 020, > H (COSSM

+ aAqmpqz H.cosSM (74)

,mpqz sH, sin sM
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Looking at this series term by term, we have fweombination(l,m, p, q,§ :

Ar s =0a, H cossM+alAe,  H.cossM- & M, sH sinsM (75)

Impg

Since J(X) = o(xs), H is of order €°, that is the perturbations decrease with
increasing. Replacingla,, ., by C; .S €tc .. we get an expression with products

Sinpg COSSM, §,,, Sin sM, $npq sin sMwhich we transform by (69), hence :

1 a e r
Alpgs = E(C mpds T@Cp He + aqmpq Sl—l) $mp(q+§

1/ ., ,
+E(Clmpq Hs + aClempq HS - aqr\:l‘pq Sl_!) §nPQ(Q'S)

If the range ofs is changed fromoto +o to be —o to + and the functionsI:I‘S IS

defined as :

Ho = Ho
Ho=H/2, A ,=H,(s=12..+),
then we can write in a compact form :
Ars=C |mpq§|mp(q+ ]
where :
Curps = il + 8 G FL+ 2l SH

The total radial perturbation is written :

=] +00 +00

=YY Y.

=2 m=0 p=0(Q=—c S=—00

We can make the following changes of indices :
q' =q+ s d range is— o, +co
s'=(Qq : srangeis— oo+

and then renamg’ as beingy and as beirsgand we obtain :

Ar = Z.O:lezl: +Z°°Arlmpq (76)

1=2 m=op=0(q=-x

where :
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Afog = ClnpeS (77)

Impg™ Impg

and :

Cirmpa = _z Clmps( o3
= (78)

= zcliwpsl:iq—s + aCIempsH;—s + d q_ é qr:]/Ips T_(J—s

S=-00

This form shows that the radial perturbation atode at a given frequency
(I,m, P, q giver) depends on the perturbations agne, M at that frequency =q in the

summation) and also of an infinite number of déf@rfrequencies (other valuesspf

3+3. FREQUENCY SPECTRUM

We start from (77) and want to identify all terofdifferent frequency. From the form of
Sipq @AY, We infer that we must distinguish between theatdm= g and non-zonal
terms (m> o . We found also simpler to start from a formula vehthe frequencies are indeed
identified by three indicek, g, m (cf. formula (66) forg) : ¢, = k(w+ M) +gM+ mQ - 6).
From this, it is clear that :
- whenm=o: terms of all different frequencies are obtainad: fo
.k =o+qgand - q butg# o( g= ogives a secular term)
kK # o:(k, a) and(— k — c) sinca&l/_, 40 = "Wigo
- whenm>o: all terms with diﬁeren(k, q)'s generate different frequencies.

Hence, writing that we have a model truncatéd=d_ and thaty is limited thq| <Q:

L +L +Q L
Ar = Z Z Z zClm,(I—k)/2,q$m,(l—k)/2,q (79)

m=o0k=-Lq=-Ql=l,

with 1. = max(2 Jk| m) andl - k being always even in the summation, we have :
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- for the zonal terms :
.whenk =o;
QT L B
Z|:Z (Clo,l/z,q + QO,l/Z,—q) QO}COSQM
g=1L1=2
.whenk >0

Q | . co9S k:even
2 {.Z(C'“('-k’/lq +=1 Qo,<.+k>/2,-q) q"MSinjk Yo

a=-Q :odd

These two cases can be compacted in :
Q [—
Ar(m=0) = z Z(CZiyo,iyq +C2jp,i ,-q)c2j o COSquo
J
L Q _ co k:even
+ Z Z |:Z(Ck+2j,o,jq + (_].)k Ck+2j,o,k+j,—q) Ck+2j,o:|( ﬁ wkqo

] SNV odd

(80)

This has been derived by settihngk = 2j , and we haverunning fromj,,, toj ., :
Jonin = max(o ;L—[k/z])
=[L -k]/2

J max

- for the tesseral harmonics, using the same wamsition of indices, we find :

+L +Q Jmax _
Ar.(m>o) = Z Z [( ZCk+2j,m,j,qu+2j,m] COSQ[/kqm

k=-Lg=-Q

j:jmin

| (81)
Jrnax _~ i
+( zCk+2j,m,j,q Sk+2j,mJ Slnwkqm:l

i=imin
where we now have :

i = max{o 1-[k/2 -k [m- K/2)

jmax =L —K]/2, as before.

By letting the indices run as indicated, thatosih=a k= oto L, q=-Qto Q(q¢ c) .
andform>ak=-Lto +L g=-Q to+ Q we obtain all terms of different frequencies.

The amplitudes are obtained by :

.m=0,k= 0 ; F1to Q

ZJ:[( Gioja * ij,i,—q)_qjo]
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.m=0,0< ks L Z[ c;+2j,o,j,q +(_1)k Q+2j,0,k+j,—q] _ct;+2j,o ; q:_ QtO + Q
J

277Y2

2
.m> 0o,— L< k< L[[z c;<+2j,m,j,q E;(+2j,mj ‘{Z ct;+2j,m,j,q ~+2],mj L qo + Q
J J

As an example, figure 13 shows the spectrum of Tohpex-Poseidon radial orbit
perturbations based on Rapp 1991 model truncateeigree and order 70.
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Fig. 13 Frequency spectrum of the Topex-Poseidon radd perturbations

3+4. RADIAL PERTURBATIONS BY COEFFICIENT, BY ORDER , BY DEGREE

We will derive the r.m.s. perturbations for : eguzir of coefficients(c_:,m, Sm), then for

all coefficients of a given orden, finally for all coefficients of a given degreeepending on the

case, we will use one form or another, such as, @6)80)-(81), of the radial perturbations,
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which is most suited to identify the different fusmopcies in order to take properly the r.m.s. of the
adh’oc terms.

3+4.1- For a pair of coefficients

We start from (76), forandm fixed, that is :

| Q
Ar, = Z chmpqslmpq

p=0g=-Q
Then :
[ Q Q
< Arlr?] >= ZZ Z ZCImquImjs < Smpq Smjs>
p=0j=00=-Qs=-Q
Recalling the form of5 ,, it is clear that the means < ... > are zero wnigs,, = *¢, -
This condition is satisfied when :

*m=o0j=p s=gand j= |- p s=- q;thatis:

, _, [cos 1,
< Sopq > = CIo [ j wlopq > :E QO

sin®

where < ... > is taken over the smallest commortipielof all encountered periods.

oS CcoS o
<SopsSorpq> = G sin Y opq sin Yot - q In distinguishing betweeh even (cos ...) antl

odd (sin ...) ; hence...> = —(1)' C2/2 in this case.

Therefore, for a zonal term :

<Arlo > __sz z [Clopq 1) C:Iopqc:lol p,—q (82)

p=0g=

*m> o0 we simplyneed=p s= q

. 1, -
Since<S; > = > (C,ﬁ1 + Sﬁq) we have :

<Arg > = 1(C + Slm) Z Z Clmpq (83)

p=0g=-Q

The r.m.s. follows by taking the square root &)(8r (83).
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3+4.2- For a given order m

We already identified precisely the indices yietfdifferent frequencies.

*m=o0 : we start from (80), squawkr, and take the average ; hence :

2 1 J ~ i
<Arpg > =5 Z(Czj',o,i,q +Cyin ,—q)Czjo

=1 |

) (84)
5 Z Z {Z ( k+2j,0,j,0 1)k Ck+2],o,k+j,—q)f:k+2j,oi|
2iGa—al ]
*m> o : starting from (81), we readily find :
2
2 1 . S ~
< Ar(m>o) 2 k—Z—:LqZQ |:(Zj:ck+21,m,j,qck+2j,mj

(85)

2
+ (z Ck+2j,m,j,q §<+21 ,mj }
J

In (84) and (85), the range of indgxs as prescribed in (80) and (81). From thesks, it
easy to find the full field perturbations in sumuiaver all orders (since frequencies of all terms

of different orders are all different), that is :

y2
r.m.s(Ar) = [Z<Ar } (86)

3+4.3- For a given degree |

We here start from (76), fbfixed, that is :

| I +Q
= ZZ ZCImpqupq
m=op=0q=-Q
Then :
L1 1 Q Q
< Ar(|2) >= Z;ZZ ZQ Zchmpqclkjs < Slmpq Skjs>
m=ok=0 p=0 j=0 q=—Qs=-

If m# k, frequencies are necessarily different and <is.zero. Hence we are left with :
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| | | Q Q
< Ar(Iz) > = Zzz z chmpqclmjs < Smpq Smjs >,

m=0p=0 j=0 4=-Qs=-Q

which is nothing but :

[
<Ay >=) <Al > (87)
()] Im

Therefore it suffices to add the terms of (82) é®) forl fixed.

As examples, fig. 14 and 15 give the radial pédtions by order and by degree which are
computed for Topex (model truncated at degree ather &0).
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Fig. 14.r.m.s. of the Topex-Poseidon radial orbit perttidres by degree
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Fig. 15.r.m.s. of the Topex-Poseidon radial orbit perttidves by order

4e CONCLUSION

We have given the readers the basic tools to atalhe static gravitational perturbations
of the Earth on a mean satellite orbit, when aigggnal model is given as a series of spherical
harmonic coefficients. These perturbations haven beelicitely written for the elliptic mean
orbital elements, as well as the magnitude of #mus vector which variations and spectral
components are fundamental quantities involvedialkte altimetry.

For further investigation of gravity field recoyerapabilities of some satellite systems, it
is also necessary to have the perturbations otrahsverse and normal components of the radius

vector, and sometimes on other quantities, too. @ayity gradients). Adopting the notations
(Ar,Ar,AZ) = (Au,Av,Aw) already used in the derivation of the Hill equasicand assuming a

guasi-circular mean orbit, we have the followinghnesonant perturbations (cf. Balmino and
Perosanz, 1995) :

Au | Qu Tk
R 1
Avi=a ) ( ) 7| Q Tim (88)
m,1,k[2] ﬁ<m
AW QW Z-Imk
where :
Q= Fpginz [Bunll +9) = 2K/ By
Q = F e[ 2B (14D - k(3+ 82)] / B2 (89)
1 — —, —.
Q. —E( imkt ™ Dimies = Elmicr ™ Elmm)
and

Z-Imk = CIm COSX km+ SImSin ka
Z-I:nk = § Cos ka_ E:ImSin ka

Dy = d[ /2]/d| (50)
= F (-2 (kcOsl = m)/ sin

E,

Imk
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In those expressions, the quantitieR,:a, |, F,,,, G,,and§, are as previously defined.
Furthermore we have :

X = k(w+ M)+ m(Q-6)

Ben = Xin/

As beforen is the orbital mean motiorg,,, already introduced in formula (72) which gada,

(91)

is therefore a frequency expressed in cycle peaslugion ; its module is different from 1 in our
case (non resonant). The summations in equationr(@8from m=oto L, | = ma>(m,2 toL,
and k=-l to +I, whereL is the maximum degree and order at which the ta@onal
potential series are truncated. In addition, onestmbhave |-k even forAu, Av and
| —k odd for heAw component. Of course the perturbations in velooiyy be obtained by
simply derivating those expressions with respedtinte.

Other functions of the perturbations may be oénest, for instance the variatidkv of

the total velocity. Using the kinetic energy eqoat(6) we find :

AV = uN (Y208 & -a1 r?) (92)
Aa is taken from equation (64) akt = Au from equation (88) above. The result is, againafor

quasi-circular orbit :

o= k[Zi;eved (le Ben = 1 B -1 Tim ©9

m

with :

Q =nF Ik/2[ (1+13K2m)_(|+])ﬁkm]/:8km (94)

Also of interest is the relative velocity pertuibba between two co-orbiting spacecraft
separated by a mean angular distanc&his perturbationAd , is expressed whea is small
(<10°) by:

ad = mlk[lz:‘<ever1 (le Ban = 1 B, -1 T 9

m

where :
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Q, =2Q, sinka/2
0723 ~ (96)
Z-I;nk = SIm Ccos XLm_ Clmsw| x’km
and

Xlim = ka+ ka/2 (97)

Finally, gravity gradient observations on boarspacecraft may be carried out, solely or
in combination with other measurements. For corepless, we just recall below the expressions
of the diagonal terms of the gravity gradient teriadhe local orbital frame, still in the caseaof

quasi-circular orbit :

r (1+1D)(1+2

uu R |

M =n’ (gj IE|m,(|—k)/2 _(I +1+k2) L4 (98)
r m,1,k[2] k2 —(l +1)2

Equations (88) and their time derivatives, and &qgoa (93), (95) and (98) allow to perform
sensitivity analysis of all the observation systermssidered in modern satellite projects aimed at

mapping the Earth’s gravity field, such as thosewsed in tutorial # 5.
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