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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.



PREFACE

The purpose of these notes is to give the theory and use of
same methods of camputing the geodetic positions of points on a
reference ellipsoid and on the terréin. Justification for the first
three sections of these lecture notes, which are concerned with the
classical problem of "computation of geodetic positions on the surface
of an ellipsoid" is not easy to come by. It can only be stated that
the attempt has been to produce a self contained package, containing
the complete development of some representative methbds that exist in
the literature. The last section is an introduction to three dimensional
computation methods, and is offered as an alternative to the classical
epproach. Several problems, and their respective solutions, are
presented.

The approach taken herein is t§ perform complete derivations,
thus staying away from the practice of giving a list of formulae to use
in the solution of & problem. It is‘hoped that this epproach will give
the reader an appreciation for the foundation upon which the formulae
are based, and in the end, the formulae themselves.

The notes evolved out of lecture notes prepared by E.J.
Krakiwsky and from research work performed by D.B. Thomson over recent
years at U.N.B. The authors acknowledge‘the use of ideas, conteained in the
lecture notes, of Professors Urho A. Uotila and Richard H. Rapp of the
Department of Geodetic Science, The Ohio State University, Columbus,
Ohio. Other sources used for important details are referenced within
the text.

The authors wish to acknowledge the contribution made by the

Surveying Engineering undergraduate class of 1975 to improving these



notes by finding typographical errors. Mr. C. Chamberlain is particularly
acknowledged for his constructive criticism, and assistance in preparing

the manuscript for publication.
E.J. Krakiwsky

D.B. Thomson

February 14, 19Tk
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INTRODUCTION

The first three sections of these notes deal with the com-
putation of geodetic positions on an ellipsoid. In'chapter one, a
review of ellipsoidal geometry is given in order that the development
of further formulae can be understood fully. Common to all of the
classical ellipsoidal computations is the necessity to reduce geodetic
observations onto the ellipsoid, thus an entire chapter is devoted to
this topic.

Two classical geometric geodetic computation problems are
treated; they are called the direct and ihverse geodetic problems.
There are various approaches that can be adopted for solving these
problems. Generally, they are classified in terms of "short", "medium",
and "long" line formulae. Each | of them involve different approxima-
tions which tend to restrict the interstation distance over which some
formulee are useful for a given accuracy.

The last section of the notes deals with the computation of
geodetic positions in three dimensions. Fiist, the direct and inverse
problems are developed, then two special problems -~ those of azimuth
and spatiasl distance intersections -- are dealt with. These solutions
offer an alternative to the classical approach of geodetic position

computations.



SECTION I: ELLIPSOIDAL GEOMETRY

1. The:Ellipsoid . of Rotation

Since an ellipsoid of rotation (reference ellipsoid) is
generally considered as the best approximation to the size and shape
of the earth, it is used as the surface upon which to perform terrestrial

geodetic: computations. Immediately below we study several geometric properties o
an ellipsoid of rotation that are of special interest to geodesists.
In particular, the radii of curvature of points on the suface of the

ellipsoid, and some curves on that surface, are described.

1.1 Ellipsoidal Parameters

figure 1 shows an ellipsoid of rotation. The éarameters of
a reference ellipsoid, which describe its sizé and shape, are:
i) the semi-major axis, a,
ii) the semi-minor axis, b.
The equation of any meridian curve (intersection of a meridian plane with the

ellipsoid surface,(Figure 1), is

=1. (1)

The surface ef an ellipsoid-of fotation.is given by -

2 2 2

> 5 . (1a).

(o}

a



Figure 1

THE ELLIPSOID OF ROTATION



The points F and F' in Figure 1 are the focii of the meridian
ellipse fhrough poinﬁs P, E'y P', E. The focii arérequidiétant from the
géometric-centre (o)‘gf the ellipse. The distances PF and PF' are equal
to the semi-major axis a. This information is now used to help describe
further properties of an ellipsoid.

The ellipsoidal (polar) flattening is given by

g =8B | (2)

Two other important properties, which are described for a

meridian section of the ellipsoid are.the first eccentricity

2.2
¥ = &2 M)
a
and the second eccentricity '
2.2
et? =222, (%)
b

As an example of the magnitudes of these parameters for a
geodetic reference‘ellipsoid, wevpresent here the values for the Clarke

1866 ellipsoid, which is presently. used for most North American geodetic

position computations [Bomford,. 1971, p 450]:

a = 6378206.4 m,

b = 6356583.8 m.
Using (2),

£ = 0.00339007 ...

which is often given in the form 1/f, which in this case is
1/f = 294 .97869. ..
Using (3) and: (&) .respectively, we get

62 = 0.00676865. .. ,

e'2 = 0.00681478.. .



S;
The four parameters a, b, e (or e') and f, and the relationships

emong them, are the principal ones used to develop further geodetic

formulae.

1.2 Radii of Curvature

On the surface of an ellipsoid, an infinite number of planes
can be drawn through a point on the surface which contains the normal at

this point. These planes are known as normal planes. The curves of

-

intersection of the normel planes and the surface of the ellipsoid are

called normal sections. At each poiﬁt, there are two mutually perpen-

dicular normal sections whose curvatures are maximum and minimum, which

are called the principal normal sections. ' These principal sections are

the meridian and prime vertical normal sections, and their radii of

curvature are denoted by M and N respectively (Figures 2 and 3). In
Figure 2, it can be seen that the meridian radius of curvature increases
from the equator to the pole, and the prime vertical radius of curva-
ture behaves similarly (Figure 3). The reasons for this will be seen

shortly onee the formulae for M and N have been developed.

1.2.1 Meridien Radius of Curvature

Consider a meridian section of an ellipsoid of rotation

(Figure 4) given by

x2 Z2
-—é-+—é-=l. (l)
a b

The radius of curvature of this curve, at any point P, is given by



Tangent plane

Figure 2

MERIDIAN NORMAL SECTION SHOWING THE MERIDIAN
RADIUS OF CURVATURE (M)



F'ngurg 3

' PRIME VERTICAL NORMAL SECTION -SHOWING THE PRIME
VERTICAL RADIUS OF CURVATURE (N)



[Philips, 1957 , pp. 19L4-197]

2 3/2
d
(1+ (2
M= — : (5)
d "z
dx2
In the case of a meridian ellipse
&, _xv (6)
dx z 2 °? ‘
a
and
d2z b2 Z - X %% :
L% (—5%, (1)
dx a Z
or
2 2 2 2
--—-dz=-b (z+§—-‘p-). (Ta)
2 2.2 z 2
dx a2 a

From Figure 4, we can also see that the slope of the tangent to P is

given by

tan(90+¢)=Z = - cot ¢ . | (8)
Equating (6) and (8) gives
2
-cot ¢ = - 3;-9-5 (9)
a
or
tan = 2 (9a)
an ¢ = ) it
b
Substituting
b = a(1-62)1/2 (9b)
in (9a), yields
z = x(1-€2) tan ¢ . ~ (10)

Then, after replacing b and z in (1) with (9b) and (10) respectively,

same simple manipulation results in



GPED SR G GREP GNP G e .

" Figure 4

'DIUS OF CURVATURE (M)
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a cos ¢

2sin2¢)

x = (11)

- (1-e /2 °

Substituting the above expression for x in equation (10) gives the

formula
2\ .
- a(l-e“)sin ¢ (12)
2 ,.2.,1/2°
(1-e“sin“¢)
Finally, replacing x and z in (6) and (Ta), and placing these
2
values in (5) for %i and Q_%_’ the expression for the meridian radius
dx

of curvature becomes

M = a(l—ea)

- (13)
(l—ezsin2¢)3/2

In equation (13), the only variable paremeter is the geodetic

latitude ¢, thus at the equator (¢ = 0°),

M = a(l-e?), (13a)

and at the pole. (¢ = 90°), |
| M = a/(1-e2)1/2 _ (13b)

- % The meridian radius of curvature increases in length as the point

on the meridian moves from the equator to the pole.

1.2.2 Prime Vertical Radius of Qurvature -

From Eiguré 5,

(W)

cos ¢ =

=N

or

N = X . (lh&)
cos ¢




Paralle!l of Latitjude

- Figure 5"

PRIME VERTICAL RADIUS OF CURVATURE.(.N)
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Substituting the expression for x (11) in (1Lka) yields the

. expression for the radius of curvature in the prime vertical,

a

N—

= . (15)
(l—easin2¢)l/2, «

Since the only variable parameter in (15) is ¢, N ~then varies with .¢. When
¢ = 0° (equator), N = a, and when ¢ = 90° (poles),
N = a/(1-e2)*2=u . (15a)
An important quantity that is used very often in gecmetric

geodetic computations is the Gaussian Mean Radius of Curvature, which is

given by

R = /MN . (16)

In many instances, the mean radius is sufficiently accurate for position
camputations. |

Another radius of curvature that may be needed from time to
time is that of a parallel of latitude. Any parallel of latitude,
viewed from the north pole of the ellipsoid (z aexis), describes a
circle. Its radius, as can be seen in Figure 5, is equal to the x-
coordinate (in the meridian plane X*‘Z system). Then, from equation

(14a), the radius of curvature of a parallel of latitude is given by

R¢~= N cos ¢ . (17)

0
It is easily seen that when ¢ = 0 (equator), R

= N, thus R, = a (since

¢ ¢
N=aat ¢ = 63, and at either pole (¢ = 90°), cos ¢ = 0 and the radius

disappears.
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1.2.3 Radius of Curvature in Any Azimuth

As has been shown in Sections 1.2.1 and 1.2.2, the maximum and
minimum radii of curvature of any point P on the surface of an ellipsoid
6f rotation lie in the meridian and prime vertical planes,

In some instances, geodetic camputations require the radius of curve-
ture in a plane other than the principal ones (Figure 6). The normal
section in some azimuth o has a radius of curvature at any point P

designated by Rh' It is solved for using Euler's Theorem [Lipschutz,

1969, pg. 196], and is called Eulef's radius of curvature.
| In Figure 6, the point P at which the radius R, is required,
is shown on the normal section PP'. Only a differential part of the
normal section curve (ds) is shown, since the azimuth a of this small
section is equivalent to the azimuth of 2 normal section of any length.
Euler's theorem is solved as follows. At the point P, we
draw a tangent plene, and parallel to it, another plane (Figure T)
that intersects the surface of the ellipsoid. The latter plane,
yiewed along the normal through P, forms an ellipse in the plane EB'
where the tangent plene intersects the ellipsoid surféce. The elements
of this "indicatrix“ are shown in Figure 7. If we view this plane.
through the point P', in the azimuth a, the resulting sectiog is Figure

8. Recall that the equation of an ellipse is

x2
..34.
a

. (1)

“ro[ o
1]
=



1k

'Figure 6

"  NORMAL SECTION AT ANY AZIMUTH o



Figure 7A

INDICATRIX FOR SOLUTION OF Rg
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Figure 8

SECTION ALONG PP' (&) FOR SOLUTION OF Ry
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From Figure T,

x = ds sin «
(17)
y = ds cos a ,
~ Then (1) becomes
dszsinaa + dsecosaa = 1. (18)
2 2
m n
Using Figure 9, we can write
sin 9=§- , - (19)
and
1
> c
sin 6 = £— ; (20a)
o
which results in
c2 |
z =5 . (21)
o

Since PP' is a very small differential distance, then C = ds, and we

can write
. d52

Z - 2R . (22)
a

When o = 0°, s equals n and
z = ==, (23)
and when a = 90°, s equals m and

5 ‘
z = 2, (2k4)

and
m =——N. ‘ (26)
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Figure 9

SOLUTION OF Z FOR SOLUTION OF Ret .
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Substituting n2 and m2 in (18) gives

R sinza R cos a
o [*]

5 + T =1. (27)

Finally, after rearranging the terms of (27), we get the expression for

the Euler radius of curvature,

R = N - (28)

@ M sin2a + N cosza

1.3 Curves on the Surface of an Ellipsqid

There are two principal curves on the surface of an ellipéoid
that are of special interest in geometric geodesy. They are the normal

section and geodesic curves described below.

1.3.1 The Normal Section

In Section 1.2, the normael section was defined as the line of
intersection of a normal plane (at & point P) and the surface of the
ellipsoid. Consider two points on the surface of an ellipsoid (Pl and
P2) which are on different meridians, and are at different latitudes.

The normal section from Pl to P2 (direct normal section), is not

coincident with the normal section from P2 to Pl (inverse normel section)

(Figure 10).
The normal plane of the direct normal section, containing the

points P and the inverse normal

1’ 71 1’

plane, P,n,P., contains the normal at.P, and the point P

, n. and P2, contains the normal at P

1 If the normal sec-

tions P1P2 and P2Pl were coincident, then the normals~Plnl and P2n2, in their
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Figure 10

RECIPROCAL NORMAL SECTIONS
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respective meridian planes, would intersect the minor axis at the same
'point. It can be shown that the intersection point z, of any ellip—'
soidal normal section intersects the minor axis at  [Zakatov, 1953; p. 39-L0]
2
ae sin ¢P

= 4 (29)
n (l-e251n2¢I)l/2

z

If two points have different-lengitudes, and ¢p < ¢P‘ (Figure
1 2

10), then an < an, and the normals plnpl and p2nP2 do not lie in the

same plane. They are said to be skew-normals. However, if ¢Pl equals

¢

P2’ the direct and inverse normal sections are coincident.

-For two points on the same meridian, the ellipsoidal normals
do not intersect at the same point on the minor axis. They are, however,
in the same plane (the common meridian plane), thus the normal sections
P1P2 and P2Pl are coincident.

The result of the aforementioned is #hat on the surface of the
eliipsoid, the normal section does not give a unique line between two
points. Thus, an ellipsoidal triangle is not uniquely defined by-
normal sections. In Figure 11, the direct normal section from A to B,
AaB, is not-eoincident'wifh the inverse normail -section BbA.

Thus, the geodetic azimuth aA does not refer to the same curve as does
’aB. Similar problems exist for the azimuths A to C, B to C, etc.

We now look briefly at the magnitude of the separation between

direet and inverse. normal sections. In Figure 12, this separation is

shown as the angle A.  The formula for the solution of A is given by

[Zakatov, 1953, p. 51]

A" =vp"0% e202c082 ¢msin 20y ), (30)
12



22

fiqwo 11

RECIP"ROCAL NORMAL SECTION TRIANGLE



Figure 12

ANGULAR SEPARATION BETWEEVN RECIPROCAL NORMAL SECTIONS
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where

e
¢Pl ¢P2
oy = 5 (31)
and
s,
o = N
m
and
N, + N
_ 1 2
Nm == - (31a)

For example; a line PlPQ; which is 200 km in length, and for maximum
conditions (¢mm= 0° and apz = 45°), A = 0V36. Since most traverse or
triangulation lines are shorter than this, and since the maximum situation
will not always occﬁr, the value of 4 is generally quite small, and in

most instances, practically negligible.

1.3.2 The Geodesic

The geodesic, or geodetic line, between any two_points on the
surface of an ellipsoid, is the unique surface curve between the two
points. At every point along the geodesic, the principal radius of
curvature vector is coincident with the ellipsoidal normal. The
geodesic (Figure 13), between two points Pl’ P2, is the shortest surface
distance between these two points. The position of the geodesic with
respect to the direct and inverse normai sections is shown in Figure 13.

To describe the geodesic mathematically, we will develop the
differential equations for geodetic linesz On a surface of rotation.

The basic differential geometry required:for this can be found in

of votation can be expressed as
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. Figure 13

GEODESIC
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F(x, y, z) =0 . (32)

The parametric equations for a geodesic on this surface are

y = f2 (S) ’ (33)
z = f3 (s) .
The direction cosines of the normal to the surface are
3F aF 3F
= 90X _ =y . =9z . :
cos Bl =5~ 3 cos 82 =-p 5 cos B3 =5 (34)
where
- (32, (3Fy2  (3F,\2)1/2

The direction cosines of the principal normal to the curve (33) are
2 2

cosBN =R-‘2‘-—J§-;coseN =Rg—§;
1 ds’ 2 ds
2
cos gy =REZ (36)
3 ds

where R is the principal radius of curvature of the surface.

In the definition of the geodesic, it was stated that at
every point on the curve, the normal to the surface and the principal
radius vector (principal normal) are to be coincident. To satisfy

this, we equate (34) and (36), which reduces to

3F 3F 3F

X = Bx 92 " (37)
d2x d2y dzz

2 2 2

Since we are dealing with an ellipsoid of rotation, the sur-

face of which can be represented by the equation
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%2 +y° + £(z) = 0 . (38)

Then
SF _ 3F _ oF _ : .
s = 2%, 5y 2y, g = £ (2) (39)

which when placed in (37) yields

2 2
ds ds ‘

Integration of (40) yields

ydx - xdy = Cds , (k1)

where C is th. constant df integration.

In Figure 14, the line PP' represents a differential part of
a geodesic on the surface of the ellipsoid. Having the Cartesian coor-
dinates of P (x, y, z), we can compute the coordinates of P',
(x + &x, y + dy, z + dz), since ds is a very small distance. The
coordinates of A (projection of P' into the plane of the parallel of
latitude of P) are then x + dx, y + dy, z. The radius of this parallel

is denoted by r. The area of triangle CPA is

Area CPA = %-(ydx - xdy) (42)

and the area of the sector PP"C is

Area PP"C = %-rds sin a . (43)
When ds is very smsall,
Area CPA = Area PP"C ,
thus
1 1 .
§~(ydx - xdy) = E-rds sin a , (kL)
and substituting (41) in (44) yields
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’ ) A
' .
(x +dx, y + dy, z +dz)

Fig‘ure: 14 '

" DIFFERENTIAL EQUATION OF A GEODESIC ON THE SURFACE
OF AN ELLIPSOID OF ROTATION
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Cds = r sin ads , ’ (45)
or .
rsina=C. (46)

Finally, substituting (17) in (46), we find that

N cos ¢ sin a = C , (47)

for any pnint along & geodesic on the surface of an ellipSoidvof rota-
tion.

In geometric ge?detic computations, it is necessary to define
our direct and inverse azimuths with respéct to the same surface curve,
and not with respect to the two normel sections. Thus we need the
separation between the normel section and geodesic curves. The sepa-

ration, stated here without proof, is given by [Zakatov, 1953, pp L41-U45]

A
s=4 (48)

where § is thé angle between the direct normal section and the geodesic
at any point, and A is the angle between the reciprocal normal sections
- between two points. Further development of this, and'the application of
appropriate corrections, are given in 2.1.1.

Further, the distance s between two points on the surface of
an ellipsoid is different if one uses a normal section rather than the

geodesic. The difference is given by [Zakatov, 1953, p. 51]

As = %%6 sin22a12cosh¢mo5 , | (k9)

which for a line 600 km in length amounts to approximately 9 x 10—6 m,

which is obviously negligible for all practical purposes.
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Figure 15

SEPARATION BETWEEN NORMAL SECTION AND GEODESIC
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SECTION II. REDUCTION OF TERRESTRIAL GEODETIC OBSERVATIONS

2. Reduction to the Surface of the Reference Ellipsoid

Geodetic measurements (terrestrial directions, distances,
zenith distances) are made on the surface of the earth.-Cléssical computations
of geodetic positions are made on the reference ellipsoid. Therefore,
measurements must be reduced from the surface of the earth to the
reference ellipsoid. When reducing measured quantities, there are two
sets of effects to be cbnsidered - geometric effects and the effect of.
the variations in the earth's gravity field.

It should be noted that the reductions developed herein can be
applied in an inverse fashion. That is, computed geodetic ellipsoidal
quantities (distances, for instance) can be "reduced" up to the earth's
surface (2.4). _

2.1 Reduction of Horizontal Directions (or Angles)

When we measure directions on the surface of the earth, we
level the instrument to ensure that the vertical axis is coincident with
the local gravity vector. We know that the local gravity vector and the
normel to the ellipsoid are not generally coincident. To refer directions
to the ellipsoidal normal, a correction for the deflection of the vertical
is needed.

Two othér considerations are those of ellipsoidal geometry.
First, the normals at two points on an ellipsoid are "skewed" to each
other, thus when & target is above the ellipsoid, this point is not in

the same plane as the normal projection of the target onto the ellipsoid.
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The correction associated with this phenomenon is called the skew-normal
correction. Secondly, we wish to have geodesic directions, and not normal

section directions, thus a normal section-geodesic correction is needed.

2.1.1 Geometric Effects

Figure 1€ shows the situation on the earth's surface for
direction measurements, after the effects of gravity have been removed
(2.1.2). In this figure, P} is the measuring station, which is on the

normal Plnl' Point Pé is the target at height hyabove the ellipsoid
point P2. If h2= 0, the direction measured (shown here as an azimuth,
is the assumed kﬁown orientation par-

i.e. a12 = d12 + z12, where 212

ameter) would be between planes P, zn,,

direct normal section azimuth. Since h # 0 in practice, the mea;ured

and PlPan’ that is a12’ ?he

direction %5 must be corrected. The reduction for this effect,
meas

called the skew normal or height of target reduction, must be applied.

From (29)
n, = ae2 (¢ =0.) cos ¢ (50)
28 2% m °
and
s cos o
(6,m0,) = ——= ~(51)
M, Y, i | |
where Mm = ———5—-— . ye get
n.n, = ae ﬁ;-cos a, 5C0S ¢m 5 (52)

where s is the arc length Ple.
Now to derive the reduction Gh,weﬂgroceed as follows. First,

campute
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nln2 cos ¢2

s
= ge 7 COs a
M
m

5 ;
10008 ¢, (53)
where ¢m has been replaced by ¢2 since the differe.ce will give a

negligible effect. Then, the angle at P!l is given by

2 22
ae 3 cos a12 cos ¢2
da = ‘ (54)
Mﬁ PQR
Now, if we approximate the length P2R by the semi-major axis a, (Sk4)
becaomes
2s 2
da =e ' cos a,,cos 9, . (55)

We now compute Png by using (55) as

—r _ 2s_ 2 )
PP, = h,e cos a,,cos ¢, . (552a)

Mm 12

Then for triangle PIPZPE we can write, (assuming a plane triangle)

sin & PP

'y _ T2
sin(a21-180°) s ’ (56)

which finally gives us, after some manipulation, the final formula for

the skew-normal correction

"= h(fg—ezsin— cos _a. c052¢ ) (57)
Sp T 0l i agptos-apcosdy) -

When ¢, 45°, and hy= 200 m, 2nd 1000 m, &, : equals 0Y008 and 0905,
respectively. Obviously, there will be instances where the
effect is significant, and must be taken into account. This is

particularly true for higher order geodetic position computation work.
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The second geometric effect to consider in direction measure-
ment reduction is that of the difference between the normal section, to
which we have now reduced our measurement, and the geodesic. This
correction, which is derived simply by combining equations (30) and (48)

is expressed as

e252c032¢msin 2a

&5 =" (
g 12 Nﬁ

where s is in metres."
When ¢ = 0", «
m

2y | (58)

12 = 45°, and s = 200 km, 100 km and 50 km,
6, is 012, 0%02 and 0"006. This effect conldibe significant end should be
taken into account for geodetic work.

Some final points regarding these geometric effects are noted

immediately below:

1) In equation (57), the ellipsoidal height h may be replaced
by the orthometric height H with no significant effect 5n_5h,

2) In most cases, 8,
magnitude and opposite in sign. They should be computed, however,

and Gg will be of approximately equal

particularly for precise geodetic position camputations.

3) Equations (57) and (58) are often expressed in other ways,
all of which give equivalent results, but which mey include further
approximations. As an example, (57) may be expressed as [Bomford, 1971,

p 122]

. h e'2

o . 2
6h =55 sin 2a12 cos” ¢

s | (59)

and (58) as [Bomford, 1971, p 12u]

2

s
" km 2
Gg = 0.028 (-iaa) sin 20 gos"¢ - (60)
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2.1.2 Gravimetric Effects

A theodolite is levelled with respect to the local gravity
vector and not to the ellipsoid normal. A correction for the angle
(deflection of the vertical) between the gravity vector and the ellip-
soid normal is necessary. Figure lTydeﬁicts the correction that must
be applied. This topic is coveréd in dépth in [Venicek, 1972, pp 164~
166]. We only state the reduction formule here as |

66 = -0 cot z,

= —05151n @, ,~n,COS ulz) cot z (61)

1
where £ is the meridian component of the deflection of the vertical, n

is the prime vertical component of the deflection of the vertical, and

z is the zenith distance. The effect of this reduction can vary from

an insiginfieant amount (if 6 = 0 or if z = 90°) to values of thé magni;-
tude 2" - 3" when for instance 6 = 20" and z = 80°.

To apply this qorrectiqn, and that required in 2.2, fhe
deflections of the vertical at each.point are requireé. These can be
obtained in various ways. A rigorous approach -is to observékfhe astronomic
coordinates:(é, A) at each station, which would be a difficult task.

Alternately, one may utilize the results of a contemporary geoid computation

technique [Vanicek and Merry, 1973], and compute £ and n at each point.

2.2 Zenith Distances

The only effect on a zenith distance measurement is that of
variations in the gravity field —— that is, the deflections of the
vertical. As in 2.1.3, we will only state the reduction formulae

here sas
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sin a,.) , (62)

z, =2z + (Elcos a12+nl 10

R m
where zm is the measured value of the zenith distance.
This topic is covered in [Vanicek, 1972, p 170, and Heiskanen

and Moritz, 1967, pp 173-175], and will not be discussed further here.

2.3 Spatial Distances

In this section we treat the reduction of a measured spatial
distance, on the surface of the earth, to the surface of the ellipsoid.
After having made various instrumental and atmospheric corrections to
the measured e.d.m. distance, we are left with a straight line spatial
digtance 2 (Figure‘ls). This spatial distance is then reduced to the
ellipsoid. The reduction is derived as follows.

First, compute

R, + R
1 2
R=1-2 | (63)
where Rl and R, are the Euler radii of curvature (eqn. 28). Then, from
triangle PiPL0, the cosine law yields
92 = (rR+h )2 + (R+h )2 - 2(R+h,)(R+h,) cos ¥ (64)
1 2 o) (R¥hy ’
where
by =E 4N,
(65)
h, =H, + N

2 2 2 _
which are ellipsoidal heights, and are equal the sum of their respective

orthometric heights (Hl and H2) and geoid heights (Nl and N

2). Replac-

ing

cogs ¢y =1 - sin? g- (66)

in (64), and rearranging terms yields
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2 2 . .2 By By 2y
€ = (hz-hl) +2R° (1 + -ﬁ)(l * 3 )sin 5 - (67)

From triangle PlP O, the cosine law and half-angle formulae yield

2
4 =28 sin &, (68)
o 2
or
-] L
# = 2 sin —2% . (68a)
Setting
h, - h =4h, (69)
(6T) becomes
2 _ .2 B By o5
2 = An +(1+§-—)(1+§—-) L s (70)

which when rearranged is

. 1/2
% -( ."i‘Aha 5 ) (11)
(1) (1)
Now,
s sma.?ﬁsin'lfg . (12)

Thus, using (71) and (72), we can reduce a spatial distance to the sur-
face of the ellipsoid. These formulae are sufficiently rigorous for
current geodetic work [Thomson and Venicek,..1973].

” Note that for a rigorous distance reduction the geoid
height N is needed. There are various methods of computing N, one of
vhich is that developed at U.N.B. [Vanicek and Merry, 1973].

No mention has been made here regarding precise base lines.
The reason for this ommission is that precise base lines are not being
measured much any more, except for EDM instrument calibration for which

reduction to the ellipsoid is not necessary.
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Finally, it should be noted that there are many distance
reduction formulae in use, some of which have been developed for spec-

ific reference ellipsoids, or regions of countries.

2.4 Reduction of Computed Geodetic Quantities to the Terrain

The situation often occurs in practice where computed geodetic
quantities, namely distances and angles, must be measu:ed on the terreain.
These can not generally be .compared directly with the computed values
since the latter are usually given on the surface of the reference
ellipsoid, thus they must be "reduced" to the terrain.

In.order to reducé the required angles, one proceeds as
follows; First, compute the directions (azimuths) between the points
involved. Then, using equations (57), (58) and (61), compute the
quentities 6!, Gg and 63 respectively. These corrections are then
applied to the computed direction aiJ’ with signs opposite to those
ﬁsed for reduction to the ellipsoid, to obtain the direction that should
mees

be measured, a i °

direction (or angle) exactly since it, and the measurement taken, will

Obviously, one wouid not be able to measure this

have some standard deviations. A similar procedure is used for distance

reduction. A simple rearrangement of terms in equation (72) yields

8

20 = 2R sin SR ° (722)

and similarly (71) gives

h h 1/

1 2
P=R2 L+ )L+ ) 2] . (T1e)

Thus, we can compute the terrain spatial distance % given the ellip-

soidal distance s . Once again, as with the directions, it should be
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noted that both the computed spatial distance and the measured one will
have some standard deviation meaning that an exact duplication of the
computed distance by remeasurement will not be probable.

It has been shown that the reduction of geodetic angles and
distances to the terrain is a straightforward process. Thus, when
faced with the problem of checking measurements on the terrain which
are given on the reference ellipsoid, some preliminary computations

enables one to carry out the remeasurement task.
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SECTION III. COMPUTATION OF GEODETIC POSITIONS
ON THE REFERENCE ELLIPSOID.

3. Puissent's Formula - Short Lines

3.1 Introduction

These formula are named after the French méthematician who
is credited with their development. Their derivation is based on &
spherical approximation, thus they are generally considered to be
correct to 1 ppm at 100 km, beyond which they break down rapidly (4O
ppm at 250 km when ¢ = 60°) [Bomford, 1971, p 134]. Thus, we say that

" Puissant's Formula is a "short" line formula.

3.2 Direct Problem
Given ere the geodetic quantities ¢,, A, 5., &nd a,, (Figure 19).
We are required io compute the quantities ¢2, Az and Qpq -
| In this derivation, we first computee¢2. We obtain, for the
spherical spproximation, from spherical trigonometry (cosine law)

sin ¢, = sin ¢, cos (P ) + cos ¢, sin(P ) cos a (73)

12

But P1P2 —EI , and ¢2 = ¢l + d¢, and § = aq, since it is stipulated
that the meridians are in the same plane. Then
s
. s 510 . 12
51n(¢1+d¢) = sin ¢, cos —EI+ cos ¢ sin _ﬁ; cos a,, (T4)

What is required now is to get an expression for d¢. From equation (TL4),
we can exﬁress the left hand side by

sin (¢l+d¢) = sin ¢, cos d¢ + cos ¢, sin d¢. (75)
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Expanding cos d¢ and sin d¢ in series (using the first two
terms only), we write

2
cos dp = 1 = Q&E .o
(16),

and

sin d¢

L}
(o1}
S
i
X
oy

then (75) becomes

2 3 o
= i -] -di- - g’i—
(sin ¢l+d¢) sin ¢,-sin ¢, =5~ + cos ¢,d¢ - cosy ¢ z +..(77)
‘ 512 512
Taking the right hand side of (75), we expand cos X and sin.-ﬁ— in
‘ 1 1
a series (first two terms only):
- b e e 'Y
| Ny on2
and (78)
810 515 3
Sin -ﬁ.—— SR oS an Gewme e e ®
1 M oew
Then (74) can be rewritten es
| a2 ag>
sin ¢l + cos ¢ld¢ - gin ¢1 5> cos ¢1-—%—'+ ..
' 2
s s
12 12 _
= gin ¢1 + Nl cos alzcos ¢l - 2N2 sin‘¢l
1
6N1

After cancelling appropriate terms, and dividing (80) by cos ¢l’ the

.. expression for d¢ is

2 3

S, sT, s 2 !3 (80)
d¢ =‘§£2cos o A= ~;g'tan ¢, = 12 cos a + 4¢ tan ¢, + d + ..
12 2 1 3 12 2 1 6
1 2N, 6N]
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The above formula will obviously not yield the required solution since
d¢ appears on the right-hand side of the equation. To begin to solve

this problem, we again use the spherical approximation and set

S
. 22 (81)
d¢ N cos a12 .
1
Substituting (81) in (80) yields
2 3
s S S
, 12 12
de = COS Q. = == tan ¢, = —== cos a +
N, 127 2 17 o 12
1 1
2
815 2 a¢>
+}-cos a12 tan ¢l+ 3 S P (82)
1

From (82) above, we can now get a more precise approximation for d¢

(neglecting terms grea.tér than the second power), namely

2
s s '
d¢ = il'g' cos a,, - 22 4on ¢, (1 - cosad ) I T, (83)‘
1 o %12
which can be written more simply as
s a2
12 12 2 . W
d¢°‘Nl cos alz-anzta.n ¢, sina,, + .00 . (8h)
1
Squaring (8L4), and neglecting terms greater than the third power ylelds
s2 &3
2 12 2 - 12 2 (85)
de N2 cos a12 P——-—cos alzsin a12 tan ¢l + ...
1 1
and further
s3
3 .12 3 (86)
dé -——N3.cos a12+... .
1

Fina.lly,. substituting (85) and (86) in (80), end rearranging terms gives

us
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12 sie -sie 552 2
d¢ = —=—cos a - = tan ¢, = === COS « 4+ ~== cos a..tan ¢. =
N 2 2 122 o e
1 1 1 1
53.2 2 2 532 3
- ;;g cos a,, sin 5 tan"¢, + —;3 cos a12 + .. (87)
1 1
Collecting terms yields
2 3
s s s
L2 _ 12 2 = . 2 2
d¢ = N cos @5 —-E-tan ¢lsin a5 __§ cos a1251n alztan ¢l +
1 2N 2N
3 1 1
.512 2 '
- —3 cos a,, sinTa,, + cenes . | (88)
6Nl
Further simplification is attained by setting
s3 s3
- 12 cos a sin2a tan2¢ - -——-cos a sin2a =
2N3 12 12 1 61\13 12
1
3
51 2 2
=12 oog ;o sin“a;, (1 + 3 ten®y,) , - (89)
6N3 |
which, when placed in (88) finally yields -
510 2 °1 2, 2, )
d¢ = — cos a tan ¢.s8ina -——-cosa sin"a. .(1+3 tan ¢. )+..
Nl 12 ~ 21q.2 1 12 6N3 12 1

(90)

Equation (90) is not e rigorous solution since the radius of

curvature along the normal section Pl tao P2 is teken to be a constant

value N,, when in fact it chenges with latitude since N = fl(cp) and
M = f2(¢) (equations (15) and (13) respectively). In order to take this

change in curvature into account, we can write
N,
d¢ = — (right-hand side of (90)) , (91)

My
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where l/M.m replaces l/Nl, and

M =2 (92)
Since we do not know ¢,, Wwe must use the approximation
=M +adM | (93)
in order to compute M,. From (13), we compute
g;l'= a(l—ez)(~3/2)(l—e2 sin2¢l) =5/2 (-2e® sin ¢l)co= 41> (9k)

which reduces to

2
dM1 3e” sin ¢l cos ¢l

W% M

(1~e sin2 ¢l)

which when placed in (92) yields

hrl vy L%

Mm = Ml + ——— ’ (96)
P T
Mm = Ml + 'd';"" (2p") s (963')
easin ¢l cos ¢l (QQY) ()
M = -l- = . 97
R L e IR
From (97), ‘using the binomial series expansion giires
2
e sin ¢, cos ¢ " .
e -d—2 14, (98)
n M (1-e sin® ¢l) P

which when placed in (91) yields the final result

) s (95)"

cos 2 t si 2a
%5 Spptan ¢ysinal,

3 2 2
s,c08 alzsin a12(1+3 tan ¢1)

) S12
W T T, T
3ezsin ¢l cos ¢l t
(1 -

2(1-¢® sin%.)

(gé.’im , (99)

+

..)
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where d¢' in the last term of (99) is computed using equation (90)
(multiplied by p").

Finally, we compute ¢2 by

¢ = ¢, + 9 . ' (1.00)
The longitude of P2 can be computed by
A, = A, o+ dx . ‘ (101)

2 1

From Figure 19, using e spherical approximation the sine law yields

sin a
sin A _ 12 (102)
. 8 sin(90-¢,)
12 2
sin T
2
or
512
sin d\ = sin ﬁ-;— sin ‘o ,sec ¢, . | (102a)

Now, approximeting the sine terms on each side of (102a) by a tfigonometric

series, we can write (neglecting terms higher than the third power)
3 s., 8 '

ar - -@6—- + .= (-;f-?-‘z"%--)(sin alzs.ec ¢2) (103)
2 2 :
or
s 3 3 (103a)
12 s dx
d\ = -l;'-a—- sin a,  sec 4;2- Ns_sin o, psec ¢2 + 3 + .

2
Now, from the first two terms of (103a), (neglecting terms greater than

the third power)

3
s
3.2 .3 3
drx” = N3 sin"a,, sec g, * ... > (lqh)
2
which gives us
S1p s2 2 2
a\" = p"[—== gin a., sec ¢,.(1- =2(1-sin“a. sec¢,.))], (105)
N 12 2 1\12 12 2
2 6 -

which when placed in (101) gives the solution for >\2.
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2
_derivation for its solutfon is given in the next section.

Althougﬁ' L is also a part of the direct problem, the

3.3 Inverse Problem

and ¢2, A, of P

We are given the quantities ¢l’~ )‘l of Pl, 5 5
(Figure 20). The quantities required are S1p3 %, and a,,.
We begin by determining a5y Using a spherical approximation
: ' = -
<P P2Pl' 360 a5y (106)
and
L («P'P.P, + <P'P_P.) = Xa, +360-a,.) (107)
2 - 12 2’1 2'12 21°°
'- - k)
@15 = @, = da (108)
or
aj, = da +a,, (1082)

where da is the term which expresses the convergence of the meridians

between points P, and Pa. Using Figure 20, we can write

1
] o
G5y = @5 + 180 ‘ (109)
and replacing aiz by (108a) gives
— (o]
@y = aj, +da + 180 (1092)

Then, replacing a,. in (107) by (109a),

21

1 opn o _1 oo
5 (<P P,P, + fP,PEPl) 5 (a12+360 oy p=da 180°) (110)

or
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p' (sphere)

Figure .20

'PUlSSAﬁT'S 'FORMULA FOR INVERSE PROBLEM
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L ' ' = _ 4o (110a)
5 (<P P1P2 + <P.P2Pl) 90 5 -

Using spherical trigometry, the ta.ngent law yields
L ax €83 [(90 -4,) = (90-¢,)]

tan (90 - 3% = cot & , © (111)
cos -2- [(90-4,2)‘ + (9o-¢l)]

which reduces to (invert both sides of (111))

K2R
ga cos(90 - ?o: %) ar
tan -2"- = 1 tan —-2- (112)
s 3 (¢l—¢2)
or 1 (
sin 5 (¢,+9, )
tan &2 = s 1 2) tan & . (112a)
2 cos £ 2.
2

Next we develop the ta.ngen;ﬁ terms on both sides of (112a)which can

be expressed by (neglecting terms gfga.tér than the third power)

. 3
[+ LR dé dr  dX
tan 3 sin¢msec2(2+2h+...) . (113)
and N |
3
de d.u + 8
t 2 2“ + @ * L] L 3 (nk)
which gives the final equation
= ac L a dsé _ 3 3.4d
da" p" [dA sin ¢ sec 7=+ 75 (simt sec 3 sin“¢_ sec (2 ) +..]

*where 4’m is the ‘mean la.titude.

Replacing dd in (109a) by (115) gives us the required @, once we have an
expression for ¢i0e
The solution for a,, is as follows. Taking equation (99), and

rearranging terms, we get
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2
.3e"sin ¢l cos ¢l

cos'sy, = 3" (/1 - &) +

8 N
127 = 2(1-e® sin2¢l)
2 2 3 2 2
515 tan ¢lsin @y, 57,008 alasin a12(1+3 tan ¢£l.
+ - ¢ === = ;  (116)
2N  en

1 1

and using (105), & rearrangement of terms yields

a" | % siz sia 3 2
81, sina,, = R + ==5 sin a,, - —=5>-sin”a, secy, . (117)
2 6N2 6N2 .
Now, dividing (117) by (116) gives, after some manipulation of terms
{117) ' (118)

tan a12 = (116) *

Since @), @ppears on the right hand side of (118), iteration is
needed. First, begin by obtaining approximate valu;s for a,, from (118)
by using only the first term in the numerator and denominator and for 815
frem §16)or (L17), again using only the first term on the right hand side
of the equations. More accurate valn@s of ep and 815 are:dbt;ined by using
all terms in (118) and (116) or (117),respectively. Iterate until the

changes in o, and 8,, &re negligible. (As < 0.001 m and An

o £ ovo01).

3.4 Summary of Equations for the Solution of the Direct and Inverse

Problems Using,Puissant's Formuleae

The following is an outline of the steps required for the solution
of the direct problem using Puissant's formulae:

1. compute M, end N, using (13) and (15),respectively;

1
2. compute an spproximate d¢" with (9Q).

3. solve for d¢" using (99), end ¢, using (100);
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4. etompute N, with (15);

2

5. solve for dA" with (105) and A, using (101);

2

6. using (115), compute da" and finally a,, with (109a).

21
Similarly, we outline the steps required for the solution of

" the inverse problem as follows:

and N, using (15);

1. compute M, with (13), and N, o

2. compute a , with (118);

3. compute da" with (115), then a« , using (109a);

2

4. using either (116) or (11T7), compute S15°

3.5 The Gauss Mid-Latitude Formulae

These formulae were first published in English in 1861.
They are based on a spherical approximation of the earth and should
‘only be used for points separated by less than 40 km at latitudes

less than 80° [Allan et al, 1968]. The formulae sre [Allan et al, 1968]

da" = a\" sin ¢, (119)
_ 812 cos o :
d ¢ [{] = p " ( le ) ( 120 )
8., 8in a
LI " 12 m
d . P (Nm cos ¢m ) . (121)
where a, = a12 + gg_. (121a)

The similarities of theaabove formulae with the Puissant
formulae are easily seen by comparing (119), (120), and (121) with the
first terms of (llS), (99), and (105} respectively.

In order to solve the direct problem with the mid-latitude
formulae, an iterative procedure must be used. First, d¢" can be approx-

imasted using the measured azimuth in place of a s and Ml can be used in
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place of Mm' Then, a first approximation of ¢2‘is obtained using (100),
a first epproximation of dA vie (121) and Ao bj (101), thence da is
computed via (119). The iterative procedure can now be continued
using successive approximate values for d¢, da (thus e and @m) until
the desired limits have been reached. Finally,‘dl" is computed in
order to obtain 12.
The inverse problem is computed without ite:atioh since ¢m is
immediately available. Using (119), davis computed. Then, from (121)
10 and ®pq (1218). Finally,
can be computed with either (120) or (121).

divided (120), one obteins tan @ s thence a

the dlstance 512

3.6 Other Short Line Formulae

There are many short line formulae in use. Same of these
are included in [Bomford, 1971, pp. 133-139], and are called by nemes
such as "Claerke's Approximate Formula" (1 ppm at < 150 km), and "Lilli's
Approximate Formula" (15 m at 1000 km). All of these typés of direct
and inverse formulae (short lines) are based on spherical approximations
and are not as rigorous as those such as Bessel's long line formula,

developed in L.
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" k. Bessel's Formulae - Long Lines

k.1 Introduction

The formulae for the direct and inverse geodetic problems
developed below have been credited to Bessel [Jordon, 1962]. The
derivation is based upon the geodesic on the ellipsoid. This fact dis-
tinguishes Bessel's formulae from formulae which are based on a spherical
approximation (e.g. Puissant's), or even from formulae which are ellip-
soidal based but use the normal section curve as the foundation for the
derivation (e.g. Robbins, 1962).

The accuracy of the Bessel formulae is not limited by the
separation between the two points in question nor by the location of
the points on the earth. The accuracy is simply limited by the number
of terms one wishes to retain in the series development of the various
expressions.'

The folloying derivation begins by developing the relationship
between corresponding élements on the sphere and ellipsoid (not a
spherical approximation but a rigorous treatment); The solution of an
elliptical integral is then performed. Finallj the direct and 1nv§rse

problems are enunciated.

4.2 Fundamental Relationships.

We begin by establishing some rigorous relationships between
parameters on the sphere and parameters on the ellipsoid. In section
(1.3.2), we developed the basic property of a geodesic (L4T), which on

a sphere can be expressed as
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cos B sin a = cos By » (122)
where B is the reduced latitude [Krakiwsky and Wells, 1971, p 23], and
B, is called the "turning point" reduced latitude (& = 90°). From Figure
2la, o on the reduced sphere is equal to & on the ellipsoid, as are é on
the reduced sphere and B on the ellipsoid, thus we can write for both
cos B“sin @ =cos B . (122a)
We now develop some differential relationships with the aid of
Figure 21b. From the triengles in the spherical figures, we can write

ado cos a = adf ,

12
and (123)

ado sin a,, = & cos B! da,

where a is the radius of the reduced sphere (Figure 22), and do is the
angle subtended (at the origin of the sphere) by the normals at P and P'.

Similerly, ffcm the triangles in the ellipsoidal figure we can write

ds cos 85 = Md¢
and . (124)
ds sin @, = N' cos ¢'de .
Dividing (124) by (123) yields
ds _ Md¢ , cos ¢' df
dc - ag ~ " cos B' @ ° (125)
From Figure 22 and equation (1T)
N' cos ¢' = a cos B' , (126)

which when substituted in (125) gives

s _ &

o~ % ax (127)
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Pole

Reduced Sphere Ellipsoid

Figure ‘21a

FUNDAMENTAL RELATIONSHIPS FOR THE DEVELOPMENT
OF BESSEL'S FORMULAE

-
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di

/ r;'cosj'dl p'\'Q'-§+d¢-.

Ncosé di

Reducid Sphere ' Ellipsojd

" Figure 21b

FUNDAMENTAL RELATIONSHIPS FOR THE DEVELOPMENT
| | OF BESSEL'S FORMULAE
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. Figure 22

REDUCED SPHERE AND ELLIPSOID
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or
.d)‘:u o ° ' Q2ta)

which, from (1295) yields

@ _nas '
D e ap ' (1270)

Recalling that [Krekiwsky and Wells, 1971, p 28]
tan B = (1—e2)1/2tan b (128)

we can differentiste and get

-—dé— = (l_e2)1/2 -g‘i— , (li)g; ;
c0528 cos ¢ ‘

or
g._i = 1 cos ¢ (1293)

8 (1—e2)1/2 c0328 ’

which when substituted in (12Tb) givés

2
aL M cos ¢ .
- 2.1/8 2 (130)..
a(1-e“) cos" B
for any point on the ellipsoid.
Now, we want to get
ag/ax = £(B) .
We begin by expréssing
acosB-':% cos ¢ (131)
where
V = (1-&° coses)—l/e (132)

and(the curvature at the pole - equation (5a))



a2
= . (133)

Squaring (123), and rearranging terms gives

dL a 1 .
da Vc (l—e2)1/2 _
where
M =-9§ . (135)
V4

A further reduction of (134%), using (133), (3) and (131)

finally yields

Ex=v=.;a? . | (136)

Before proceeding further, we will derive (132), . From

(131)
cos ¢ = (-:-) V cos B8, (137)
which when squared yields
2
cos® = 35- v2eos28 (137a)
or ,
c032¢ = (l—ez) V2 coszB | . | (13TR)

Substituting (137w) in (137),

V2 = l+e'2(l-e2) VPcoss s (138)
which reduces to

-

V2 El—e'2(l—e2) coszs] =1 . (1384a)

Now, from equations (3) and (L4),

(1-e2) (1+e2) = 1 (139)
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and
e? = 2 (1-€2) (1392)

which when substituted in (138a) gives

v (1—e2c0828) =1 (1ko)

or
vV = (l--ezc-osef:l)"l/2 . (240a)-
Returning back to the problem at hand we substitute (240e) in
(136) we get -

af

- = (1-e2 cosas) 1/2

a (1k1)
end

%;s; = a(1-e2cos?8)1/2 . (1k2)

respectively.

k.3 Bodution of the Elliptic Integral

Next we solve ( 141) end (k2), and we do so by integration.
We begin by solving (142, to get a solution for ds/do. From Figure 23,

we use the sine law of spherical trigonometry and obtain

sin a. . sin 90°
12 - (143)
sin(90~8 ) sin(9(9-6l) 3
o
or
cos B, = sin a,, cos Bl s (143a)

the fundemental property of a geodesic and great circle. Further, using

Napiers rule of circular parts
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Figure 23

SOLUTION OF Jds
S T



n

cos a,, = cot o, tan By (14k)
or
tan Bl _
tan o, = cos oy, s (1kka)
and another required rel.é.tionship
sin 8, = sin (ol-mT) sin B_ . (1k5)

We generalize (145 ) for integration purposes (between points P; end P,,
Figure 23) as
sin B = sin (ol + o) sin B, (145a) .

so that ¢ is varieble, reckoned from point Pl. Note that when o = 05 s

B=82andwheno=0,8=sl.
Rewriting (149 es

ds = a(l—ezcosa.s)l/ e do , {1%6)
and then solving for cos2B from 1kSe by N -
?93%5 #xl-siq?](ofiajféinag , -(ﬂ&?).

in which we substitute Ul = o, and x = ol+o (a new va.ria’ble"for integra-
tion) then dx = do and we refw"ite (1’47) as | o

| cosaB =] = sinzx sinaso s (1478). .

which finally gives

1/2 ax . (148)

ds = a(l—e2+e2 sin26 sin x)

From (3) and (4),

2 - (1b9)
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which when substituted in (148) gives

,2 1/2
ds = a [ L >+ g 5 sin26 sinax] dx (148a)
1re's  1l+e' °
or
- a 2 1/2_ . ‘
ds (1+e'2)l/2 (1+e'“sin B sin“x) 1 %ax | (149)
Since
b 1
; = 2 1/2 * (150)
o (1+et®) .
and setting
¥ = e'? gip? B, (151)
(l,hg)f finally becomes
ds = b(1 + ¥sin’x) dx . (152) .

This expression is now integrated and evaluated for our particulér

parameters, which ylelds
(153)

emp g1 r""(1-&1: sin :c)l/2 :
x=a, '

In mathematics this is known as an elliptical integral [Abramowitz and

- Segum, -1968, p-589]. - m;e 1imits: on x(o+g,) are

02020y , (154)
then when
c=0,x =0, (15%e)
and when
g = 0n, X = 040y (15Lv)

Solving equation (153), we know that because k2 is smell, then
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| 6
(1+J:¢:2 sinax 1/2== 1+ -]2-'-k2sin2x o %‘khsinhx + % sin6x - ... (155)

Using the trigonametric identities,

sin’x = ;2'— (1-cos 2x) {156)

sinhx = eoo0 e
etc.

end substituting in (155) gives

2
(l+k2sin2x)l/2 = [1 + -]E—-- g%kh + ..] + [~ %‘-ka -1--.1%'}11‘l + ..]Jcos X -
kh
- gL cos bx + . . . _ (155a)
Replacing
2 :
A=1+-E—-—g%kh+...., (157)
1.2 1.k e
B = 'E k - Rk + o008 - 9 - ‘ (157&)
. kh ,) | :
CTent S - (asm)
D ma seewenti S | (157c)
in (153) gives
o.+0
Oq+0 Oq+0 17
:E—=A fl Tax -3 } Tcos2xd.x-c.f cos hxdx - ... (138)
% %1 °1

Before carrying out the actual integration of (157), we
consider the solution of general integral
0,40y, X o.+0
J cos nxdx = = sin nx (159)

% %1

=‘;'Ll" [sin (Ul+UT) - sin nol] (159a.)
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Another substitution yields a better form, namely
sin nx - sin ny = 2 cos g-(x+y) sin g-(x-y) - (160)

which when associated with our problem, we set

1 T
ya 01 ’ (161)"
then
X+y =20, +d, , (161a)
and
x-y=GT °

Now, in (159a), the right hand side beccmes

n . n
sin n(cl+oT)- sin ng, = 2 cos 5 (2clfoT) sin 5 O (162)
Now, evaluating (158), we get
| 9% ~
i) dx = g, , (163)
°1 ‘
! cos. 2xdx ='cos (20i+cT)sin s (163a)
51
9y 1 |
J cos bkxdx = Ecos(hol+20T)sin EGT » (163b)
91
ete.
Setting
Op = 95=0; (16L4)
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then
201 + op = 201 + 0, = 0y (1648) ~
or
20, + op = 0, + o, s (164p)
and '
g, + 0
25 = —L—u=2 (16ke)
m
or
2qm = 201 + Oy . (16k4d)
When substituted in (163), the solution to (158) is
s _ | _c _2 3. -
T = Ao,l, B cos omsin g = 5 cos hcm s;n 20T 3 cos 60_sin 30

= des)

From (164), we get a solution for

This represents the integration of the distance on the ellip-

soid with respect to the distance on the sphere.

Op 88
0., = 2.2 cos 20_sin o + S cos Lo sinza + L ‘2166)
TRy n T " 28 n p¥oeee '
" where
2
Agl"'%""z%kh'.'.oo [
1.2 1.4
Bysrk-le + oo 9
kh
o =g’I+ . ’ (166a)
D = sae Y
E= ‘-2——'k8,
65536
k2 = e'2 sin2B .
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Now we turn our attention to the solution of %% (1k1).

Rewriting (141), we get

= (1= e cos 8)1/2 | (1k1a) .
From Figure - 24 ,
6
d\ cos B = do sin oy, (167)
or
sin a
ah = ——2 4o (1672)
: cos B
Applying the sine law (spherical trigoncmetry)
sin 0;2- = Sin 90 (168)
sin(90-8 ) = sin(90-8)
or
cos B .
= 9 . 168
sin a,, = === , (  .a)
which when substituted in (1673) yields
cos B -
Bh=—z? @ . . fa6m)
cos™8 ST
Substituting for dA in (1&1&), we  get
cosB '
aL = (1-e>cos 8)1/2 2 do . (169)
cos B
Next we take df minus (167b) which gives
2 2..1/2
(1-e“cos“B) 1
dt-dA = cos B_ [ > -—%—ldo . (170} "
cos B cos B
Expanding (l—eacosas)l/2 in a series yields
2 L 6
(l—e2c0828)1/2 =1 - g— c0328 - %—coshs - %g-cosss - e (lTl)
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" Equator

Figure 24

SOLUTION OF dl.
G



which when divided by c0528 gives

2 L 6
1 e~ e 2 e L
I= 5"~ 38 cosB-—l6cosB—... (1712)
cos B
Equation (170) is now
dg = d\ - cos B [Z= + _ei co 28 + e6 coshs + ] do (172)
o- 2 8 s 16
or
e2 o= 2 eh L4
d9.=d)\—-§—cés So[l+rcosB+E—coss+..]dc. (1722)
For the solution of (172a), we replace 00328, coshB, etc. by
cos?g = 1 - s:I.n‘?Bo sinx s (173)
and
cosb'B =1 -2 sinzsosinzx + siﬁhﬁo sinhx . (173a)

(x is defined on page 64), which when placed in (172a) yields

- %= & - G- cos 85[¥}fzﬁ-(l.sin2355in21) + 55 (-2 sinaaosiggx +
4 b, . .
+ sin '8 sin X) + o..] dx . ~_"‘(17h)

The above expression is simplified and set up for integration
in much the same manner as was done for the solution of ds/dc. The

results are as follows. The longitude difference on the ellipsoid is

given by
I"2
L=/ "4, (175)
1
and on the sphere by
A= fh a . (1752)
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Then
2 99 o
L=2A- =5 cos Bo[fo (A'4+B' cos 2x+C'cos Ux + ...) ax], (176)
1l
where
2 L 2 I
' = €+ & _&_ % - & 2 3 b , b
A 1+ +3 5 sin B, —g-sin B, + g e sin By * oee (a17)
2 N Y
R - e .2 e .. b
B g~ sin Bo + g sin Bo - Ig sin Bo + een . (1772)
and
in
c! = = sinhB + (177p)
a o o e o . . i -
D= ....
The result is then given by
o2 o o .
= - —— ' ; ' —
L =X-2=cos BO[A op + B siancos 20, +‘2 sin 20,cos hqm + ...
D', 3 .
+ 3~ sin”o cos 6qm ff:. (178)
32 i 1 S % P C' ke T
(OB = Freos lKtey + Bteta of con 20, 4 £ etn 2oycon by ¢
D! 6 L '
+ 3~ sin 30 cos 60 + ves T (179)

Now, with all the necessary relationships developed, we will turn our

attention to the direct and inverse problems.

L.4 Direct :Problem :

Recall that for the direct problem we must know the geodetic

-

coordinates ¢l, A, of one point P., and the geodetic (geodesic) distance

1

sl2 and azimuth a12 to another point P,, then we solve for ¢2, A2 of P2



and a... The steps in the solution are as follows:

21

1. compute the reduced latitude Bl, using (128);

2. compute the azimuth of the geodesic at the equator, that
is sin a = sin o,, cos B, ; (122a),

3. compute the approximate sphericel arc o  from (166) using
only the first term (e.g. g, = ) then compute o, +l by

G,., =0+ g-cos 20 sin o, + ..
i+1 o A m i °

where the first iteration, o; = co, and recall that

2cm‘= 201 + oi s

in which 9 is solved for by (1la‘; this step is repeated until say

|oi+l - cil < 0Y00001;
' L. compute B, by (145), where B, is computed using (143a);
5. compute-¢2 using (128); |
6. compute the spherical longitude difference A using the sine
law (Figure 24), which gives N |

sin afsin a12

sin A = eon By 3 . ‘1(18%)

where the first approximation of o is given by (181). ACT
T:hen, using A from (180),“ccmpute @, cos 2g , cos hqm, cos 6qm‘using

(184), (185), (185a) and (185b), respectively; using (179), solve for

(A=L); this step is then repeated, with L = A -~ (A-L) (186), until say

[(A-L) - (A=L)| < 0"00001; finally; |
i ~htl

= A, = A, + L.

2 "1

7). the reverse azimuth is then computed via (186a) or (18Ta).
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Figure 25

SOLUTION OF ARC LENGTH o
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,4§5¢Inverse Problem

In this problem we are given Pl (¢l, Al) and P, (¢2, A2)5

from which we compute s 10° and o

12° @ 21°
The first step is to compute Bl and 82 (reduced latitudes) using
- (128)::Them;,” from thF'reaﬁce&iSPhéféﬁfFisure 25) we can compute the arc
lensfﬁfgdf='q&)”b&’ﬁsigguﬁhefcoéinéﬁlaﬁiof Sphéricar=ti180nometry as

cos 0 = sin Blsin 82 + cos Blcos 82 CcosA, (181)
or

sin 0 = [(sin A cos 62)2 + (8in Bacos Bl - sin Blcoa Bzcos 1)2]
(181a)

Since this an iterative problem, (181) is solved first using A = L in the
first approximation. We then compute

sin A cos 82

i sin-ala = oo . (182)

To compute the azimmth of the geodesic at the equator, ¢, we combine

(143a) end (182), ‘Whi f-yielas

‘vaﬂin aiz cos 8, = sin.a cos 0° (183)
or |
sin o :
sin o), = <50 = (183a)

1
which when replaced in (182) yields
cos Bl cos 82 sin A

sin a = =In o . - (18%)

Once again, sin o is only a first approximation since A = L.

Then compute
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2 sin Bl sin 82

cos 20 = cos ¢ - 5 . (185)
cos a
2
cos hom =2cos20, -1 , (1852a)
and
3

cos 6om = 4 cos 20 - 3 cos 20 (185b?

We then use (179) to compute (A-L). After completing this step,
we compute '

A =L+ (A1) , (186)
and return to (181) and recompute quantities o, a, 20, , hqm, 60m using

(181), (18%), (185), (185a) and (185b), respectively. After recomputing

(A-L) using (179), we test |(A-L)

) "

441 = (L), | < ovoooo1. When this
test pesses, we continue to compute @)os Gny and 810° The forward
azimuth is computed using (183a), which is rewritten here as

: sin a ' ;
sin %2 = cosBl ’ (186)
and
sin a
sin @21 = Cos 62 )

Alternately, the azimuths can be camputed by

sin A cos 82

tan o, = — - (187)
12 sin Bzcos Bl-cos A sin Blcos 82

and

sin A cos 81
tan @y = (187a)
sin Becos Blcos A = sin Blcos 62

To complete the problem, the distance s., is computed using (165).

12
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4.6 Other Long Line Formulae

Many methods for the solution of the direct and inverse
problems, for widely separated points on a reference ellipsoid, are
available in the literature. As with the "short" and "medium" line
formulae, they are generally given the names of their originators. Two
of these, which have been used by the authors, are the methods of
Rainsford [Rainsford, 1955] and Sodano [Sodano, 1963]. Rainsford's
formulae are developed on the same principles as Bessel's. The major
difference is tﬁat the coefficients of the longitude difference (179)
are developed in terms of f, since they converge more rapidly than
when given as a function of e2. The main difference between Sodano's
method, and those of Bessel and Rainsford, is that both the direct and

inverse problems can be solved in a non-iterative fashion.
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SECTION IV. COMPUTATION OF GEODETIC POSITIONS IN THREE DIMENSIONS

The geodetic position of & terraein point can be described
mathematicelly in terms of a triplet of cartesian coordinates (x,yy, z),
referred to the average terrestrial, geodetic, local geodetic or local
astronomic coordinate systems, or by geodetic latitude (¢), longitude
(A) and ellipsoidal height (h) referred to some reference ellipsoid.

In the previous sections, which presented the clessical two dimensional
position computations, geodetic positions were described by only two
coordinates, nameiy the geodetic latitude and longitude. The third
component, the ellipsoidal height, was used only for the reduction of
terrestrial measurements to the reference ellipsoid.

Computations of geodetic positions in three dimensions differ
from the classicel two dimensional approach in two significant ways.

The first is that.the latter hes its basis in ellipsoidal gecmetry,
whilethefomer _;i"Bl ‘based on three d:hhensiopal Euclideen principals

and .employs véctdr;-éandlma.trixv-.;p.'l.gebra. Secandly, ‘the cla:.s,‘_s‘iqa_‘,.’],..‘-.a.pproach
requiresthe ;:a;gg}gbﬁ:geodesi@ .distences and ‘azimuths for rigoz&u . 1ccm.1-‘
putations {wﬁiler ‘straeight line.spatial distances (chords)- a.ndnormal
section three dimensional azimuths are used in three dimensional com-
putations. Regarding the azimuth used herein, it should be noted that
it refers to the normal section passing through the terrain points in
question, and not that section which passes through the points projected
on the reference ellipsoid. In view of the different treatment of
observations in three dimensional position computations, no special
chapter regarding them is presented. Instead, full explanations are
given, where required, within the context of the development of the
direct, inverse, azimuth intersection and spatial distance intersection

problems.
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5. DIRECT AND INVERSE PROBLEMS IN THREE DIMENSIONS

5.1 Direct Problem

The direct problem can be stated as: Given the coordinates

(xi, Yo zi) or (¢i, Ags hi) of a point i, and the terrestrial spatial
distance, azimuth, and vertical angle (or height difference) to a

5 hj)'

Two cases of the direct problem msy arise, depending on whether the

second point j, compute the coordinates (xJ, ¥y zJ) or (¢J, A

azimuth and vertical angle are referred to the local geodetic (ellip-

soid normal) or the local astronomic (gravity vertical) coordinate

systems. We thus denote azimuths and vertical angles in the local geodetic
system by a and a, and likewise the local astronamic system by A and v
respectively (Figure 26).

The simplest method of solution 6f three dimensional problems
is to use cartesian coordinates. If the coordinates-which are required
in the computations, ere given by (4, A, h), a simple coordinate
transformation [Krakiwsky end Wells, 1971] yields the/cartesian
: cooidinates:§w81milarly, if the“results reqpiredaareﬁfhpgeﬁc£71@mi%ude,
longitude*and*éllipsﬁidal height ; ‘then the cartesiantcbbfﬂinatGS’are
transformed to (¢, A, h) after the position computations are completed
[Krakiwsky and Wells, 19T1].

The vector between two terrain points in a geodetic coordinate

system is given by the expression

xJ-xi AxiJ
zJ—zi c AziJ
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Now, the position vector of a point J, in the local geodetic

system at i (Figure 26) is given by

-d..iJ cos a.i'j cos ai;
(riJ)LG= dij cos a sin T (189)
‘ SiJ sin aiJ : ]
and (;i ) can be written
J G
(riJ)G = R3 (180-Ai) R, (9o-¢i) P, (riJ) . . (190)

The reflection matrix, P and the two rotation matrices, R2

2’
and R3, transform the topocentric vector from the local geodetic
system into the geodetic system. The position vector of the second

point J, is obtained by vector addition as

G = (F) o+ Gyy) (191)

where (rij) is given by (190), and (r.) is the position vector of the
G
given point i. As has been previously mentioned, the geodetic coordi-

nates (¢J, A h ) can be obteined via a simple coordinate transformation.

J
‘ The procedure ror the computation of the direct problem, when

,the azimmth and vertical angle are given in the. local astronomic system

i(Figure 27) is" completely analogous to that described'wfth respect to
‘the local geodetic system above. The only ditrerence 1is in the~
expression used to compute the topocentric position vector ;iJ' In

this case, it is given by

(r;,) =Ry (180-A,) Ry (90- 9,) B, (¥,,) (192)

riJ c 1%

-
e
- /-J ‘. P

where ¢ and A are the astronomic latitude and longitude of the given

point, and
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d -

d cos V cos A,
iJ

13 1]
R

(riJ)LA = diJ cos vi,j sin Ai

d sin v

_iJ iJ

(193)

-

Note that in this case (192) the position vector is rotated
directly from the local astronomic system into the geodetic system. An
alternative transformetion is possible via the local geodetic system

using the expression

(E-ij)G = Ry (180-A;) R, (90-¢,) P2R3(A13‘“1J) Ry(-€,) Rl(?i>(fiJ)LA
194

In the sbove  expression (194), AiJ and a; are the astro-
nomic and geodetic azimuths respectively, and the quantities £ i and ng

are the two components of the deflection of the vertical at point i.

5.2 Inverse Problem

In this case, the triplets of coordinates (¢, A, h) or (x, ¥y, 2z)

are given for two terrain points. Required are the spatial ‘distance

=

i

'3

0

(d'i.j)’ the direct a.nd inverse aszimuths a,, and “Ji; andthe vertical
ang;es a’ij and aji’ ‘ | L |
The position vectors of the two points 1 and J in the geodetic

T
.

O "

system are given by

'xi" r(-Ni+hi) cos ¢, cos )\:

(Fi)G =lvy| = [(§;+h;) cos ¢, sin | , (195)
2 | '(Ni(l-e2)+hi) sin ¢,
L. - i

and

- _ -
xJ (Nj+h.j) cos ¢J cos AJ

(rJ)G =|vy| = (NJ+hJ) cos ¢, sin A, . (196)

2

..ZJ_ c L-(NJ(II.-e )+hj) sin ¢J,_1
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in the geodetic system, is

First, the difference vector ;ij’

determined by

xJ xi Axij
(rij )G = (rJ )G - (ri)G = YJ - yi = Ayij . (197)
SRS P Gt ]

Next, the e.bové difference vector is rotated into the local
geodetic coordinate system via an expression which is the inverse of
(190), end is given by
Now, to determine the spatial distance, and the azimuth and vertical

angle at i, we use the components of the vector (r,,).. in the

i ‘LG
expressions
2 2 2 41/2
a4 = [Axij + by, * AziJ] , (199)
Ay
- -1 i3 . :
| m;‘f'j tan [Axi;] 1, (200)
and R
Az ;
8y sin [-—ldij 1. | (201)

The corresponding e@ressions” for determining the a.zimuth,

i and vertical angle,‘aji, in the local geodetic system at ] are

%
(§Ji)LG = P_R, (¢j-9o) Ry (13-180) (rji)G R © (202)
Ay, .
_ -1 i
oy = tan [-A—x-‘j— 1, (203)
Ji .
and
Az,
a., = gin T [—dL ] . (20k)
Ji dij




6. Intersection Problems in Three Dimensions

The problem of determining thé coordinates of a point on a
plane using an intersection of two azimuths or distances from two known
(coordinated) points is a straight-forward process {Faig, 1972]. This
type of problem is not generally dealt with for ccmputations on a ref-
erence ?llipsoid. The intersection problem for the determination of
the geodetic coordinates (¢, A) can be deelt with quite simply using’
vector algebra. Two cases are presented herein, each of which requires
information similar to that which would be required for rigorous two-

dimensional computations.

6.1 Azimuth Intersection

The problem is defined as: Given the triplets of coordinates
'(¢i, A ﬁi) and (¢3’ AJ, hJ) for two terrain points i and J, and the

terrain normal section azimn#hs @yo and aJk
the unknown point k, compute the geodetic coordzggtes ¢k and }k:of the

from the known points to

‘unknown point k.:' Note that the approximate ellipsoid height hk is
reqnired for the ccmpntations. |
In order to begin the solution, it is necessary to define a

unit vector in any azimuth. This vector is denoted ta’ and is expressed
in terms of the unkt vectors Gx and Gy, which are respectively the
north and east directions of the local geodetic system (Figure 28).
This is given by the eduation

t,=u cosa+ u, sin a, (205)
where
' -
-gin ¢ cos A

u_ = |-sin ¢ sin A | , (206)

cos ¢ G




86

W3LSAS 01130039 1vo01 3HL NI S¥OLIIA L1INN

8§z einbyy




8T
and

-sin A

-

u, =| cos A . | (207)

0 G
Using the expressions for ﬁx and ﬁy, (205) can be rewritten as

—'tx.' [~ sin ¢ cos A cos a - sin A sin o
ty| = |- sin ¢ sin X cos a + cos A sin af . (208)
t cos ¢ cos a

L 2 G L 4G

Now, a unit vector perpendicular to tie azimuth « is defi#ed by

-~

ta+90 = G,x cos(a+90) + ﬁy sin(a+90°) . (209)

-

In order to solve for ¢k and A, , two equations must be

o)
formulated wherein these two quantitiés appear explicitly. First, two
dot products are formed, each of which involves one vector in a plane
defined by a pair of terrain points and the origin of the coordinate
;}Btem, and a second vector that is in an azimuth at 90° to this plane

(Figure 29). The two dot products are

~

k-
and
- “o .e -
(rk-?d) "ty 4909 =0 (211)
e
where
- _ N
-sin ¢, cos Xi cos(aik+90) - sin li sin (aik+90)
taikf§G°= -sin ¢, sin A, cos(aik+90) + cos A; sin (aik+90)(212)
: cos ¢, cos (aik+90)g
h vt




88

AZIMUTH

Figure 29

INTERSECTION

IN THREE

DIMENSIONS



89

[—ein ¢J cos AJ cos(adk+90)'- sin AJ sin(ajk+905-
ta3k+900= -sin ¢, sia A, cos(ajk+90) * cos A, sin(ajk+90) )
L cos ¢, °°S(agk+90) (Zié)
Tik-xif_ —Axik:"
(;k";i) ol B N R S , ‘ (214)
_?k-z%; bAzi%j
and
—"k'x; ‘Ax,j;
Likqu) = Ty = { vy . (215)
-zk-z 1] -Az 1 E

In equations (214) and (215), the coordinates for i and J
are taken as given constants, while those for k are given by three

unknown functions [Krakiwsky and Wells, 1971]

1%;' 7; cosB g 908 lk + hk cos ¢k cos A;:
;k = jk = la cosBk sin Ak - ‘b;k cos ¢k sin lk . (216)
n] [Peas tmoetag

The first terms of (216) give the cocrdinates of k on the surface of
the ellipsoid (defined by the sem;—maaor and semi-mincr axes a and b

respectively) in terms of the reduced latitude, 8, , and geodetic longi-

k)
tude, kk. The second terms account for the fact that the terrain boint
k is located at an ellipsoid height hk above the reference ellipsoid,
and are expressed in terms of the geocdetic latitude, ¢k,'and longitude,
xkﬁ

Now, equaticns (210) end (211) can be rewritten as

5= Axiktxi * &y nztyi * Aziktzi =0, (217)
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f, = ijktxj + ijktyj + Azjktzj =0. (218)

The unknwon quantities in the @gbove equations are the coordinates of k,
and in terms of these, (217) and (218) are non-linear. The next step
in the solution is to approximate the equations (217) and (218) by a

linear Taylor series using epproximate values for the reduced latitude

and longitude denoted by Bi-and A2 respectively. Thus

k
af af
£, = f + 33- ag, + 32: A + ... =0, (219)
and
o 3f2 3f2
f2=f2+-a—é—-d5k+'a~i-—d)\k+...=0, (220)
k k
where
o ) ‘ o
£]=Ax b, 4 Ay.k ty *bzg b, (221)
i i : i
o_,.0 o o
£, = ijk txJ + Aydk tyg + Aka tzj . (222)
o o o o o o
bx;, = & cos B cos A +h_ cos ¢ cos Ak - X5 (223)
(o} o o, .0 o 0
by;, = & cos B, sin A+ hk“cos ¢ 5in A -y, » | (22h)
o o o o :
Az, =D sin 8+ h sin ¢ -z, , (g?S)
o ° o o o o
ijk = a cos B, cos Ak +h, cos ¢ cos Ak - Xy (226)
o _ o o o o o _
ijk = acos B sin A+ h_cos ¢ sin A Yy o (227)
o _ . .0 o . O _ .
Azjk b sin B + h_ sin ¢ 25 (228)
ifl =1t_ (-& sin B8 cos AC - 1 sin ¢° cos AO) +
BBk Xi k k hk k Ak
., 0 ._ .0 © ._ .0 ._ .0
+ 1t (~-a sin By sin A - h_sin ¢ sin kk) +

+t, (b cos BE + hi cos ¢§) . (229)



_ _ ) o_ .o o . .0
Tty (-a cos B, sin A, - h_ cos ¢, sin Ak) +

o ) o ) o
+ tyi (a cos B, cos A\ + h_ cos ¢_ cos kk) . (230)

Now, rewriting (229) and (230) eas

af

L _
—==t x +t vy, +t oz o, (231)
BBk X, 8 ¥y 8 zg B
3,
===t x, +t__y , (232)
axk x; A Yi A
and
af,
—= =t x +t_ y.,+t z , (233)
3
Bk x,j B yJ 8 z‘j 8
3f2 :
Er T UL SR (234)

k3 r Ty
It should be:poted phat in taking the partial derivatives,
the geodetic la&itude,fék::;as”taken as being synonomous with the reduced
latitude, Bk' There is nodlés; in sccuracy in subsequént camputations
due to this treatment. Additionally, an approximate value of hk that
is within 100 m of the true value is sufficient.

Rewriting (217) and (218), we get

(o}

£+ (x . +y b +zt ) dB +(x3t, +y,t ) d =0,
1 7Bx  TBy; Bzl Tk X AV Tk (530)
(o]

£+ (x;t. +y,t_ . +z t ) ds, + (x,t_. +y,t_)dx =0.
2 ] xJ B8 y'j B8 Zj k A xJ A y'j k (236)

Equations (235) and (236) are solved in an iterative procedure until
the corrections to B, and A, are negligible (< 0Y0001). The value of

the geodetic latitude, ¢k’ is then solved for by [Krakiwsky and Wells,

19711
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¢, = tan™" [ £ tan By] . (237)

6.2 Spatisl Distance Intersection

The determination of the geodetic latitude (¢k) and longitude
(Ak) of a terrain point,'using two terrestrial spatiel distances, is
solved in & manner similar to that used for an azimuth intersection (6.1).
Given are the two triplets of coordinates (¢i, Ai, hi) and (¢J’ Aj’ hj)’

and two terrestrisl spatial distences, r,, and r from the known

ik k2
points to the unknown point k. In addition, an approximeate ellipsoid

height, hi, is required (within 100 m of the value of h, is sufficient).
The key to the solution is the formaetion of two linear
equations which are expressed in terms of the known and unknown para-

meters (Figure 30). We begin with the relationships

' 2 = 2 2,1/2

£, =[x %)% + (r~v)° + (2-2,)°1 -, =0, (238)
1/2

)2 4 (zk-zJ)QJ - Ty = 0, (239)

2
where (xk, Ty o zk) are given by (216). The above equations are non-
linear in terms of Bk and Ak’ thus they are spproximated by & linear

Taylor series expansion using approximate values for the reduced

latitude, Bg, and geodetic longitude, l;. The linear form of equations

(238) and (239) are given by

o ofy of
£, = f] + EE—'dBk 3 Dt =0, (2k0)
k k
and
o T, CE
£, =f,+ EE; a, + o dr, + ... =0, (241)

where



SPATIAL DISTANCE

_ Figure 30

INTERSECTION IN THREE

DIMENSIONS
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fg’_ = rgk =Ty o (242)
o_ _o
£, = T T Ty o (243)
af 3 Ay 3
1_ o 9% k ° i
88, O [Gogxy) 55 98, (yvy) 55+ () ggls (24)
rik k k
af '
11 o 3 3 d
oA o %y + (y -y.) T -z; ) =1, (2k5)
kT axk K717 B zk 3,
af 3 3y, 3z
2 1 o x Y 2
%, - Lo L) Tt i) o ‘Zizkf‘.x? TR
Jk . s
af 3 3 3z
2 1 o % AN o X
= = — [(x -x,) + (yo-y,) ==+ (2%-2,) —=]. (2L7)
ah, rgk %5 y K030 o K30 A

Now, the terms in equations (24kL)-(24T) are derived froam (216), and are

given by

Xy o o o o o

SE;-= - a gipbak cos A, - hy sin ¢ cos & =x, , (248)

Byk (o] | (]

3§;~= - a sin B sin A - b sin ° sin A = Vg o (249)

9z, o o o

35 = P cos By +h cos ¢ =z; , (250)
k

ox,

— O=

s N a cos B sin A hk cos ¢k lk X, (251)

ayk o) o} o) o 0

5K;~= & cos B cos A+ h_cos ¢ cos A =y, |, (252)

9z

axk -0 . (253)
k

As in the case of the azimuth intersection, the geodetic

latitude, ¢k, wes taken as being synomomous with the reduced latitude Bk.



Jo

Now, (240) and (2L41) are rewritten for solution as

e}

- L 1
£ =1 * o (ax;, % + &y, yp + dz5y2,] A8y + o [ax;, %y + by lan,
S 1 —
f£,= £, + o [Ax.jka + ijkys + AkazB]dBk + o [Axka)‘ + ijkyx]d)\k.
Jk ‘ JE (255)

The corrections dBk and dA, are solved for using an iterative

k
procedure. When the corrections beccme negligible (< 0Y0001), the final

values of Bk and Ak are obtained, and ¢k is determined using (237).
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T. CONCLUDING REMARKS

From first appearances, it would seem that the classical
approach of geodetic position camputations on the surface on an ellip-
soid of rotetion should be sbandoned in favour of the three dimensional -
approﬁch. The formulae for the latter are simpler to derive and impli-
ment, and in the case of the direct and inverse problems, are given in
a closed form. In eddition, if the curvelinear coordinates (direct
problem), or the ellipsoidal distance and normal section azimuths
(inverse problem) are required, rigorous transformation formulaé are
aveilable to obtain them [Krakiwsky and Wells, 1971; Sectiom II].

The major hindrance to the use of the three dimensional
approach lies in the geodetic observables, or the lack thereocf. This
is particulerly true in the case of the direct problem, or any problem
where the vertical angle (90°-zenith distance) is required. Due to
refraction problems, the zenith distance can not be obtained to better
than + 1" which on & 10 Jm line yields a stendard deviation in height
of 10 cm [Heiskanen and Moritz, 1967]. This error would obviously
affect the computations of the three dimensional coordinates (x, y, z)
or (¢, A, h) of & required point. Tﬁe problem can be overcome by
spirit levelling, but it is unlikely that these observations would be
available in other than exceptional cases.

The two intersection problems that have been presented show
how the three dimensional approach can be used to solve directly for
curvalinear coordinates. It should be obvious that if sufficient
observed information were available (#g. three spatial distances);
the problems could be formulated and solved directly in terms of the

three dimensional cartesian coordinates.



Finally, it should be noted that an equivalent amount of
observed information is required for the classical and three dimensional
approaches. The main difference is that for the ellipsoidal computa-
tions, (i.e. direct problem) the ellipsoidal height need not be known
as ac.urately as for three dimensional computations. However, no matter
which method is usea, ~ =orous transformations will show hat the results
are equivalent. That is, the cartesian coordinates (x, y, z) will
yield a set (¢, A, h) in which the geodetic 1:“: ' =2 (¢) and longitude
(A\) are equal to those obtain. from classical ceamputa: _as. Further,
the spatial distances and terrain normal section azimuths, obtained from
three dimensional computations (inverse problem) and rigorously reduced
to the reference ellipscid, are equal to the ellipsoidal distances and
geodesic azimuths obtained from the inverse problem solved on the

-

ellipsoid.
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