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What is geodesy?

Geodesy is a science, the oldest earth (geo-) science, in fact. It was born of
fear and curiosity, driven by a desire to predict natural happenings and calls
for the understanding of these happenings. The classical definition, according
to one of the "fathers of geodesy" reads: "Geodesy is the science of measuring
and portraying the earth’s surface" [Helmert, 1880, p.3]. Nowadays, we
understand the scope of geodesy to be somewhat wider. It is captured by the
following definition [Vanícek and Krakiwsky, 1986, p.45]:

"Geodesy is the discipline that deals with the measurement and
representation of the earth, including its gravity field, in a three-
dimensional time varying space."

(Note that the contemporary definition includes the study of the earth gravity
field – see section III – as well as studies of temporal changes in positions and
in the gravity field – see section IV.)



 

I. Introduction

 I.A. Brief history of geodesy

Little documentation of the geodetic accomplishments of the oldest civilizations, the
Sumerian, Egyptian, Chinese and Indian, has survived. The first firmly documented
ideas about geodesy go back to Thales of Miletus (c.625–c.547 BC), Anaximander of
Miletus (c.611–c.545 BC) and the school of Pythagoras (c.580–c.500 BC). The Greek
students of geodesy included Aristotle (384–322 BC), Eratosthenes (276–194 BC) –
the first reasonably accurate determination of the size of the earth, but not taken
seriously until 17 centuries later – and Ptolemy (c.75–151 AD). In the Middle Ages,
the lack of knowledge of the real size of the earth led Toscanelli (1397-1482) to his
famous misinterpretation of the world (Figure 1) which allegedly lured Columbus to his
first voyage west.

Figure 1 – Toscanelli’s view of the Western Hemisphere

Soon after, the golden age of exploration got under way and with it the use of position
determination by astronomical means. The real extent of the world was revealed, to
have been close to Eratosthenes’s prediction, and people started looking for further
quantitative improvements of their conceptual model of the earth. This led to new
measurements on the surface of the earth by a Dutchman Snellius (in 1610’s) and a
Frenchman Picard (in 1670’s), and the first improvement on Eratosthenes’s results.
Interested reader can find fascinating details about the oldest geodetic events in
[Berthon and Robinson, 1991]. At about the same time, the notion of the earth gravity
started forming up through the efforts of a Dutchman Stevin (1548-1620), Italians
Galileo (1564-1642) and Borelli (1608-1679), an Englishman Horrox (1619-1641),
culminating in Newton’s (1642-1727) theory of gravitation. Newton’s theory predicted
that the earth’s globe should be slightly oblate due to the spinning of the earth around



its polar axis. A Frenchman Cassini (1625-1712) disputed this prediction;
consequently, the French Academy of Science organized two expeditions, to Peru
and to Lapland, under the leadership of Bouguer and Maupertuis, to measure two
meridian arcs. The results confirmed the validity of Newton’s prediction. In addition,
these measurements gave us the first definition of a metre, as one ten-millionth part of
the earth quadrant. For two hundred years, from about mid-eighteenth century on,
geodesy saw an unprecedented growth in its application. Position determination by
terrestrial and astronomical means was needed for making maps and this service was
naturally provided by geodesists and the image of a geodesist, as being only a
provider of positions, survives in some quarters till today. In the meantime the
evolution of geodesy as a science continued with contributions by LaGrange (1736-
1813), Laplace (1749-1827), Fourier (1768-1830), Gauss (1777-1855) – claimed by
some geodesists to have been the real founder of geodetic science, Bessel (1784-
1846), Coriolis (1792-1843), Stokes (1819-1903), Poincare (1854-1912), and Albert
Einstein. For a description of these contributions see [Vanícek and Krakiwsky, 1986,
Section 1.3]:

 

 

I.B. Geodesy, and other disciplines and sciences

We have already mentioned that for more than two hundred years, geodesy – strictly
speaking, only one part of geodesy, i.e., positioning - was applied in mapping in the
disguise known on this continent as "control surveying". Positioning finds applications
also in the realm of hydrography, boundary demarcation, engineering projects, urban
management, environmental management, geography and planetology. At least one
other part of geodesy, geo-kinematic, finds applications also in ecology. Geodesy has
a symbiotic relation with some other sciences. While geodesy supplies geometrical
information about the earth, the other geo-sciences supply physical knowledge
needed in geodesy for modeling. Geophysics is the first to come to mind: the
collaboration between geophysicists and geodesists is quite wide and covers many
facets of both sciences. As a result, the boundary between the two sciences became
quite blurred even in the minds of many geo-scientists. For example, to some, the
study of global gravity field fits better under geophysics rather than geodesy, while the
study of local gravity field, may belong to the branch of geophysics, known as
exploration geophysics. Other sciences have similar, but somewhat weaker relations
with geodesy: space science, astronomy (historical ties), oceanography, atmospheric
sciences and geology. As all exact sciences, geodesy makes a heavy use of
mathematics, physics, and of late, computer science. These form the theoretical
foundations of geodetic science and thus play a somewhat different role vis-à-vis
geodesy. In Figure 2, we have attempted to display the three levels of relations in a
cartoon form.



 

Figure 2 – Geodesy and other disciplines

 

 

I.C. Profession and practice of geodesy

Geodesy, as most other professions, spans activities ranging from purely theoretical
to very applied. The global nature of geodesy dictates that theoretical work be done
mostly at universities or government institutions. Few private institutes find it
economically feasible to do geodetic research. On the other hand, it is quite usual to
combine geodetic theory with practice within one establishment. Much of geodetic
research is done under the disguise of space science, geophysics, oceanography,
etc. Of great importance to geodetic theory is international scientific communication.
The international organization looking after geodetic needs is the International
Association of Geodesy (IAG), the first association of the more encompassing
International Union of Geodesy and Geophysics (IUGG) which was set up later, in the
first third of twentieth century. Since its inception, the IAG has been responsible for
putting forward numerous important recommendations and proposals to its member
countries. It is also operating several international service outfits such as the
International Gravimetric Bureau (BGI), the International Earth Rotation Service
(IERS), Bureau Internationale des Poids et Mesures – Time Section (BIPM), the
International GPS Service (IGS), etc. The interested reader would be well advised to
check the current services on the IAG web page. Geodetic practice is frequently
subjugated to mapping needs of individual countries, often only military mapping
needs. This results in other components of geodetic work being done under the
auspices of other professional institutions. Geodesists practicing positioning are often
lumped together with surveyors. They find a limited international forum for exchanging



ideas and experience in the International Federation of Surveyors (FIG), a member of
the Union of International Engineering Organizations (UIEO). The educational
requirements in geodesy would typically be: a graduate degree in geodesy,
mathematics, physics, geophysics, etc. for a theoretical geodesist, and an
undergraduate degree in geodesy, surveying engineering (or geomatics, as it is being
called today), survey science or a similar programme for an applied geodesist. Survey
technicians, with a surveying (geomatics) diploma from a college or a technological
school, would be much in demand for field data collection and routine data
manipulations.

 

 

II. Positioning

 

II.A.. Coordinate systems used in geodesy

Geodesy is interested in positioning points on the surface of the earth. For this task a
well-defined coordinate system is needed. Many coordinate systems are being used
in geodesy, some concentric with the earth (geocentric systems), some not. Also, both
Cartesian and curvilinear coordinates are used. There are also coordinate systems
needed specifically in astronomical and satellite positioning, which are not appropriate
to describe positions of terrestrial points in. Let us discuss the latter coordinate
systems first. They are of two distinct varieties: the apparent places and the orbital.
The apparent places (AP) and its close relative, the right ascension (RA) coordinate
systems, are the ones in which (angular) coordinates of stars are published. The
orbital coordinate systems (OR) are designed to be used in describing satellite
positions and velocities. The relations between these systems and with the systems
introduced below will be discussed in §II/F. Interested reader can learn about these
coordinate systems in [Vanícek and Krakiwsky, 1986, Chapter 15]. The geocentric
systems have their z-axis aligned either with the instantaneous spin axis (cf., §IV/B) of
the earth (instantaneous terrestrial system) or with a hypothetical spin axis adopted by
a convention (conventional terrestrial systems). The geocentric systems became
useful only quite recently, with the advent of satellite positioning. The non-geocentric
systems are used either for local work (observations) in which case their origin would
be located at a point on the surface of the earth (topocentric systems called local
astronomic and local geodetic), or for a regional/continental work in the past. These
latter non-geocentric (near-geocentric) systems were and are used in lieu of
geocentric systems, when these were not yet realizable, and are known as the
geodetic systems; their origin is usually as close to the centre of mass of the earth as
the geodesists of yesteryears could make it. They miss the center of mass by
anything between a few metres and a few kilometres, and there are some 150 of them
in existence around the world. Both the geocentric and geodetic coordinate systems
are used together with reference ellipsoids, ellipsoids of revolution or biaxial ellipsoids,
also called in the some older literature "spheroids". (The modern usage of the term



spheroid is for closed, sphere-like surfaces, which are more complicated than biaxial
ellipsoids.) These reference ellipsoids are taken to be concentric with their coordinate
system, geocentric or near geocentric, with the axis of revolution coinciding with the z-
axis of the coordinate system. The basic idea behind using the reference ellipsoids is
that they fit the real shape of the earth, as described by the geoid – see §III/B for
details – rather well and can thus be regarded as representative, yet simple,
expression of the shape of the earth. The reference ellipsoids are the horizontal
surfaces to which the geodetic latitude and longitude are referred; hence the name.
But to serve in this role, an ellipsoid (together with the associated Cartesian
coordinate system) must be fixed with respect to the earth. Such an ellipsoid (fixed
with respect to the earth) is often called a horizontal datum. In North America we had
the North American Datum of 1927, known as NAD 27 [US Department of Commerce,
1973] which was replaced by the geocentric North American Datum of 1983, referred
to as NAD 83 [Boal and Henderson, 1988; Schwarz, 1989]. The horizontal geodetic
coordinates, latitude ϕ and longitude λ , together with the geodetic height h (called by
some authors by ellipsoidal height, a logical non-sequitur, as we shall see later), make
the basic triplet of curvi-linear coordinates widely used in geodesy. They are related to
their associated Cartesian coordinates x, y and z by the following simple expressions

x = (N + h) cos ϕ cos λ

y = (N +h) ) cos ϕ sin λ                                                                   (1)

z = (Nb2/a2 + h) sin ϕ ,

where N is the local radius of curvature of the reference ellipsoid in the east-west
direction,

N = a2 (a2 cos2 ϕ+ b2 sin2 ϕ)-1/2 ,                                                        (2)

a is the major semi-axis and b the minor semi-axis of the reference ellipsoid. We note
that the geodetic heights are not used in practice; for practical heights see § II/B. It
should be noted that the horizontal geodetic coordinates are the ones that make the
basis for all maps, charts, legal land and marine boundaries, marine and land
navigation, etc. The transformations between these horizontal coordinates and the
two-dimensional Cartesian coordinates x, y on the maps are called cartographic
mappings. Terrestrial (geocentric) coordinate systems are used in satellite positioning.
While the instantaneous terrestrial (IT) system is well suited to describe instantaneous
positions in, the conventional terrestrial (CT) systems are useful for describing
positions for storing. The conventional terrestrial system recommended by IAG is the
ITRS which is "fixed to the earth" via several permanent stations whose horizontal
tectonic velocities are monitored and recorded. The fixing is done at regular time
intervals and the ITRS gets associated with the time of fixing by time tagging. The
"realization" of the ITRS by means of coordinates of some selected points is called the
International Terrestrial Reference Frame (ITRF). Transformation parameters needed
for transforming coordinates from one epoch to the next are produced by International
Earth Rotation Service (IERS) in Paris, so one can keep track of the time evolution of
the positions. For more detail the reader is referred to the web site of the IERS, or to a



popular article by Boucher and Altamini [1996].

 

II.B. Point positioning

It is not possible to determine either 3D or 2D (horizontal) positions of isolated points
on the earth surface by terrestrial means. For point positioning we must be looking at
celestial objects, meaning that we must be using either optical techniques to observe
stars (geodetic astronomy, see [Mueller, 1969]), or electronic/optical techniques to
observe earth’s artificial satellites (satellite positioning, cf., §V/B). Geodetic astronomy
is now considered more or less obsolete, because the astronomically determined
positions are not very accurate (due to large effects of unpredictable atmospheric
refraction) and also because they are strongly affected by the earth gravity field (cf.,
§III/D). Satellite positioning has proved to be much more practical and more accurate.
On the other hand, it is possible to determine heights of some isolated points through
terrestrial means by tying these points to the sea level. Practical heights in geodesy,
known as orthometric heights and denoted by Ho, or simply by H, are referred to the
geoid, which is an equipotential surface of the earth gravity field (for details see §III/B)
approximated by the mean sea level (MSL) surface to an accuracy of within ± 1.5
metres. The difference between the two surfaces arises from the fact that seawater is
not homogeneous and because of a variety of dynamical effects on the seawater. The
height of the MSL above the geoid is called the sea surface topography (SST). It is a
very difficult quantity to obtain from any measurements; consequently, it is not yet
known very accurately. We note that the orthometric height H is indeed different from
the geodetic height h discussed in §II/A: the relation between the two kinds of heights
is shown in Fig. 3, where the quantity N, the height of the geoid above the reference
ellipsoid, is usually called the

 

Figure 3 – Orthometric and geodetic heights

geoidal height (geoid undulation) – cf., §III/B. Thus, the knowledge of the geoid is
necessary for transforming the geodetic to orthometric heights and vice versa. We
note that the acceptance of the standard geodetic term of "geoidal height" (height of
the geoid above the reference ellipsoid) makes the expression "ellipsoidal height" for
(geodetic) height of anything above the reference ellipsoid, a logical non-sequitur as
pointed out above. We have seen above that the geodetic height is a purely
geometrical quantity, the length of the normal to the reference ellipsoid between the
ellipsoid and the point of interest. The orthometric height, on the other hand, is defined



as the length of the plumb-line (a line that is always normal to the equipotential
surface of the gravity field) between the geoid and the point of interest and as such is
intimately related to the gravity field of the earth. (As the plumbline is only slightly
curved, the length of the plumbline is practically the same as the length of the normal
to the geoid between the geoid and the point of interest. Hence the equation h ≅ H + N
is valid everywhere to better than a few millimetres.) The defining equation for the
orthometric height of point A (given by its position vector rA) is

                       HO(rA) = H(rA) = [W0 - W(rA)]/mean(gA),                                                          (3)

where W0 stands for the constant gravity potential on the geoid, W(rA) the gravity
potential at point A and mean(gA) is the mean value of gravity (for detailed treatment
of these quantities see §§III/A and B) between A and the geoid – these . From this
equation it can be easily gleaned that orthometric heights are indeed referred to the
geoid (defined as W0 = 0). The mean(g) cannot be measured and has to be estimated
from gravity observed at A, g(rA), assuming a reasonable value for the vertical
gradient of gravity within the earth. Helmert [1880] hypothesized the value of 0.0848
mGal /m suggested independently by Poincaré and Prey to be valid for the region
between the geoid and the earth surface (see §III/C), to write

                        mean(gA) ≅ g(rA) + 0.0848 H(rA)/2 [mGal].                                                     (4)

Helmert’s (approximate) orthometric heights are used for mapping and for technical
work almost everywhere. They may be in error by up to a few decimetres in the
mountains.

Equipotential surfaces at different heights are not parallel to the equipotential surface
at height 0, i.e., the geoid. Thus orthometric heights of points on the same
equipotential surface W = const. ≠ W0 are generally not the same and, for example,
the level of a lake appears to be sloping. To avoid this, and to allow the take physical
laws to be taken into proper account, another system of height is used: dynamic
heights. The dynamic height of a point A is defined as

                       HD(rA) = [W0 - W(rA)]/γ ref ,                                                                               (5)

where g ref is a selected (reference) value of gravity, constant for the area of interest.
We note that points on the same equipotential surface have the same dynamic height,
that dynamic heights are referred to the geoid but they must be regarded as having a
scale that changes from point to point.

We must also mention the third most widely used height system, the normal heights.
These heights are defined by

                      HN(rA) = H*(rA) = [W0 - W(rA)]/mean(γ A),                                                        (6)

where mean(g A) is the value of the model gravity called "normal" (for detailed
explanation see §III/A) at a height of HN(rA)/2 above the reference ellipsoid along the
normal to the ellipsoid [Molodenskij et al., 1960]. We refer to this value as mean
because it is evaluated at a point half-way between the reference ellipsoid and the



locus of HN(rA), referred to the reference ellipsoid, which (locus) surface is called the
telluroid. For practical purposes, normal heights of terrain points A are referred to a
different surface, called quasi-geoid (cf., §III/G) which, according to Molodenskij, can
be computed from gravity measurements in a similar way to the computation of the
geoid.

 

 

II.C. Relative positioning

Relative positioning, meaning positioning of a point with respect to an existing point or
points, is the preferred mode of positioning in geodesy. If there is inter-visibility
between the points, terrestrial techniques can be used. For satellite relative
positioning, the inter-visibility is not a requirement, as long as the selected satellites
are visible from the two points in question. The accuracy of such relative positions is
usually significantly higher than the accuracy of single point positions. The classical
terrestrial techniques for 2D relative positioning make use of angular (horizontal) and
distance measurements, which always involve two or three points. These techniques
are thus differential in nature. The computations of the relative 2D positions are
carried out either on the horizontal datum (reference ellipsoid), in terms of latitude
difference ∆ ϕ and longitude difference ∆ λ , or on a map, in terms of Cartesian map
coordinate differences ∆ x and ∆ y. In either case, the observed angles, azimuths and
distances have to be first transformed (reduced) from the earth surface where they
are acquired, to the reference ellipsoid, where they either are used in the
computations or transformed further onto the selected mapping plane. We shall not
explain these reductions here; rather we would advise the interested reader to consult
one of the classical geodetic textbooks, e.g., [Zakatov, 1953; Bomfort, 1971]. To
determine the relative position of one point with respect to another on the reference
ellipsoid is not a simple proposition since the computations have to be carried out on a
curved surface and Euclidean geometry no longer applies. Links between points can
no longer be straight lines in the Euclidean sense, they have to be defined as
geodesics (the shortest possible lines) on the reference ellipsoid. Consequently,
closed form mathematical expressions for the computations do not exist, and use has
to be made of various series approximations. Many such approximations had been
worked out, valid for short, medium and long geodesics. For two hundred years,
coordinate computations on the ellipsoid were considered to be the backbone of
(classical) geodesy, a litmus test for aspiring geodesists. Once again, we shall have to
desist from explaining the involved concepts here as there is no room for them in this
small article. Interested reader is referred once more to the textbooks cited above.
Sometimes preference is given to carrying out the relative position computations on
the mapping plane, rather than on the reference ellipsoid. To this end, a suitable
cartographic mapping is first selected, normally this would be the conformal mapping
used for the national/state geodetic work. This selection carries with it the appropriate
mathematical mapping formulae and distortions associated with the selected mapping
[Lee, 1976]. The observed angles ω , azimuths α and distances S (that had been first
reduced to the reference ellipsoid) are then reduced further (distorted) onto the



selected mapping plane where (two-dimensional) Euclidean geometry can be applied.
This is shown schematically in Fig. 4. Once these

Figure 4 – Mapping of ellipsoid onto a mapping plane.

reductions have been carried out, the computation of the (relative) position of the
unknown point B with respect to a point A already known on the mapping plane is
then rather trivial:

                  xB = xA + ∆ xAB , yB = yA + ∆ yAB .                                    

(7)

Relative vertical positioning is based on somewhat more transparent concepts. The
process used for determining the height difference between two points is called
geodetic levelling [Bomford, 1971]. Once the levelled height difference is obtained
from field observations, one has to add to it a small correction based on gravity values
along the way, to convert it to either the orthometric, dynamic or normal height
difference. Geodetic levelling is probably the most accurate geodetic relative
positioning technique. To determine geodetic height difference between two points, all
we have to do is to measure the vertical angle and the distance between the points.
Some care has to be taken that the vertical angle is reckoned from a plane
perpendicular to the ellipsoidal normal at the point of measurement.

Modern extraterrestrial (satellite and radio-astronomical) techniques are inherently
three-dimensional: simultaneous observations at two points yield three-dimensional
coordinate differences that can be added directly to the coordinates of the known
point A on the earth surface to get the sought coordinates of the unknown point B (on
the earth surface). Denoting the triplet of Cartesian coordinates (x, y, z) in any
coordinate system by r and the triplet of coordinate differences (∆ x, ∆ y, ∆ z) by ∆ r,
the three-dimensional position of B is given simply by

                       rB = rB + ∆ rAB ,                                                                                                  (8)

where ∆ rAB comes from the observations.



We shall discuss in §V/B how the "base vector" ∆ rAB is derived from satellite
observations. Let us just mention here that ∆ rAB can be obtained also by other
techniques, such as radio-astronomy, inertial positioning or simply from terrestrial
observations of horizontal and vertical angles, and distances. Let us show here the
principle of the interesting radio-astronomic technique for the determination of the
base vector, known in geodesy as Very Long Baseline Interferometry (VLBI). Figure 5

Figure 5 – Radio-astronomical interferometry.

shows schematically the pair of radio telescopes (steerable antennas, A and B)
following the same quasar whose celestial position is known (meaning that es is
known). The time delay t can be measured very accurately and the base vector ∆ rAB

can be evaluated from the following equation

                τ = c-1 es ∆ rAB ,

(9)

where c is the speed of light. At least 3 such equations are needed, for 3 different
quasars, to solve for ∆ rAB.

Normally, thousands of such equations are available from dedicated observational
campaigns. The most important contribution of VLBI to geodesy (and astronomy) is
that it works with directions (to quasars) which can be considered as the best
approximations of directions in an inertial space.

 



II.D. Geodetic networks

In geodesy we prefer to position several points simultaneously because when doing
so we can collect redundant information that can be used to check the correctness of
the whole positioning process. Also, from the redundancy, one can infer the internal
consistency of the positioning process and estimate the accuracy of so determined
positions, cf., section 2.7. Thus the classical geodetic way of positioning points has
been in the mode of geodetic networks, where a whole set of points is treated
simultaneously. This approach is, of course, particularly suitable for the terrestrial
techniques, differential in nature, but the basic rationale is equally valid even for
modern positioning techniques. After the observations have been made in the field,
the positions of network points are estimated using optimal estimation techniques that
minimize the quadratic norm of observation residuals, from systems of (sometimes
hundreds of thousands) overdetermined (observation) equations. A whole body of
mathematical and statistical techniques dealing with network design and position
estimation (network adjustment) has been developed; the interested reader may
consult [Grafarend and Sansò, 1985; Hirvonen, 1971; Mikhail, 1976] for details. The
2D (horizontal) and 1D (vertical) geodetic networks of national extent, sometimes
called national control networks, have been the main tool for positioning needed in
mapping, boundary demarcation, and other geodetic applications. For illustration,
Canadian national geodetic leveling network is shown in Fig.6. We note that national
networks are usually interconnected to create continental networks that are

  



Figure 6 – Canadian national geodetic levelling network (Source:
www.nrcan.gc.ca. Copyright: Her Majesty the Queen in Right of Canada,
Natural Resources Canada, Geodetic Survey Division. All rights reserved.)

sometimes adjusted together – as is the case in North America – to make the
networks more homogeneous. Local networks in one, two and three dimensions have
been used for construction purposes. In classical geodetic practice, the most widely
encountered networks are horizontal, while three-dimensional networks are very rare.
Vertical (height, leveling) networks are probably the best example of how differential
positioning is used together with the knowledge of point heights, in carrying the height
information from sea shore inland. The heights of selected shore benchmarks are first
derived from the observations of the sea level, cf., § II/B, carried out by means of tide
gauges (also known in older literature as mareographs), by means of short levelling
lines. These basic benchmarks are then linked to the network by longer levelling lines
that connect together a whole multitude of land benchmarks (cf., Fig.6). Modern
satellite networks are inherently three-dimensional. Because the inter-visibility is not a
requirement for relative satellite positioning, satellite networks can and do contain
much longer links and can be much larger in geographical extent. Nowadays, global
geodetic networks are constructed and used for different applications.

 

II  E. Treatment of errors in positions

All positions, determined in whatever way, have errors, both systematic and random.
This is due to the fact that every observation is subject to an error; some of these
errors are smaller, some larger. Also, the mathematical models from which the
positions are computed, are not always completely known or properly described.
Thus, when we speak about positions in geodesy, we always mention the
accuracy/error that accompanies it. How are these errors expressed? Random errors
are described by following quadratic form:

                    ξ T C-1 ξ = Cα ,                                                                                               (10)

where C is the covariance matrix of the position (a three by three matrix composed of
variances and covariances of the three coordinates which comes as a by-product of
the network adjustment) and Cα is a factor that depends on the probability density
function involved in the position estimation and on the desired probability level α . This
quadratic form can be interpreted as an equation of an ellipsoid, called a confidence
region in statistics or an error ellipsoid in geodetic practice. The understanding is that
if we know the covariance matrix C and select a probability level a we are comfortable
to live with, then the vector difference x between the estimated position r* and the real
position r is, with probability α , within the confines of the error ellipsoid.

The interpretation of the error ellipsoid is a bit tricky. The error ellipsoid described
above is called absolute and one may expect that errors (and thus also accuracy) thus
measured refer to the coordinate system in which the positions are determined. They
do not! They actually refer to the point (points) given to the network adjustment (cf.,



§II/D) for fixing the position of the adjusted point configuration. This point (points) is
sometimes called the "datum" for the adjustment and we can say that the absolute
confidence regions are really relative with respect to the "adjustment datum". As such,
they have a natural tendency to grow in size with the growing distance of the point of
interest from the adjustment datum. This behavior curtails somewhat the usefulness of
these measures. Hence, in some applications, relative error ellipsoids (confidence
regions) are sought. These measure errors (accuracy) of one position, A, with respect
to another position, B, and thus refer always to pairs of points. A relative confidence
region is defined by an expression identical to eqn.(10) except that the covariance
matrix used, CD AB, is that of the three coordinate differences ∆ rAB rather than the
three coordinates r. This covariance matrix is evaluated from the following expression:

                           C∆ AB = CA + CB – CAB – CBA ,                                                                    (11)

where CA and CB are the covariance matrices of the two points, A and B, and CAB =
CBA

T is the cross-covariance matrix of the two points. The cross-covariance matrix
comes also as a by-product of the network adjustment. It should be noted that the
cross-covariances (cross-correlations) between the two points play a very significant
role here: when the cross-correlations are strong, the relative confidence region is
small and vice-versa.

When we deal with two-dimensional, instead of three-dimensional coordinates, the
confidence regions (absolute and relative) become also two-dimensional. Instead of
having error ellipsoids, we have error ellipses – see Fig.7 that shows both absolute
and relative error ellipses as well as errors in the distance S, σ SQRT and azimuth α,

Figure 7 – Absolute and relative error ellipses.

Sσα , computed (estimated) from the positions of A and B. In the one-dimensional case
(heighting), confidence regions degenerate to line segments. The Dilution Of
Precision (DOP) indicators used in GPS (cf., §V/B) are related to the idea of
(somewhat simplified) confidence regions.

Once we know the desired confidence region(s) in one coordinate system, we can



derive the confidence region in any other coordinate system. The transformation
works on the covariance matrix used in the defining expression (10) and is given by

                        C(2) = T C(1) TT ,                                                                                             (12)

where T is the Jacobean of transformation from the first to the second coordinate
systems evaluated for the point of interest, i.e., T = T(r).

Systematic errors are much more difficult to deal with. To evaluate them requires an
intimate knowledge of their sources and these are not always known. The preferred
way of dealing with systematic errors is to prevent them from occurring in the first
place. If they do occur then an attempt is made to eliminate them as much as
possible. There are other important issues that we should discuss here, in connection
with position errors. These include concepts of blunder elimination, reliability,
geometrical strength of point configurations and more. Unfortunately, there is no room
to get in to these concepts here and the interested reader may wish to consult
[Vanícek and Krakiwsky, 1986], or some other geodetic textbook.

 

II.F. Coordinate transformations

A distinction should be made between (abstract) "coordinate system transformations"
and "coordinate transformations": coordinate systems do not have any errors
associated with them while coordinates do. The transformation between two Cartesian
coordinate systems (1st and 2nd) can be written in terms of hypothetical positions r(1)

and r(2) as

                        r(2) = R(ε x, ε y, ε z,) r(1) + t(2)
0 ,

(13)

where R(ε x , ε y , ε z) is the "rotation matrix" , which after application to a vector rotates
the vector by the three misalignment angles ε x , ε y , ε z around the coordinate axes, and
t(2)

0 is the position vector of the origin of the 1st system reckoned in the 2nd system,
called the translation vector.

The transformation between coordinates must take into account the errors in both
coordinates/coordinate sets (in the first and second coordinate system), particularly
the systematic errors. A transformation of coordinates thus consists of two distinct
components: the transformation between the corresponding coordinate systems as
described above, plus a model for the difference between the errors in the two
coordinate sets. The standard illustration of such a model is the inclusion of the scale
factor, which accounts for the difference in linear scales of the two coordinate sets. In
practice, when dealing with coordinate sets from more extensive areas such as states
or countries, these models are much more elaborate as they have to model the
differences in the deformations caused by errors in the two configurations. These
models differ from country to country. For unknown reasons, some people prefer not
to distinguish between the two kinds of transformations. Figure 8 shows a
commutative diagram for transformations between most of coordinate systems used



 

Figure 8 – Commutative diagram of transformations between coordinate
systems.

in geodesy. The quantities in rectangles are the transformation parameters, the
misalignment angles and translation components. For a full understanding of the
involved transformations the reader is advised to consult [Vanícek and Krakiwsky,
1986, chapter 15]. Let us just mention that sometimes we are not interested in
transforming positions (position vectors, triplets of coordinates) but small (differential)
changes d r in positions r as we saw in eqn.(12). In this case, we are not concerned
with translations between the coordinate systems, only misalignments are of interest.
Instead of using the rotation matrix we may use the Jacobean of transformation,
getting

                     δ r(2) (r) = T(r) δ r(1) (r) .                                                                                   (14)

The final topic we want to discuss in this section is one that we are often faced in
practice: given two corresponding sets of positions (of the same points) in two
different coordinate systems we wish to determine the transformation parameters for
the two systems. This is done by means of eqn.(13), where ε x , ε y , ε z , t(2)

1 become the
6 unknown transformation parameters while r(1) ,r(2) are the known quantities. The set
of known positions has to consist of at least 3 non-collinear points so we get at least 6
equations for determining the 6 unknowns. We must stress that the set of position
vectors r(1) ,r(2) has to be first corrected for the distortions caused by the errors in both
sets of coordinates. These distortions are added back on if we become interested in
coordinate transformation.

 

II.G. Kinematic positioning and navigation

As we have seen so far, classical geodetic positioning deals with stationary points
(objects). In recent times, however, geodetic positioning has found its role also in



positioning moving objects, such as ships, aircraft and cars. This application became
known as kinematic positioning, and it is understood as being the real-time positioning
part of navigation. Formally, the task of kinematic positioning can be expressed as
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where t stands for time and v(t) is the observed change in position in time, i.e.,
velocity (vector) of the moving object. The velocity vector can be measured on the
moving vehicle in relation to the surrounding space, or in relation to an inertial
coordinate system by an inertial positioning system. We note that in many
applications, the attitude (roll and pitch) of the vehicle is also of interest.

Alternatively, optical astronomy or point satellite positioning produces directly the
string of positions, r(t1), r(t2), …, r(tn), that describe the required trajectory of the
vehicle, without the necessity of integrating over velocities. Similarly, a relative
positioning technique, such the hyperbolic radio-system Loran-C, (or Hi-Fix, Decca,
Omega in the past), produce a string of position changes, ∆ r(t0,t1), ∆ r(t1,t2), …, ∆ r(tn-

1,tn), which, once again define the trajectory. We note that these techniques are called
hyperbolic because positions or position differences are determined from intersections
of hyperbolae, which, in turn, are the loci of constant distance differences from the
land located radio-transmitters. Relative satellite positioning is also being used for
kinematic positioning, as we shall see later, in §V/B. For a navigator, it is not enough
to know his position r(tn) at the time tn. The navigator has to have also the position
estimates for the future, i.e., for the times tn, tn+1,…, to be able to navigate safely: he
has to have the predicted positions. Thus the kinematic positioning described above,
has to be combined with a navigation algorithm, a predictive filter which predicts
positions in the future based on the observed position in the past, at times t1, t2, …, tn.
Particularly popular seem to be different kinds of Kalman’s filters, which contain a
feature allowing one to describe the dynamic characteristics of the vehicle navigating
in a specified environment. Kalman’s filters do have a problem with environments that
behave in an unpredictable way, such as an agitated sea. We note that some of the
navigation algorithms accept input from two or more kinematic position systems and
combine the information in an optimal way. In some applications, it is desirable to
have a post-mission record of trajectories available for future re-tracing of these
trajectories. These post-mission trajectories can be made more accurate than the
real-time trajectories (which, in turn, are of course more accurate than the predicted
trajectories). Most navigation algorithms have the facility of post-mission smoothing
the real-time trajectories by using all the data collected during the mission.

 



III. Earth gravity field

 

III.A.. Origin of the earth gravity field

In geodesy, we are interested in studying the gravity field in the macroscopic sense
where the quantum behavior of gravity does not have to be taken into account. Also,
in terrestrial gravity work, we deal with velocities that are very much smaller than the
speed of light. Thus we can safely use the Newtonian physics and may begin by
recalling mass attraction force f defined by Newton´s integral

                        ∫ −−−==
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where r and r’ are position vectors of the point of interest and the dummy point of the
integration, B is the attracting massive body of density ρ, i.e., the earth, V stands for
volume, G is Newton´s gravitational constant, m is the mass of the particle located at
r, and a(r) is the acceleration associated with the particle located at r - see Fig. 9. We
can speak about the acceleration a(r), called gravitation, even when there is no mass

Figure 9 - Mass attraction.

particle present at r and we thus cannot measure the acceleration (only an
acceleration of a mass can be measured). This is the idea behind the definition of the
gravitational field of body B, the earth ; this field is defined at all points r. The physical
units of gravitation are, those of an acceleration, i.e., m s-2 ; in practice units of cm s-2 ,
called "Gal" (to commemorate Galileo’s – c.f., §I/A -contribution to geodesy), are often
used. Newton’s gravitational constant G represents the ratio between mass acting in
the "attracted capacity" and the same mass acting in the "attracting capacity". From
eqn.(16) we can deduce the physical units of G , which are: kg-1 m3 s -2 . The value of
G has to be determined experimentally: the most accurate measurements are



obtained from tracking deep space probes that move in the gravitational field of the
earth. If a deep space probe is sufficiently far from the earth (and the attractions of the
other celestial bodies are eliminated mathematically) then the physical dimensions of
the probe become negligible. At the same time, the earth can be regarded, with
sufficient accuracy as a sphere with a laterally homogeneous density distribution.
Under these circumstances, the gravitational field of the earth becomes radial, i.e., it
will look as if it were generated by a particle of mass M equal to the total mass of the
earth:

                         ∫=
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When a "geocentric" coordinate system is used in the computations, the probe’s
acceleration becomes

                         a(r) = - GM r |r −3 ,                                                                        (18)

Thus the gravitational constant G, or more accurately GM, called the geocentric
constant, can be obtained from purely geometrical measurements of the deep space
probe positions r(t). These positions, in turn, are determined from measurements of
the propagation of electromagnetic waves and as such depend very intimately on the
accepted value of the speed of light c. The value of GM is now thought to be (3 986
004. 418 ± 0.008) *10 8 m3 s -2 (Ries et al., 1992) which must be regarded as directly
dependent on the accepted value of c. Dividing the geocentric constant by the mass
of the earth ((5.974 ± 0.001)*1024 kg), one obtains the value for G as (6.672 ±
0.001)*10-11 kg-1 m3 s-2.

The earth spins around its instantaneous spin axis at a more or less constant angular
velocity of once per "sidereal day" - sidereal time scale is taken with respect to fixed
stars which is different from the solar time scale, taken with respect to the sun. This
spin gives rise to a centrifugal force that acts on each and every particle within, or
bound with the earth. A particle, or a body, which is not bound with the earth such as
an earth satellite, is not subject to the centrifugal force. This force is given by the
following equation

                            F(r) = ω 2 p(r) m ,                                                                       (19)

where p(r) is the projection of r onto the equatorial plane and w is the sidereal angular
velocity of 1 revolution per day (7.292115*10-5 rad s-1) , and m is the mass of the
particle subjected to the force. Note that the particles on the spin axis of the earth
experience no centrifugal force as the projection p(r) of their radius vector equals to 0.
We introduce the centrifugal acceleration ac(r) at point r as w2 p(r), and speak of the
centrifugal acceleration field, much the same way we speak of the gravitational field
(acceleration) a(r).

The earth (B) gravitation is denoted by gg (subscripted g for gravitation), rather than a,
and its centrifugal acceleration is denoted by gc (c for centrifugal) rather than ac.
When studying the fields gg and gc acting at points bound with the earth (spinning with
the earth) we normally lump these two fields together and speak of the earth gravity



field g:

                         g(r) = gg(r) + gc(r) .                                                                                       (20)

A stationary test mass m located at any of these points will sense the total gravity
vector g (acceleration).

If the (test) mass moves with respect to the earth then another (virtual) force affects
the mass: the Coriolis force, responsible for instance for the geostrophic motion
encountered in air or water movement. In the studies of earth gravity field, Coriolis’s
force is not considered. Similarly, temporal variation of gravity field, due to variations
in density distribution and in earth rotation speed, which are small compared to the
magnitude of the field itself, are mostly not considered either. They are studied
separately within the field of geo-kinematics (section IV).

 

III.B. Gravity potential

When we move a mass m in the gravity field g(r) from location r1 to location r2 , to
overcome the force g(r) m of the field, we have to do some work w. This work is
expressed by the following line integral:
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Note that the physical units of work w are kg m2 s -2 . Fortunately, for the gravitational
field the amount of work does not depend on what trajectory is followed when moving
the particle from r1 to r2. This property can be expressed as
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where the line integral is now taken along an arbitrary closed curve C. The physical
meaning of eqn. (22) is: when we move a particle in the gravitational field along an
arbitrary closed trajectory, we do not expend any work.

This property must be true also when the closed trajectory (curve) C is infinitesimally
short. This means that the gravitational field must be an irrotational vector field: its
vorticity is equal to 0 everywhere

                         0rg =×∇ )(                                                                                                   (23)

A field, which behaves in this way is also known as a potential field, meaning that
there exists a scalar function, called potential, of which the vector field in question is a
gradient. Denoting this potential by W(r), we can thus write:

                     ∇ W(r) = g(r).                                                                           (24)



To get some insight into the physical meaning of the potential W, whose physical units
are m2 s –2, we relate it to the work w defined in eqn. (21). It can be shown that the
amount of work expended when moving a mass m from r1 to r2 , along an arbitrary
trajectory, is equal to

                          w = [W(r2) - W(r1)] m .                                                                   (25)

In addition to the two differential equations (23,24) governing the behavior of the
gravity field, there is a third equation describing the field’s divergence

                     ∇ . g(r) = - 4Π Gρ (r) + 2ω 2 .                                                                (26)

These three field equations describe fully the differential behavior of the earth gravity
field. We note that the first term on the right hand side of eqn.(26) corresponds to the
gravitational potential Wg , whose gradient is the gravitational vector gg while the
second term corresponds to the centrifugal potential Wc that gives rise to the
centrifugal acceleration vector gc . The negative sign of the first term indicates that, at
the point r, there is a sink rather than a source of the gravity field, which should be
somewhat obvious from the direction of the vectors of the field. Since the ∇ operator
is linear, we can write

                             W(r) = Wg(r) + Wc(r) .                                                                               (27)

A potential field is a scalar field, simple to describe and to work with and it has
become the basic descriptor of the earth gravity field in geodesy, (cf., article 1-b,
"Global Gravity", in this volume). Once one has an adequate knowledge of the
gravity potential, one can derive all the other characteristics of the earth gravity field, g
by eqn.(24), Wg by eqn. (27), etc., mathematically. Interestingly, the Newton integral in
eqn.(16) can be also rewritten for the gravitational potential Wg, rather than the
acceleration, to give:
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which is one of the most often used equations in gravity field studies. Let us, for
completeness, spell out also the equation for the centrifugal potential

                             Wc(r) = ½ ω 2 p2(r) ,                                                                   (29)

c.f., eqn. (19).

A surface on which the gravity potential value is constant is called an equipotential
surface. As the value of the potential varies continuously, we may recognize infinitely
many equipotential surfaces defined by the following prescription:

                             W(r) = const.                                                                                             (30)

These equipotential surfaces are convex everywhere above the earth and never cross
each other anywhere. By definition, the equipotential surfaces are horizontal



everywhere and are thus called sometime the level surfaces.

One of these infinitely many equipotential surfaces is the geoid, one of the most
important surfaces used in geodesy, the equipotential surface defined by a specific
value W0 and thought  of as approximating the MSL the best (cf., §II/B) in some sense.
We shall have more to say about the two requirements in §IV/D. At the time of writing,
the best value of W0 is thought to be 62 636 855.8 ± 0.5 m2 s-2 [Burša et al., 1997]. A
global picture of the geoid is shown in Fig.5 in article 1-b, "Global Gravity", where
the geoidal height N (cf., §II/B) , i.e., the geoid-ellipsoid separation, is plotted. Note
that the departure of the geoid from the mean earth ellipsoid (for the definition see
below) is at most about 100 m in absolute value. When studying the earth gravity field,
we often need and use an idealized model of the field. The use of such a model
allows us to express the actual gravity field as a sum of the selected model field and
the remainder of the actual field. When the model field is selected to resemble closely
the actual field itself, the remainder, called an anomaly or disturbance, is much
smaller than the actual field itself. This is very advantageous because working with
significantly smaller values requires less rigorous mathematical treatment to arrive at
the same accuracy of the final results. This procedure resembles the "linearization"
procedure used in mathematics and is often referred to as such. Two such models are
used in geodesy: spherical (radial field) and ellipsoidal (also called normal or
Somigliana-Pizzetti’s) models. The former model is used mainly in satellite orbit
analysis and prediction – cf., § V/C – while the normal model is used in terrestrial
investigations. The normal gravity field is generated by a massive body called the
mean earth ellipsoid adopted by a convention. The most recent such convention,
proposed by the IAG in 1980 [IAG, 1980] and called Geodetic Reference System of
1980 (GRS 80), specifies the mean earth ellipsoid as having the major semi-axis "a" 6
378 137 m long and the flattening "f" of 1/ 289.25. A flattening of an ellipsoid is
defined as

                           f = (a – b)/a ,                                                                                               (31)

where "b" is the minor semi-axis. This ellipsoid departs from a mean earth sphere by
slightly more than 10 kilometres: the difference a – b is about 22 km. We must note
here that the flattening f is closely related to the second degree coefficient C2,0
discussed in article 1-b, "Global Gravity".

This massive ellipsoid is defined as rotating with the earth with the same angular
velocity w , its potential is defined to be constant and equal to W0, on the surface of
the ellipsoid, and its mass the same as that (M) of the earth. Interestingly, these
prescriptions are enough to evaluate the normal potential U(r) everywhere above the
ellipsoid so that the mass density distribution within the ellipsoid does not have to be
specified. The departure of the actual gravity potential from the normal model is called
disturbing potential T(r):

                           T(r) = W(r) – U(r) .                                                                                      (32)

The earth gravity potential field is described in a global form as a truncated series of
spherical harmonics up to order and degree 360 or even higher. Many such series



have been prepared by different institutions in the US and in Europe. Neither regional,
nor local representations of the potential are used in practice; only the geoid, gravity
anomalies and the deflections of the vertical (see the next 3 sections) are needed on
a regional/local basis.

 

III.C. Magnitude of gravity

The gravity vector g(r) introduced in §III/A can be regarded as consisting of a
magnitude (length) and a direction. The magnitude of g, denoted by g, is referred to
as gravity, which is a scalar quantity measured in units of acceleration. It changes
from place to place on the surface of the earth in response to latitude, height and the
underground mass density variations. The largest is the latitude variation, due to the
oblateness of the earth and due to the change in centrifugal acceleration with latitude,
amounts to about 5.3 cm s-2, i.e., about 0.5% of the total value of gravity. At the poles,
gravity is the strongest, about 9.833 m s-2 (983.3 Gal), and at the equator it is at its
weakest, about 978.0 Gal. The height variation, due to varying distance from the
attracting body, the earth, amounts to 0.3086 mGal m-1 when we are above the earth,
and to around 0.0848 mGal m-1 (we have seen this gradient already in §II/B) when we
are in the uppermost layer of the earth such as the topography. The variations due to
mass density variations are somewhat smaller. We note that all these variations in
gravity are responsible for the variation in weight: for instance, a mass of one kg at the
pole weighs 9.833 kg m s-2, while on the equator it weighs only 9.780 kg m s-2. Gravity
can be measured by means of a test mass, by simply measuring either the
acceleration of the test mass in free fall or the force needed to keep it place.
Instruments that use the first approach, pendulums and "free-fall devices", can
measure the total value of gravity (absolute instruments) while the instruments based
on the second approach, called "gravimeters", are used to measure gravity changes
from place to place or changes in time (relative instruments). The most popular field
instruments are the gravimeters (of many different designs) which can be made easily
portable and easily operated. Gravimetric surveys conducted for the geophysical
exploration purpose, which is the main user of detailed gravity data, employ portable
gravimeters exclusively. The accuracy, in terms of standard deviations, of most of the
data obtained in the field is of the order of 0.05 mGal. To facilitate the use of
gravimeters as relative instruments, countries have developed gravimetric networks
consisting of points at which gravity had been determined through a national effort.
The idea of gravimetric networks is parallel to the geodetic (positioning) networks we
have seen in §II/D and the network adjustment process is much the same as the one
used for the geodetic networks. A national gravimetric network starts with national
gravity reference point(s) established in participating countries through an
international effort; the last such effort, organized by IAG (cf., §I/C) was the
International Gravity Standardization Net 1971 (IGSN 71) [IAG, 1974]. Gravity data as
observed on the earth surface are of little direct use in exploration geophysics. To
become useful, they have to be stripped of: 1) the height effect, by reducing the
observed gravity to the geoid, using an appropriate vertical gradient of gravity ∂ g/∂ H,
and 2) the dominating latitudinal effect, by subtracting from them the corresponding



magnitude of normal gravity g (the magnitude of the gradient of U, c.f., eqn.(24))
reckoned on the mean earth ellipsoid (see §III/B), i.e., at points (re, ϕ , λ). The
resulting values D g are called gravity anomalies and are thought of as corresponding
to locations (rt, ϕ , λ) on the geoid. For geophysical interpretation, gravity anomalies
are thus defined as (for the definition used in geodesy see §III/E):

                     ∆ g(rg, ϕ , λ ) = g(rt, ϕ , λ ) - ∂ g/∂ H *H (ϕ , λ ) - γ (re, ϕ , λ ) ,                      (33)

where g(rt, ϕ , λ) are the gravity values observed at points (rt, ϕ , λ) on the earth
surface and H (ϕ , λ) are the orthometric heights of the observed gravity points. These
orthometric heights are usually determined together with the observed gravity. Normal
gravity on the mean earth ellipsoid is part of the normal model accepted by convention
as discussed in the previous section. The GRS 80 specifies the normal gravity on the
mean earth ellipsoid by the following formula:

γ (re, ϕ ) = 978.032 7 (1 + 0.005 279 041 4 sin2ϕ + 0.000 023 271 8 sin4ϕ +

                 + 0.000 000 126 2 sin6ϕ ) Gal.                                                                               (34)

Gravity anomalies, like the disturbing potential in §III/B, are thought of as showing
only the anomalous part of gravity, i.e., the spatial variations in gravity caused by
subsurface mass density variations. Depending on what value is used for the vertical
gradient of gravity ∂ g/∂ H, we get different kinds of gravity anomalies: using ∂ g/∂ H =
- 0.3086 mGal m-1, we get the free-air gravity anomaly, using ∂ g/∂ H = ½ (- 0.3086 –
0.0848) mGal m-1, we get the (simple) Bouguer gravity anomaly. Other kinds of
anomalies exist, but they are not very popular in other than specific theoretical
undertakings.

Observed gravity data, different kinds of point gravity anomalies, anomalies averaged
over certain geographical cells, and other gravity related data are nowadays available
in either a digital form or in the form of maps. These can be obtained from various
national and international agencies upon request. Figure 10 shows the map of free-air
gravity anomalies in Canada.



Figure 10 – Map of free-air gravity anomalies in Canada.

 

 

III.D. Direction of gravity

Like the magnitude of the gravity vector g discussed in the previous section, its
direction is also of interest. As it requires two angles to specify the direction, the
direction of gravity is a little more difficult to deal with than the magnitude. As has
been the case with gravity anomalies, it is convenient to use the normal gravity model
here as well. When subtracting the direction of normal gravity from the direction of
actual gravity we end up with a small angle, probably smaller than one or two arc-
minutes anywhere on earth. This smaller angle q , called the deflection of the vertical,
is easier to work with than the arbitrarily large angles used for describing the direction
of g. We thus have
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where, in parallel with eqn.(24), g(r) is evaluated as the gradient of the normal
potential U:

                      γ (r) = ∇ U(r) .                                                                              (36)

We may again think of the deflection of the vertical as being just only an effect of a
disturbance of the actual field, compared to the normal field.



Gravity vectors, being gradients of their respective potentials, are always
perpendicular to the level surfaces, be they actual gravity vectors or normal gravity
vectors. Thus the direction of g(r) is the real vertical (a line perpendicular to the
horizontal surface) at r and the direction of g (r) is the normal vertical at r: the
deflection of the vertical is really the angle between the actual and normal vertical
directions. We note that the actual vertical direction is always tangential to the actual
plumbline, known in physics also as the line of force of the earth gravity field. At the
geoid, for r = rg , the direction of g (rg) is to a high degree of accuracy the same as the
direction of the normal to the mean earth ellipsoid (being exactly the same on the
mean earth ellipsoid). If the mean earth ellipsoid is chosen also as a reference
ellipsoid then the angles that describe the direction of the normal to the ellipsoid are
the geodetic latitude ϕ and longitude λ , cf., §II/A. Similarly, the direction of the
plumbline at any point r is defined by astronomical latitude Φ and astronomical
longitude Λ . The astronomical coordinates Φ and Λ can be obtained, to a limited
accuracy, from optical astronomical measurements while the geodetic coordinates are
obtained by any of the positioning techniques described in section II. Because θ is a
spatial angle, it is customary in geodesy to describe it by two components, the
meridian ξ and the prime vertical η components. The former is the projection of θ onto
the local meridian plane, the latter the projection onto the local prime vertical plane
(plane perpendicular to the horizontal and meridian planes). There are two kinds of
deflection of vertical used in geodesy: those taken at the surface of the earth, at points
rt = (rt, ϕ , λ), called surface deflections and those taken at the geoid level, at points rg

= (rg, ϕ , λ), called geoid deflections. Surface deflections are generally significantly
larger than the geoid deflections as they are affected not only by the internal
distribution of masses but also by the topographical masses. The two kinds of
deflections can be transformed to each other. To do so, we have to evaluate the
curvature of the plumbline (in both perpendicular directions) and the curvature of the
normal vertical. The former can be quite sizeable – up to a few tens of arc-seconds –
and is very difficult to evaluate. The latter is curved only in the meridian direction (the
normal field being rotationally symmetrical) and even that curvature is rather small,
reaching a maximum of about one arc-second. The classical way of obtaining the
deflections of the vertical is through the differencing of the astronomical and geodetic
coordinates as follows

                            ξ = Φ - ϕ , η = (Λ - λ ) cos ϕ .                                                                   (37)

These equations also define the signs of the deflection components. In North
America, however, the sign of h is sometimes reversed. We emphasize here that the
geodetic coordinates have to refer to the geocentric reference ellipsoid/mean earth
ellipsoid. Both geodetic and astronomical coordinates must refer to the same point,
either on the geoid or on the surface of the earth. In §II/B, we mentioned that the
astronomical determination of point positions (Φ , Λ ) is not used in practice any more
because of the large effect of the earth gravity field. Here we see the reason spelled
out in equations (37): considering the astronomically determined position (Φ , Λ) to be
an approximation of the geodetic position (ϕ , λ) invokes an error of (ξ , η /cos ϕ) that
can reach several kilometres on the surface of the earth. The deflections of the



vertical can be determined also from other measurements, which we will show in the
next section.

 

III.E. Transformations between field parameters

Let us begin with the transformation of the geoidal height to the deflection of the
vertical (i.e., N → (ξ , η )), which is of a purely geometrical nature and fairly simple.
When the deflections are of the "geoid" kind, they can be interpreted simply as
showing the slope of the geoid with respect to the geocentric reference ellipsoid at the
deflection point. This being the case, geoidal height differences can be constructed
from the deflections ((ξ , η ) → ∆ N), in the following fashion. We take two adjacent
deflection points and project their deflections onto a vertical plane going through the
two points. These projected deflections represent the projected slopes of the geoid in
the vertical plane; their average multiplied by the distance between the two points
gives us an estimate of the difference in geoidal heights ∆ N at the two points. Pairs of
deflection points can be then strung together to produce the geoid profiles along
selected strings of deflection points. This technique is known as Helmert’s leveling.
We note that if the deflections refer to a geodetic datum (rather than to a geocentric
reference ellipsoid), this technique gives us geoidal height differences referred to the
same geodetic datum. Some older geoid models were produced using this technique.
Another very useful relation (transformation) relates the geoid height N to the
disturbing potential T (T → N, N → T). It was first formulated by a German physicist H.
Bruns (1878), and it reads

                           N = T/γ .                                                                                                       (38)

The equation is accurate to a few millimetres; it is now referred to as Bruns’s formula.

In §III/C we introduced gravity anomaly ∆g of different kinds (defined on the geoid), as
they are normally used in geophysics. In geodesy we need a different gravity
anomaly, one that is defined for any location r, rather than being tied to the geoid.
Such gravity anomaly is defined by the following exact equation

              ∆ g(r) = - ∂ T/∂ h | r = (r, ϕ , λ ) + γ (r) -1 ∂ γ /∂ h | r = (r,  ϕ , λ ) T (r-Z, ϕ , λ ) ,               (39)

where Z is the displacement between the actual equipotential surface W = const.
passing through r and the corresponding (i.e., having the same potential) normal
equipotential surface U = const. This differential equation of first order, sometimes
called fundamental gravimetric equation, can be regarded as the transformation from
T(r) to ∆ g(r) (T → ∆ g) and is used as such in the studies of the earth gravity field.
The relation between this gravity anomaly and the ones discussed above is somewhat
tenuous.

Perhaps the most important transformation is that of gravity anomaly ∆ g, it being the
cheapest data, to disturbing potential T (∆ g →T), from which other quantities can be
derived using the transformations above. This transformation turns out to be rather



complicated: it comes as a solution of a scalar boundary value problem and it will be
discussed in the following two sections. We devote two sections to this problem
because it is regarded as central to the studies of earth gravity field. Other
transformations between different parameters and quantities related to the gravity field
exist, and the interested reader is advised to consult any textbook on geodesy; the
classical textbook by Heiskanen and Moritz [1967] is particularly useful.

 

III.F. Stokes’s geodetic boundary value problem

The scalar geodetic boundary value problem was formulated first by Stokes [1849].
The formulation is based on the partial differential equation valid for the gravity
potential W, (derived by substituting eqn. (24) into (26))

                        

This is a non-homogeneous elliptical equation of second order, known under the
name of Poisson equation, that embodies all the field equations (see §III/A) of the
earth gravity field. Stokes applied this to the disturbing potential T (see §III/B) outside
the earth to get:

                        

This is so because T does not have the centrifugal component and the mass density r
(r) is equal to 0 outside the earth. (This would be true only if the earth atmosphere did
not exist; as it does exist, it has to be dealt with. This is done in a corrective fashion,
as we shall see below.) This homogeneous form of Poisson equation is known as
Laplace equation. A function, (T, in our case) that satisfies the Laplace equation in a
region (outside the earth, in our case) is known as being harmonic in that region.

Further, Stokes has chosen the geoid to be the boundary for his boundary value
problem because it is a smooth enough surface for the solution to exist (in the space
outside the geoid). This of course violates the requirement of harmonicity of T by the
presence of topography (and the atmosphere). Helmert [1880] suggested to avoid this
problem by transforming the formulation into a space where T is harmonic outside the
geoid. The actual disturbing potential T is transformed to a disturbing potential Th,
harmonic outside the geoid, by subtracting from it the potential caused by topography
(and the atmosphere) and adding to it the potential caused by topography (and the
atmosphere) condensed on the geoid (or some other surface below the geoid) . Then
the Laplace equation

                            

is satisfied everywhere outside the geoid. This became known as the Stokes-Helmert
formulation.

The boundary values on the geoid are constructed from gravity observed on the earth



surface in a series of steps. First, gravity anomalies on the surface are evaluated from
eqn.(33), using the free-air gradient These are transformed to Helmert’s anomalies ∆
gh, defined by eqn.(39) for T = Th, by applying a transformation parallel to the one for
the disturbing potentials as described above. By adding some fairly small corrections,
Helmert’s anomalies are transformed to the following expression [Vanícek et al.,
1999]:

                         2 r-1 Th(r-Z, ϕ , λ ) + ∂ Th/∂ r| r = - ∆ gh*(r).                                                 (43)

As Th is harmonic above the geoid, this linear combination, multiplied by r, is also
harmonic above the geoid. As such it can be "continued downward" to the geoid by
using the standard Poisson integral.

Given the Laplace equation (42), the boundary values on the geoid, and the fact that
Th(r) disappears as r → ∞ , Stokes [1849] derived the following integral solution to his
boundary value problem:
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where Ω , Ω ’ are the geocentric spatial angles of positions r, r’, Ψ is the spatial angle
between r and r’, S is the Stokes integration kernel in its spherical (approximate) form

          S(Ψ ) ≅ 1+ sin-1(Ψ /2) – 6 sin(Ψ /2) – 5 cosΨ - 3 cosΨ ln[sin(Ψ /2) + sin2 (Ψ /2)], (45)

and the integration is carried out over the geoid. We note that if desired, the disturbing
potential is easily transformed to geoidal height by means of the Bruns formula (38).

In the final step, the solution Th(rg) is transformed to T(rg) by adding to it the potential
of topography (and the atmosphere) and subtracting the potential of topography (and
the atmosphere) condensed to the geoid. This can be regarded as a back
transformation from the "Helmert harmonic space" back to the real space. We have to
mention that the fore and back transformation between the two spaces requires
knowledge of topography (and the atmosphere), both of height and of density. The
latter represents the most serious accuracy limitation of Stokes’s solution: the
uncertainty in topographical density may cause an error up to one to two decimetres
in the geoid in high mountains. Let us add that recently, it became very popular to use
a higher than second order (Somigliana-Pizzetti’s) reference field in Stokes’s
formulation. For this purpose, a global filed (cf., article 1-b, "Global Gravity"),
preferably of a pure satellite origin, is selected and a residual disturbing potential on,
or geoidal height above a reference spheroid defined by such a field (cf., ibid., Fig. 5)
is then produced. This approach may be termed a generalized Stokes formulation
[Vanícek and Sjöberg, 1991] and it is attractive because it alleviates the negative
impact of the existing non-homogeneous terrestrial gravity coverage by attenuating
the effect of distant data in the Stokes integral (44). For illustration, so computed a
geoid for North America is shown in Fig.11. It should be also mentioned that the
evaluation of Stokes’s integral is often sought in terms of Fast Fourier Transform.



Figure 11 – A 3D slice of the detailed geoid for North America (computed at the
University of New Brunswick)

 

 

III.G. Molodenskij’s geodetic boundary value problem

In the mid-twentieth century, a Russian physicist, M.S. Molodenskij formulated a
different scalar boundary value problem to solve for the disturbing potential outside
the earth [Molodenskij et al., 1960]. His criticism of Stokes’s approach was that the
geoid is an equipotential surface internal to the earth and as such requires detailed
knowledge of internal (topographical) earth mass density, which we will never have.
He then proceeded to replace Stokes’s choice of the boundary (geoid) by the earth
surface and to solve for T(r) outside the earth. At the earth surface, the Poisson
equation changes dramatically. The first term on its right hand side, equal to - 4p Gr
(r), changes from 0 to a value of approximately 2.24 * 10-6 s –2 (more than three
orders of magnitude larger than the value of the second term). The latter value is
obtained using the density r of the most common rock, the granite. Conventionally, the
value of the first term right on the earth surface is defined as – 4k(rt) π Gρ ( rt), where
the function k(rt) has a value between 0 and 1 depending on the shape of the earth
surface; it equals to 1/2 for a flat surface, close to 0 for a "needle-like" topographical
feature and close to 1 for a "well-like" feature. In Molodenskij’s solution, the Poisson
equation has to be integrated over the earth surface and the above variations of the
right hand side cause problems, particularly on steep surfaces. It is still uncertain just



how accurate a solution can be obtained with Molodenskij’s approach; it looks as if
bypassing the topographical density may have introduced another problem caused by
the real shape of topographical surface. For technical reasons, the integration is not
carried out on the earth surface but on a surface, which differs from the earth surface
by about as much as the geoidal height N; this surface is the telluroid encountered
already in §II/B. The solution for T on the earth surface (more accurately on the
telluroid) is given by the following integral equation

T(rt) – R/(2π )I tell [∂ /∂ n’ rt – rt’ -1 – rt – rt’ -1 cos β /γ ∂ γ /∂ HN] T(rt’) dΩ’=
R/(2π )I tell [∆ g(rt’) - γ ] [ξ ’tan β 1 + η ’tan β 2] rt – rt’ -1 cos β dΩ ’                (46)  

where n’ is the outer normal to the telluroid, β is the maximum slope of the telluroid
(terrain), β 1, β 2 are the north-south and east-west terrain slopes, and ξ ’, η ’ are
deflection components on the earth surface. This integral equation is too complicated
to be solved directly and simplifications must be introduced. The solution is then
sought in terms of successive iterations, the first of which has an identical shape to
the Stokes integral (44). Subsequent iterations can be thought of as supplying
appropriate corrective terms (related to topography) to the basic Stokes solution.

In fact, the difference between the telluroid and the earth surface, called the height
anomaly ζ , is what can be determined directly from Molodenskij’s integral using a
surface density function. It can be interpreted as a "geoidal height" in Molodenskij’s
sense as it defines the Molodenskij "geoid" introduced in §II/B (called quasi-geoid, to
distinguish it from the real geoid). The difference between the geoid and quasi-geoid
may reach up to a few metres in mountainous regions but it disappears at sea [Pick et
al., 1973]. It can be seen from §II/B that the difference may be evaluated from
orthometric and normal heights (referred to the geoid and quasi-geoid respectively):

                          ζ - N = HO - HN ,                                                                                           (47)

subject to the error in the orthometric height. Approximately, the difference is also
equal to - ∆ gBouguer Ho / γ .

 

III.H. Global and local modeling of the field

Often, it is useful to describe the different parameters of the earth gravity field by a
series of spherical or ellipsoidal harmonic functions (cf., article 1-b, "Global
Gravity"). This description is often referred to as the spectral form and it is really the
only practical global description of the field parameters. The spectral form, however, is
useful also in showing the spectral behavior of the individual parameters. We learn,
for instance, that the series for T, N or ζ converge to 0 much faster than the series for
∆ g, ξ , η do: we say that the T, N or ζ fields are smoother than the ∆ g, ξ , η fields.
This means that a truncation of the harmonic series describing one of the smoother
fields does not cause as much damage as does a truncation for one of the rougher
fields, by leaving out the higher "frequency" components of the field. The global
description of the smoother fields will be closer to reality. If higher frequency



information is of importance for the area of interest then it is more appropriate to use a
point description of the field. This form of a description is called in geodesy the spatial
form. Above we have seen only examples of spatial expressions, in article 1-b,
"Global Gravity" only spectral expressions are used. Spatial expressions involving
surface convolution integrals over the whole earth, cf., eqns.(44), (46), can be always
transformed into corresponding spectral forms and vice-versa. The two kinds of forms
can be, of course, also combined as we saw in the case of generalized Stokes’s
formulation (§III/F).

 

 



IV. Geo-kinematics

IV.A . Geodynamics and geo-kinematics

Dynamics is that part of physics that deals with forces (and therefore masses) and
motions in response to these forces and geodynamics is that part of geophysics that
deals with the dynamics of the earth. In geodesy, the primary interest is the geometry
of the motion and of the deformation (really just a special kind of motion) of the earth
or its part. The geometrical aspect of dynamics is called kinematics and we thus talk
here about geo-kinematics. As a matter of fact, the reader might have noticed already
in the above paragraphs involving physics how mass was eliminated from the
discussions, leaving us with only kinematic descriptions. Geo-kinematics is one of the
obvious fields where cooperation with other sciences, geophysics here, is essential.
On the one hand, geometrical information on the deformation of the surface of the
earth is of much interest to a geophysicist who studies the forces/stresses responsible
for the deformation and the response of the earth to these forces/stresses. On the
other hand, it is always helpful to a geodesist, to get an insight into the physical
processes responsible for the deformation he is trying to monitor. Geodesists have
studied some parts of geo-kinematics, such as those dealing with changes in earth
rotation, for a long time. Other parts were only more recently incorporated into
geodesy because the accuracy of geodetic measurements had not been good enough
to see the real time evolution of deformations occurring on the surface of the earth.
Nowadays, geodetic monitoring of crustal motions is probably the fastest developing
field of geodesy.

 

IV.B. Temporal changes in coordinate systems

In section §II/A we encountered a reference to the earth "spin axis" in the context of
geocentric coordinate systems. It is this axis the earth spins around with 366.2564
sidereal revolutions (cf., §III/A), or 365.2564 revolutions with respect to the sun
(defining solar days) per year. The spin axis of the earth moves with respect to the
universe (directions to distant stars, the realization of an inertial coordinate system),
undergoing two main motions: one very large, called precession, with a period of
about 26,000 years, the other much smaller, called nutation, with the main period of
18.6 years. These motions must be accounted for when doing astronomical
measurements of either the optical or radio variety (see §II/C). In addition to
precession and nutation, the spin axis also undergoes a torque-free nutation, also
called a wobble, with respect to the earth. More accurately, the wobble should be
viewed as the motion of the earth with respect to the instantaneous spin axis. It is
governed by famous Euler’s gyroscopic equation:  

                                    

where J is the earth’s tensor of inertia and omega is the instantaneous spin angular
velocity vector whose magnitude omega we have met several times above. Some
relations among the diagonal elements of J, known as moments of inertia, can be



inferred from astronomical observations giving a solution omega of this differential
equation. Such solution describes a periodic motion with a period of about 305
sidereal days, called Euler’s period.

Observations of the wobble (Fig.12) have shown that beside the Euler component,

Figure 12 – Earth pole wobble (Source: International Earth Rotation Service)

there is also an annual periodic component of similar magnitude plus a small drift. The
magnitude of the periodic components fluctuates around 0.1 arc-seconds. Thus the
wobble causes a displacement of the pole (intersection of instantaneous spin axis with
the earth surface) of several metres. Furthermore, systematic observations show also
that the period of the Euler component is actually longer by some 40% than predicted
by the Euler equation. This discrepancy is caused by the non-rigidity of the earth and
the actual period, around 435 solar days, is now called Chandler’s. The actual motion
of the pole is now being observed and monitored by IAG’s International Earth Rotation
Service (IERS) on a daily basis. It is easy to appreciate that any coordinate system
linked to the earth spin axis (cf., §II/A) is directly affected by the earth pole wobble
which, therefore, has to be accounted for. As the direction of omega varies, so does
its magnitude omega . The variations of spin velocity are also monitored in terms of
the length of the day (LOD) by the Bureau Internationale des Poids et Mesures – Time
Section (BIPM) on a continuous basis. The variations are somewhat irregular and
amount to about 0.25 millisecond per year – the earth spin is generally slowing down.
There is one more temporal effect on a geodetic coordinate system, that on the datum
for vertical positioning, i.e., on the geoid. It should be fairly obvious that if the
reference surface for heights (orthometric and dynamic) changes, so do the heights
referred to it. In most countries, however, these changes are not taken too seriously.
The geoid indicated by the MSL, as described in §III/B, changes with time both in
response to the mass changes within the earth and to the MSL temporal changes.
The latter was discussed in §III/B, the former will be discussed in §IV/C).

 

IV.C. Temporal changes in positions

The earth is a deformable body and its shape is continuously undergoing changes
caused by a host of stresses; thus the positions of points on the earth surface change



continuously. Some of the stresses that cause the deformations are known, some are
not, the best known being the tidal stress [Melchior, 1966]. Some loading stresses
causing crustal deformation are reasonably well known, such as those caused by
filling up water dams, others, such as sedimentation and glaciation, are known only
approximately. Tectonic and other stresses can be only inferred from observed
deformations (cf., article 7-a, "Tectonophysics", in this volume). The response of
the earth to a stress, i.e., the deformation, varies with the temporal frequency and the
spatial extent of the stress, and depends on the rheological properties of the whole or
just a part of the earth. Some of these properties are now reasonably well known
some are not. The ultimate role of geodesy vis-à-vis these deformations is to take
them into account for predicting the temporal variations of positions on the earth
surface. This can be done relatively simply for deformations that can be modeled with
a sufficient degree of accuracy (e.g., tidal deformations) but it cannot yet be done for
other kinds of deformations, where the physical models are not known with sufficient
degree of certainty. Then the role of geodesy is confined to monitoring the surface
movements, kinematics, to provide the input to geophysical investigations. A few
words are now in order about tidal deformations. They are caused by the moon and
sun gravitational attraction (see Fig.13) – tidal potential caused by the next most
influential celestial body, Venus, amounts  to only 0.036% of the luni-solar potential –

Figure 13 – The provenance of tidal force due to the moon.

and in practice only the luni-solar tidal potential is considered. The tidal potential Wt
¤

of the moon, the lunar tidal potential, is given by the following equation

                           Wt
¤

 (r) = GM¤ * r¤ - r* -1 Σ 
j=2∞ r j* r¤ - r* -j Pj (cos Ψ¤ ) ,                               (49)

where the symbol ¤ refers to the moon, Pj is the Legendre function of degree j and Ψ is
the geocentric angle between r and r¤ . The tidal potential of the sun Wt

S is given by a
similar series and it amounts to about 46% of the lunar tidal potential. To achieve an



accuracy of 0.03%, it is enough to take the first two terms from the lunar series and
the first term from the solar series.

The temporal behavior of tidal potential is periodic, as dictated by the motions of the
moon and the sun (but see §IV/D for the tidal constant effect). The tidal waves, into
which the potential can be decomposed, have periods around one day, called diurnal,
around 12 hours, called semidiurnal, and longer. The tidal deformation as well as all
the tidal effects (except for the sea tide, which requires solving a boundary value
problem for the Laplace tidal equation, which we are not going to discuss here, can be
relatively easily evaluated from the tidal potential. This is because the rheological
properties of the earth for global stresses and tidal periods are reasonably well known.
Geodetic observations as well as positions are affected by tidal deformations and
these effects are routinely corrected for in leveling, VLBI (cf., §II/C), satellite
positioning (cf., §V/B) and other precise geodetic works. For illustration, the range of
orthometric height tidal variation due to the moon is 36 cm, that due to the sun is
another 17 cm. Tidal deformation being of a global character, however, these tidal
variations are all but imperceptible locally. Tectonic stresses are not well known, but
horizontal motion of tectonic plates has been inferred from various kinds of
observations, including geodetic, with some degree of certainty, and different maps of
these motions have been published (cf., article 7-a, "Tectonophysics", in this
volume). The AM0-2 absolute plate motion model was chosen to be an "associated
velocity model" in the definition of the ITRF (see §II/A), which together with direct
geodetic determination of horizontal velocities define the temporal evolution of the
ITRF and thus the temporal evolution of horizontal positions. From other ongoing
earth deformations, the post-glacial rebound is probably the most important globally
as it is large enough to affect the flattening (eqn.(31)) of the mean earth ellipsoid as
we will see in §IV/C. Mapping and monitoring of ongoing motions (deformations) on
the surface of the earth is done by repeated position determination. In global
monitoring the global techniques of VLBI and satellite positioning are used (see §V/B).
For instance, one of the IAG services, the International GPS Service (IGS), cf., §I/C,
has been mandated with monitoring the horizontal velocities of a multitude of
permanent tracking stations under its jurisdiction. In regional investigations the
standard terrestrial geodetic techniques such as horizontal and vertical profiles,
horizontal and leveling network re-observation campaigns are employed. The
positions are then determined separately from each campaign with subsequent
evaluation of displacements. Preferably, the displacements (horizontal or vertical) are
estimated directly from the observations collected in all the campaigns. The latter
approach allows the inclusion of correlations in the mathematical model for the
displacement estimation with more correct estimates ensuing. For illustration, Fig 14
shows such estimated horizontal displacements from the area of Imperial Valley,



Figure 14 – Mean annual horizontal displacements in Imperial Valley, Cal.,
computed from data covering the period 1941 to 1975.

 

California, computed from standard geodetic observations.

It is not possible to derive absolute displacements from relative positions. Because the
repeated horizontal position determination described above is usually of a relative
kind, the displacements are indeterminate. It makes then sense to deal only with
relative quantification of deformation such as strain. Strain is, most generally,
described by the displacement gradient matrix S; denoting the two-dimensional
displacement vector of a point r by v(r) we can write

                            S(r) = ∇’v T(r) ,                                                                                           (50)

where ∇’ is the two-dimensional nabla operator. The inverse transformation

                          v(r) = S(r) r + v0 ,                                                                

(51)

where v0 describes the translational indeterminacy, shows better the role of S, which
can be also understood as a Jacobean matrix (cf., eqn.(14)) which transforms from
the space of positions (real two-dimensional space) into the space of displacements.
The symmetrical part of S is called the deformation tensor in the mechanics of
continuum, the anti-symmetrical part of S describes the rotational deformation. Other
strain parameters can be derived from S.



 

IV.D. Temporal changes in gravity field

Let us begin with the two requirements defining the geoid presented in III/B: the
constancy of W0 and the fit of the equipotential surface to the MSL. These two
requirements are not compatible when viewed from the point of time evolution, or the
temporal changes of the earth gravity field. The MSL grows with time at a rate
estimated to be between 1 and 2 mm per year (the eustatic water level change) which
would require systematic lowering of the value of W0. The mass density distribution
within the earth changes with time as well (due to tectonic motions, post-glacial
rebound, sedimentation, as discussed above), but its temporal effect on the geoid is
clearly different from that of the MSL. This dichotomy has not been addressed by the
geodetic community yet. In the areas of largest documented changes of the mass
distribution (those caused by the post-glacial rebound), the northeastern part of North
America and Fennoscandia, the maximum earth surface uplift reaches about 1 cm per
year. The corresponding change in gravity value reaches up to 0.006 mGal/year and
the change in the equipotential surfaces W = const. up to 1 mm/year. The potential
coefficient C2,0 (cf., §III/B), or rather its unitless version J2,0 that is used most of the
time in gravity field studies, as observed by satellites shows a temporal change
caused by the rebound. The rebound can be thought of as changing the shape of the
geoid, and thus the shape of the mean earth ellipsoid, within the realm of
observability. As mentioned in §IV/C, the tidal effect on gravity is routinely evaluated
and corrected for in precise gravimetric work, where the effect is well above the
observational noise level. By correcting for the periodic tidal variations the gravity
observations we eliminate the temporal variations but we do not eliminate the whole
tidal effect. In fact, the luni-solar tidal potential given by eqn.(49) has a significant
constant component responsible for what is called in geodesy permanent tide. The
effect of permanent tide is an increased flattening of gravity equipotential surfaces,
and thus of the mean earth ellipsoid, by about one part in 105. For some geodetic
work, the tide-less mean earth ellipsoid is better suited than the mean-tide ellipsoid
and, consequently, both ellipsoids can be encountered in geodesy. Temporal
variations of gravity are routinely monitored in different parts of the world. These
variations (corrected for the effect of underground water fluctuations) represent an
excellent indicator that a geodynamical phenomenon, such as tectonic plate motion,
sedimentation loading, volcanic activity, etc., is at work in the monitored region. When
gravity monitoring is supplemented with vertical motion monitoring, the combined
results can be used to infer the physical causes of the monitored phenomenon. Let us
mention that the earth-pole wobble introduces also observable variations of gravity of
the order of about 0.008 mGal. So far, these variations have been of academic
interest only.

 



V. Satellite techniques

 

V.A . Satellite motion, functions and sensors

Artificial satellites of the earth appeared on the world scene in the late fifties and were
relatively early embraced by geodesists as the obvious potential tool to solve world
wide geodetic problems. In geodetic applications, satellites can be used both in
positioning and in gravitational field studies as we have alluded to in the previous 3
sections. Geodesists have used many different satellites in the past 40 years, ranging
from completely passive to highly sophisticated active (transmitting) satellites, from
quite small to very large. Passive satellites do not have any sensors on board and
their role is basically that of an orbiting target. Active satellites may carry a large
assortment of sensors, ranging from accurate clocks, through various counters to
sophisticated data processors and transmit the collected data down to the earth either
continuously or intermittently. Satellites orbit the earth following a trajectory, which
resembles the Keplerian ellipse that describes the motion in radial field (cf., §III/A); the
higher the satellite, the closer its orbit to the Keplerian ellipse. Lower orbiting satellites
are more affected by the irregularities of the earth gravitational field and their orbit
becomes more perturbed compared to the Keplerian orbit. This curious behavior is
caused by the inherent property of gravitational field known as the attenuation of
shorter wavelengths of the field with height and can be gleaned from eqn.(4) in article
1-b, "Global Gravity". The ratio a/r is always smaller than 1 and thus tends to
disappear the faster the larger its exponent l which stands for the spatial wave number
of the field. We can see that the attenuation factor (a/r)l goes to 0 for growing l and
growing r; for r > a we have:

                                liml→ ∞ (a/r)l = 0.                                                                                     (52)

We shall see in §V/C how this behavior is used in studying the gravitational field by
means of satellites.

Satellite orbits are classified as: high and low orbits, polar orbits (when the orbital
plane contains the spin axis of the earth), equatorial orbits (orbital plane coincides
with the equatorial plane of the earth), pro-grade and retro-grade (the direction of
satellite motion is either eastward or westward). The lower the orbit, the faster the
satellite circles the earth. At an altitude of about 36 000 km, the orbital velocity
matches that of the earth spin, its orbital period becomes 24 hour long and the
satellite moves only in one meridian plane (its motion is neither pro-grade nor retro-
grade). If its orbit is equatorial, the satellite remains in one position above the equator.
Such orbit (satellite) is called geo-stationary. Satellites are tracked from points on the
earth or by other satellites using electro-magnetic waves of frequencies that can
penetrate the ionosphere. These frequencies propagate along a more or less straight
line and thus require inter-visibility between the satellite and the tracking device
(transmitter, receiver or reflector); they range from microwave to visible (from 30 to109



MHz). The single or double passage of the electro-magnetic signal between the
satellite and the tracking device is accurately timed and the distance obtained by
multiplying the time of passage by the propagation speed. The propagation speed is
close to the speed of light in vacuum, i.e., 299 792 460 m s-1, the departure being due
to the delay of the wave passing through the atmosphere and ionosphere. Tracked
satellite orbits are then computed from the measured (observed) distances and known
positions of the tracking stations by solving the equations of motion in the earth gravity
field. This can be done quite accurately (to a centimetre or so) for smaller, spherical,
homogeneous and high-flying spacecraft that can be tracked by lasers. Other
satellites present more of a problem; consequently, their orbits are less well known.
When orbits are extrapolated into the future, this task becomes known as the orbit
prediction. Orbit computation and prediction are specialized tasks conducted only by
larger geodetic institutions.

 

V.B. Satellite positioning

The first satellite used for positioning was a large light passive balloon (ECHO I,
launched in 1960) whose only role was to serve as a naturally illuminated moving
target on the sky. This target was photographed against the star background from
several stations on the earth and directions to the satellite were then derived from the
known directions of surrounding stars. From these directions and from a few
measured inter-station distances, positions of the camera stations were then
computed. These positions were not very accurate though, because the directions
were burdened by large unpredictable refraction errors (cf., §II/B). It became clear that
range (distance) measurement would be a better way to go. The first practical satellite
positioning system (TRANSIT) was originally conceived for relatively inaccurate naval
navigation and only later adapted for much more accurate geodetic positioning needs.
It was launched in 1963 and made available for civilian use four years later. The
system consisted of several active satellites in circular polar orbits of an altitude of
1074 km and orbital period of 107 minutes, the positions (ephemeredes given in the
OR coordinate system – cf., §II/A) of which were continuously broadcast by the
satellites to the users. Also transmitted by these satellites were two signals at fairly
stable frequencies 150 and 400 MHz, controlled by crystal oscillators. The user would
then receive both signals (as well as the ephemeris messages) in his specially
constructed TRANSIT satellite receiver and compare them with internally generated
stable signals of the same frequencies. The beat frequencies would then be converted
to range rates by means of the Doppler equation

                           λ R = λ T (1+ v/c) (1+ v2/c2) ½ ,                                                                    (53)

where v is the projection of the range rate onto the receiver-satellite direction, λ R, λ T

are the wavelengths of the received and the transmitted signals, and c is the speed of
light in vacuum. Finally, the range rates and the satellite positions computed from the
broadcast ephemeredes would be used to compute the generic position r of the
receiver (more accurately, the position of receiver’s antenna) in the CT coordinate
system (cf., §II/A). More precise than the broadcast satellite positions were available



from the US naval ground control station some time after the observations have taken
place; this station would also predict the satellite orbits and upload these predicted
orbits periodically into the satellite memories.

At most one TRANSIT satellite would be always "visible" to a terrestrial receiver.
Consequently, it was not possible to determine the sequence of positions (trajectory)
of a moving receiver with this system; only position lines (lines on which the unknown
position would lie) were determinable. For determining an accurate position (1 metre
with broadcast and 0.2 metre with precise ephemeredes) of a stationary point, the
receiver would have to operate at that point for several days. Further accuracy
improvement was experienced when two or more receivers were used simultaneously
at two or more stationary points, and relative positions in terms of inter-station vectors
∆ r were produced. The reason for the increased accuracy was the attenuation of the
effect of common errors/biases (atmospheric delays, orbital errors, etc.) through
differencing. This relative or differential mode of using the system became very
popular and remains the staple mode for geodetic positioning even with the more
modern Global Positioning System (GPS) used today. In the late 70’s, the US military
started experimenting with the GPS (originally called NAVSTAR). It should be
mentioned that the military have always been vitally interested in positions,
instantaneous and otherwise, and so many developments in geodesy are owed to
military initiatives. The original idea was somewhat similar to that of the now defunct
TRANSIT system (active satellites with oscillators on board that transmit their own
ephemeredes) but to have several satellites orbiting the earth so that at least 4 of
them would be always "visible" from any point on the earth. Four is the minimal
number needed to get an instantaneous three-dimensional position by measuring
simultaneously the 4 ranges to the "visible" satellites: 3 for the three coordinates and
1 for determining the ever changing offset between the satellite and receiver
oscillators. At present there are 28 active GPS satellites orbiting the earth at an
altitude of 20 000 km spaced equidistantly in orbital planes inclined 60 arc degrees
with respect to the equatorial plane. Their orbital period is 12 hours. They transmit two
highly coherent cross-polarized signals at frequencies 1227.60 and 1575.42 MHz,
generated by atomic oscillators (cesium and rubidium) on board, as well as their own
(broadcast) ephemeredes. Two pseudo-random timing sequences of frequencies
1.023 and 10.23 MHz, one, called P-code, for restricted users only, and the other,
called C/A-code, meant for general use are modulated on the two carriers. The
original intent was to use the timing codes for observing the ranges for determining
instantaneous positions. For geodetic applications so determined ranges are too
coarse and it is necessary to employ the carriers themselves. Nowadays, there is a
multitude of GPS receivers available off the shelf, ranging from very accurate, bulky
and relatively expensive "geodetic receivers" all the way to hand-held and wrist-
mounted cheap receivers. The cheapest receivers use the C/A-code ranging (to
several satellites) in a point-positioning mode, capable of delivering an accuracy of
tens of metres. At the other end of the receiver list, the most sophisticated geodetic
receivers use both carriers for the ranging in the differential mode. They achieve an
accuracy of the inter-station vector between a few millimetres for shorter distances,
and better than S*10-7, where S stands for the inter-station distance, for distances up
to a few thousand kilometres. In addition to the global network of tracking stations



maintained by the IGS, cf., §I/C, there have been established in many countries and
regions, networks of continually tracking GPS stations; For an illustration see Fig.15.
The idea is that the tracking stations are used as traditional position control stations
and the tracking data are as well used for GPS

Figure 15 – Canadian Active Control System (Source: www.nrcan.gc.ca.
Copyright: Her Majesty the Queen in Right of Canada, Natural Resources

Canada, Geodetic Survey Division. All rights reserved.)

satellite orbit improvement. The stations also provide "differential corrections" for
roving GPS users in the vicinity of these stations. These corrections are used to
eliminate most of the biases (atmospheric delays, orbital errors, etc.) when added to
point positions of roving receivers. As a result of the technological and logistical
improvements during the past 20 years, GPS positioning is now cheap, accurate and
used almost everywhere, for both positioning and precise navigation, in preference to
classical terrestrial techniques. The most accurate absolute positions r (standard error
of 1 cm) are now determined using small, heavy, spherical, high-orbiting, passive
satellites equipped with retro-reflectors (LAGEOS 1, LAGEOS 2, STARLETTE,
AJISAI, etc.), and laser ranging. The technique became known as Satellite Laser
Ranging (SLR) and the reason for its phenomenal accuracy is that the orbits of such
satellites can be computed very accurately – cf., §V/A. Also, the ranging is conducted
over long periods of time by means of powerful astronomical telescopes and very
precise timing devices. Let us just mention that SLR is also used in the relative
positioning mode, where it is giving very accurate results. The technique is, however,
much more expensive than, say GPS and is thus employed only for scientific
investigations Finally, we have to mention that other satellite-based positioning exist.
These are less accurate systems, used for non-geodetic applications. Some of them
are used solely in commercial application. At least one technique deserves to be



pointed out, however, even though it is not a positioning technique per se. This is the
Synthetic Aperture Radar interferometry (INSAR). This technique uses collected
reflections from a space-borne radar. By a sophisticated computer processing
reflections collected during two overflights of the area of interest, the pattern of ground
deformation that had occurred between the two flights can be discerned [Massonnet
et al., 1993]. The result is a map of relative local deformations, which may be used, for
instance, as a source of information on co-seismic activity. Features as small as a
hundred metres across and a decimetre high can be recognized.

 

V.C. Gravitational field studies by satellites

The structure of the earth gravity field was very briefly mentioned in §III/H, where the
field wavelengths were discussed in the context of the spectral description of the
global field. Closer look at the field reveals that: 1) the field is overwhelmingly radial
(cf., III/A) and the first term in the potential series, GM/r, is already a fairly accurate (to
about 10-3) description of the field – this is why the radial field is used as a model field
(cf., §III/B) in satellite studies; 2) the largest departure from radiality is described by
the second degree term J2,0 (cf., §IV/D) and showing the ellipticity of the field, which is
about 3 orders of magnitude smaller than the radial part of the field; 3) the remaining
wavelength amplitudes are again about 3 orders of magnitude smaller and they
further decrease with increasing wave-number l. The decrease of amplitude is seen,
for instance in Fig. 8 in article 1-b, "Global Gravity". In some studies it is possible to
use a mathematical expression describing the decrease, such as the experimental
Kaula’s rule of thumb, approximately valid for l between 2 and 40:
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where Clm and Slm are the potential coefficients, cf., eqn.(4) in (ibid.).

As discussed in §V/A, the earth gravity field also gets smoother with altitude. Thus, for
example, at the altitude of lunar orbit (about 60-times the radius of the earth), the only
measurable departure from radiality is due to the earth’s ellipticity and even this
amounts to less than 3*10-7 of the radial component. Contributions of shorter
wavelength are 5 orders of magnitude smaller still. Consequently, a low orbiting
satellite has a "bumpier ride" than a high orbiting satellite and if we want to use a
satellite as a gravitation-sensing device, we get more detailed information from low
orbiting spacecraft. The idea of using satellites to "measure" gravitational field – we
note that a satellite cannot sense the total gravity filed, cf., §III/A – stems from the fact
that their orbital motion (free fall) is controlled predominantly by the earth gravitational
field. There are other forces acting on an orbiting satellite such as the attraction of
other celestial bodies, air friction and solar radiation pressure, which have to be
accounted for mathematically. Leaving these forces alone, the equations of motion
are formulated so that they contain the gravitational field described by potential
coefficients Clm and Slm. When the observed orbit does not match the orbit computed



from the known potential coefficients, more realistic potential coefficient values can be
derived. In order to derive a complete set of more realistic potential coefficients, the
procedure has to be formulated for a multitude of different orbits, from low to high,
with different inclinations, so that these orbits sample the space above the earth in a
homogeneous way. We note that because of the smaller amplitude and faster
attenuation of shorter wavelength features, it is possible to use the described orbital
analysis technique only for the first few tens of degrees l. Article 1-b, "Global
Gravity" shows some numerical results arising from the application of this technique.
Other techniques, such as "satellite-to-satellite tracking" and "gradiometry" (ibid.) are
now being used to study the shorter wavelength features of the gravitational field. A
very successful technique, "satellite altimetry", a hybrid between a positioning
technique and gravitational field study technique (ibid.) must be also mentioned here.
This technique has now been used for some 20 years and yielded some important
results.
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GLOSSARY

Positioning (static and kinematic): This term is used in geodesy as a synonym
for the "determination of positions" of different objects, either stationary or moving.

Coordinate system: In three-dimensional Euclidean space, which we use in
geodesy for solving most of the problems, we need either the Cartesian or a
curvilinear coordinate system, or both, to be able to work with positions. The
Cartesian system is defined by an orthogonal triad of axes coordinate, a curvilinear
system is related to its associated generic Cartesian system through some
mathematical prescription.

Coordinates: These are the numbers that define positions in a specific coordinate
system. For a coordinate system to be usable (to allow the determination of
coordinates) in the real (earth) space, its position and the orientation of its
Cartesian axes in the real (earth) space must be known.

Ellipsoid/spheroid: Unless specified otherwise, we understand by this term the
geometrical body created by revolving an ellipse around it minor axis,
consequently known as an ellipsoid of revolution. By spheroid we understand a
sphere-like body, which, of course, includes an ellipsoid as well.

 Errors (uncertainties): Inevitable, usually small errors of either a random or
systematic nature, which cause uncertainty in every measurement and,
consequently, an uncertainty in quantities derived from these observations.

Normal gravity field: An ellipsoidal model of the real gravity field.

Gravity anomaly: The difference between actual gravity and model gravity, e.g.,
the normal gravity, where the two gravity values are related to two different points
on the same vertical line. These two points have the same value of gravity
potential: the actual gravity potential, and the model gravity potential respectively.

Tides: The phenomenon of the earth deformation, including its liquid parts, under
the influence of solar and lunar gravitational variations.

Satellite techniques: Techniques for carrying out different tasks that use satellites
and/or satellite borne instrumentation.

GPS: Global Positioning System based on the use of a flock of dedicated
satellites.


