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Chapter 1

Introduction

One of the fundamental issues of Geodesy is the transition of geometrical fig-
ures into our environment. Basically, all geometrical figures are determined by
lengths of straight line segments and angles, which on the first sight makes the
introduction of coordinates obsolete.
But as in analytical geometry, the introduction of coordinates simplifies most of
the geodetic operations. Hence, from a practical point of view coordinates are
a very useful facility making geodesists life easier.

Of course in a given situation, there are always several possibilities to introduce
coordinates . Which coordinate system finally is chosen is a question of practical
usefulness. The consequence of the ambiguity of possible coordinate systems is
the necessity of coordinate transformations.

In some respect the role of coordinates is comparable to the role of a currency:
Coins do net represent a value themselves. They are a convention, which makes
the exchange of goods and services easier.
As in the financial world also for coordinate systems proper conventions about
their definition and transformation parameters are absolutely vital.

This lecture, gives some insight about

• the mathematical background of coordinate transformations,

• international conventions about coordinate systems and

• the way of materialization of coordinate systems.
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Chapter 2

Matrices

2.1 Basic concepts

Matrices are a rectangular schemes of real numbers. They are used to describe
mappings from one vector to another. Since coordinates will be defined using
vectors, matrices will be an important tool for the transformation of coordinates.

Definition 1 A rectangular scheme A of real numbers aij with m rows and n
columns

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
am1 am2 . . . amn

 (2.1)

is called a (m,n) matrix.

There are a number of special types of matrices:

• zero matrix O : aij = 0, i = 1, . . . ,m, j = 1, . . . , n

• identity matrix I : aij = 0, i 6= j, aii = 1

• lower triangular matrix L : aij = 0, j > i,m = n

• upper triangular matrix U : aij = 0, i > j,m = n

The matrix algebra comprises of three operations

1. addition of matrices,

2. multiplication of matrices with a real number

3. multiplication of two matrices.

These operations are defined in the following way:

7
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Definition 2 A (m,n) matrix C is the sum of the two (m,n) matrices A,B, if

cij = aij + bij , i = 1, . . . ,m, j = 1, . . . , n (2.2)

holds.

Definition 3 A (m,n) matrix B is the product of the real number α and the
(m,n) matrix A, if

bij = α · aij , i = 1, . . . ,m, j = 1, . . . , n (2.3)

holds.

Definition 4 A (m, p) matrix is called the product of the (m,n) matrix A and
the (n, p) matrix B , if

cij =
n∑
k=1

aik · bkj , i = 1, . . . ,m, j = 1, . . . , p (2.4)

holds.

In contrast to the addition of matrices, where both operants must have the same
dimension two matrices can only be multiplied if the number of columns of the
first factor equals the number of rows of the second factor.
The matrix algebra is governed by the following rules:

Theorem 1

A+B = B +A commutativity (2.5)
(A+B) + C = A+ (B + C) associativity (2.6)

(A+O) = A existence of neutral element (2.7)
A+ (−1) ·A = O existence of inverse element (2.8)

1 ·A = A neutral element of scalar multiplication (2.9)
α(βA) = (αβ)A associativity 1 (2.10)
(αA)B = α(AB) associativity 2 (2.11)
A(BC) = (AB)C associativity 3 (2.12)

(α+ β)A = αA+ βA distribuitivity1 (2.13)
α(A+B) = αA+ αB distributivity 2 (2.14)
(A+B)c = AC +BC distributivity 3 (2.15)
A(B + C) = AB +AC distributivity 4 (2.16)

Important: The multiplication of matrices is not commutative, i.e in general

AB 6= BA (2.17)
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Definition 5 A (n,m) matrix B is called the transposed of the (m,n) matrix
A

B = A> (2.18)

if
bij = aji, i = 1, . . . , n, j = 1, . . . ,m (2.19)

holds.

For the transposition the following rules are valid:

Theorem 2

(A>)> = A (2.20)
(A+B)> = A> +B> (2.21)

(αA)> = α ·A> (2.22)
(A ·B)> = B>A> (2.23)

Of a special importance are matrices, which do not change when transposed.

Definition 6 A matrix Q is called symmetric if

Q = Q> (2.24)

holds, it is called skew-symmetric, if

Q = −Q> (2.25)

holds.

Theorem 3 For an arbitrary (n, n) matrix Q there exist two (n.n) matrices
S, T with

(i) T = T> (2.26)
(ii) S = −S> (2.27)

(iii) Q = S + T (2.28)

As previously mentioned, vector transformation can be described by matrices.
The concatenation of two transformations than translates into the multiplication
of the corresponding matrices. The concatenation of a transformation of a
transformation and its inverse transformation is the identical transformation.
Hence the product of the matrix describing the transformation and the matrix
describing the inverse transformation has to be the identity matrix. This gives
rise to the definition of the concept of an inverse matrix.

Definition 7 A (n, n) matrix Q−1 is called the inverse of the (n, n) matrix Q,
if

Q ·Q−1 = Q−1 ·Q = I (2.29)

holds.



10 CHAPTER 2. MATRICES

The computation of the inverse is a cumbersome process. Therefore, matrices
where the inversion coincides with the simple transposition are of a particular
importance.

Definition 8 A (n, n) matrix Q is called orthogonal, if

Q ·Q> = Q> ·Q = I (2.30)

holds.

As a simple conclusion for orthogonal matrices holds

Q−1 = Q> (2.31)

It is not easy, to decide whether or not a matrix is orthogonal or whether or
not a matrix has an inverse. Therfore, it is useful do have an indicator for these
properties. Such an indicator is the derteminant of a matrix

Definition 9 Let be

π =
(

1 2 . . . n
i1 i2 . . . in

)
(2.32)

a permutation of the natural numbers (1, 2, . . . , n) and σ(π) the number of in-
versions in this permutation.
The real number

detA :=
∑
π

(−1)σ(π)a1,i1 · a2,i2 · . . . · an,in (2.33)

is called the determinant of the (n, n) matrix A.

For the computation of the determinant the following rules hold:

Theorem 4

(i) The change of two rows or two columns changes the sign (2.34)
of the determinant (2.35)

(ii) detQ = detQ> (2.36)
(iii) det(αQ) = αndetQ (2.37)
(iv) det(A ·B) = detA · detB (2.38)

(v) detQ−1 =
1

detQ
(2.39)

(vi) Q orthogonal ⇔ detQ = ±1 (2.40)
(2.41)
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2.2 Linear systems of equations

Many problems in Geodesy, engineering and natural sciences lead to the ques-
tion, how to find a vector x, which for a given matrix A and a given other vector
b fulfills

Ax = b (2.42)

The basic algorithms for the solution of such problems are the Gaussian al-
gorithm and its variant for symmetric positive definite matrices–the Cholesky
algorithm. The essence of both algorithms is the decomposition of the matrix
A into the product of two triangular matrices. For equations like (2.42) with a
triangular matrix A the solution is very simple.

Theorem 5 Let A be a lower triangular matrix. Then the solution of (2.42) is
given by

xi = (bi −
i−1∑
j=1

aijxj)/aii, i = 1, . . . , n (2.43)

Theorem 6 Let A be an upper triangular matrix. Then the solution of (2.42)
is given by

xi = (bi −
n∑

j=i+1

aijxj)/aii, i = n, n− 1, . . . , 1 (2.44)

Hence, the only question , which still has to be solved is how to decompose a
given matrix into two triangular matrices. This can be done by the algorithm
of Gauß - Banachiewic.

Theorem 7 Let be a a strongly regular matrix. Then there exist

• a uniquely determined upper triangular matrix U and

• a uniquely determined lower triangular matrix L having lii = 1, i = 1, . . . , n

with

A = L · U (2.45)

The matrices U,L can be computed according to:

uij = aij −
∑i−1
k=1 likukj j = i, . . . , n

lji = (aji −
∑i−1
k=1 ljkuki)/uii j = i+ 1, . . . , n

 i = 1, . . . , n (2.46)

The original problem (2.42) is now equivalent to

L · Ux = b (2.47)
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With the substitution y = Ux (2.42) decomposes in to two systems with trian-
gular matrix

Ly = b, Ux = y (2.48)

Having available the algorithm for the triangular decomposition of a regular
matrix, the solution of (2.42) consists of three steps

1. triangular decomposition A = L · U

2. forward elimination Ly = b

3. backward substitution Ux = y.

The main numerical effort nis spent for the decomposition of the matrix A. In
the case of a symmetric matrix there should be a variant of the decomposition
algorithm with a strongly reduced numerical effort. This variant is the Cholesky
algorithm.

Definition 10 A (n, n) matrix A is called positive definite, if

x>Ax > 0, ∀x 6= 0 (2.49)

holds.

Theorem 8 Let A be a symmetric positive definite matrix. Then there exist a
uniquely determined lower triangular matrix L, with

A = L · L> (2.50)

The matrix L can be computed according to:

lii =
√
aij −

∑i−1
k=1 l

2
ik

lji = (aji −
∑i−1
k=1 likljk)/lii j = i+ 1, . . . , n

 i = 1, . . . , n (2.51)

2.3 Linear adjustment

So far we have considered only linear systems of equations where the number
of equations equals the number of unknowns. Typical for Geodesy is that for
the purpose of error control the number of equations exceeds the number of
unknowns. Therefore, it will not be possible to find a solution vector , which
fulfills all equations. It will only be possible, to find a solution vector , which
optimally adjusts Ax to the inhomogeneity b.
The discipline of Geodesy, which deals with such overdetermined systems of lin-
ear equations is called linear adjustment theory.



2.3. LINEAR ADJUSTMENT 13

For an overdetermined system of linear equations there is no hope that the
vector of residuals

r := Ax− b (2.52)

will be identical to zero. It can only be tried to make this residual r as small as
possible . This leads to the linear adjustment problem

min
x∈Rn

{r>r | r = Ax− b} (2.53)

The solution of this adjustment problem is given by

Theorem 9 The vector
x̂ := (A>A)−1A>b (2.54)

is the solution of the linear adjustment problem (2.53).

It has to be noticed that for the special case of a uniquely determined system
the adjustment solution coincides with the traditional solution

x̂ = (A>A)−1A>b = A−1(A>)−1A>b = A−1b
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Chapter 3

Vector-spaces

The concept of a vector is familiar to everybody: a directed line segment. Also
the vector operations are very well known: addition of vectors by concatenating
them. On the other hand a clear mathematical definition of a vector is by no
means a trivial task. Therfore for the definition of vectors an inverse method is
selected: The central set of rules for the vector operations is chosen as criterion.
All objects with operations fulfilling these rules are called vectors.

Definition 11 A set V (R) is called real vector space, if there are two operations

+ : V (R)× V (R)→ V (R), vector addition (3.1)

· : R× V (R)→ V (R), scalar multiplication (3.2)

defined, which fulfill the following conditions:

A1 : u+ v = v + u (3.3)
A2 : u+ (v + w) = (u+ v) + w (3.4)
A3 : There is an element O ∈ V (R)with u+O = u (3.5)
A4 : For any u ∈ V (R) there is exactly one element (−u) ∈ V (R) (3.6)

with u+ (−u) = O (3.7)

M1 : 1 · u = u (3.8)
M2 : α(βu) = (αβ)u (3.9)
M3 : (α+ β)u = αu+ βu (3.10)
M4 : α(u+ v) = αu+ αv (3.11)

Besides the directed line segments, which obviously fulfill these conditions there
is a very large variety of mathematical objects which also can be considered as
vectors:

15
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1. The set of matrices with identical dimensions.

2. The set of n-tuples (u1, . . . , un) of real numbers.

3. The set of all polynomials of fixed degree:

Pn(t) = a0 + a1t+ a2t
2 + . . .+ ant

n (3.12)

One of the essential technique in the vector algebra is the representation of all
vectors of the vector space by a number of prototype vectors.

Definition 12 The vectors u1, . . . , um ∈ V (R) are called linear dependent, if
there are real numbers a1, . . . , am which are not all identical to zero and which
fulfill

O = a1u1 + a2u2 + . . .+ amum (3.13)

If there are no such numbers, the vectors are called linearly independent.

The motivation for this definition comes from the fact that for linearly depen-
dent vectors it is possible to express one vector by the rest of the set. For
independent vectors this is impossible.

Definition 13 The maximal number of linearly independent vectors of a vector
space V (R) is called its dimension.

Vectors can be very complicated objects and vector operations can be even more
complicated. It would be desirable to map vector operations to operations on
real numbers. This can be achieved by the introduction of so-called vector bases.

Definition 14 A set of n linearly independent vectors of a n-dimensional vector
space V (R) is called a base of this vector space.

Theorem 10 Let {g1, . . . ,gn} be a base of the n-dimensional vector space V (R)
and let be x ∈ V (R). There are uniquely determined real numbers x1, . . . , xn
with

x = x1g1 + . . .+ xngn (3.14)

Definition 15 The uniquely determined real numbers x1, . . . , xn are called the
coordinates of x with respect to the base {g1, . . . ,gn}.

Due to the one-to-one mapping of vectors to their coordinates vector operations
can be mapped to operations between real numbers.
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Theorem 11 Let be V (R) a n-dimensional vector space and {g1, . . . ,gn} a
base of V (R). Two vectors x,y ∈ V (R) then have the following representation
with respect to the base

x =
n∑
i=1

xig1, y =
n∑
i=1

yiyi (3.15)

Then the following relations hold:

(x + y) =
n∑
i=1

(xi + yi)gi, αx =
n∑
i=1

(αxi)gi (3.16)

The interpretation of this theorem is that vectors are added by adding their co-
ordinates and that vectors are multiplied by real numbers by multiplying their
coordinates by these real numbers.

Of course there is alway more than one base in a vector space and the choice of
a particular base is dictated by the application one has in mind. This ambiguity
of possible bases often requires a change of the basis. This means: given the
coordinates of a vector with respect to one base how can the coordinates of this
vector with respect to another base be computed?

Theorem 12 Let {g1, . . . ,gn} and {ḡ1, . . . , ḡn} be two different bases of a n-
dimensional vector space V (R). Then there are uniquely determined real num-
bers Tji, T̄ij , i, j = 1, . . . , n with

gi =
n∑
j=1

Tjiḡj , i = 1, . . . , n (3.17)

ḡj =
n∑
i=1

T̄ijgi, j = 1, . . . , n (3.18)

Theorem 13 Let x1, . . . , xn and x̄1, . . . , x̄n be the coordinates of a vector x
with respect to the base {g, . . . ,gn} and to the base {ḡ1, . . . , ḡn} respectively.
Then it holds

x̄j =
n∑
i=1

Tjixi, j = 1, . . . , n (3.19)

xi =
n∑
j=1

T̄ij x̄j , i = 1, . . . , n (3.20)
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Chapter 4

Cartesian Coordinate
Systems

Coordinates are a useful and necessary prerequisite to perform geometrical con-
structions in an analytical way. A coordinate system is nothing heavenly given
but it man-made. Therefore, there is not only one coordinate system for the an-
alytical description of a geometrical situation but in many cases a great variety
of possible coordinate system.
Depending on the choice of a particular coordinate system the geometrical prob-
lem can be solved easily or can be extremely complicated. It is therefore neces-
sary to formulate a given problem in different coordinate systems and transform
the given information between those coordinate systems.

4.1 Definition of Cartesian Coordinate Systems

Definition 16 A bijective mapping of the Euclidean space E3 to the real num-
bers R3 is called a coordinate system in E3.
The real numbers, a point is mapped to are called the coordinates of this point.

The simplest coordinate system in E3 is a Cartesian coordinate system. This
can be done by the connection of Geometry with vector algebra.

Definition 17 A Cartesian coordinate system {O, e1, e2, e3} of the Euclidean
space E3 consists of

• an arbitrary but fixed point O-the origin of the coordinate system

• three mutually orthogonal vectors ei having unit length

If x is the uniquely defined vector connecting a given point P ∈ E3 with the
origin O , the real numbers

xi := x>ei (4.1)

19
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are the Cartesian coordinates of P .

x

x

x

3

3

1
1 2

2e

e

e

x

4.2 Transformation Between Cartesian Coordi-
nate Systems

Since different location of the origins and different orientation of the unit vectors
are possible different cartesian coordinate systems can be used. One point can
have different coordinates with respect to different coordinate systems. There-
fore it is necessary to transform the coordinates of one point from one coordinate
system to another.

Theorem 14 Let (x1, x2, x3) be the cartesian coordinates of a point with respect
to the coordinate system {O, e1, e2, e3} and (x̄1, x̄2, x̄3) the coordinates of the
same point with respect to a different coordinate system {Ō, ē,ē2, ē3}.
Then, there exist a uniquely defined vector t and a uniquely defined matrix T
that

x̄ = t + T · x (4.2)

holds.
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3 2

Proof: Let t be the vector, which connects the two origins O and Ō. With
respect to the base {ē1, ē2, ē3} this vector has the unique representation

t = t1ē1 + t2ē2 + t3ē3

.
On the other hand, each of the base vectors ei has a unique representation with
respect to the base {ē1, ē2, ē3}

ei =
3∑
k=1

tkiēk

This leads to the following representation of the point P

P = O +
3∑
i=1

xiei

= O +
3∑
i=1

xi

3∑
k=1

tkiēk

= Ō +
3∑
k=1

tkēk +
3∑
k=1

(
3∑
i=1

tkixi)ēk

= Ō +
3∑
k=1

(tk +
3∑
i=1

tkixi)ēk

On the other hand , the same point P has another representation

P = Ō +
3∑
k=1

x̄kēk
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Since the representation with respect to a base is unique, the relation

x̄k = tk +
3∑
i=1

tkixi

or in matrix notation

x̄ = t + T · x , T = (tki)

Since both bases are orthogonal,but not necessarily orthonormal the matrix T
has some special properties:

Theorem 15 For the transformation matrix T holds

T>T = TT> = mI (4.3)

Proof: Both, the base {ei} and {ēj} are orthogonal.

mδij = e>i ej , m̄δij = ē>i ēj

Consequently,

mδij = (
3∑
k=1

tkiēk)>(
3∑
l=1

tlj ēl)

= m̄
3∑
k=1

tkitkj

in matrix notation this yields

m̄

m
I = T>T

This means, that for cartesian coordinate systems the transformation matrix
T is a multiple of an orthogonal matrix. Every orthogonal matrix can be
represented as the product of three rotation matrices. Either in the Cartan
representation

T = mR3(γ)R2(β)R1(α) (4.4)

or in the Eulerian representation

T = mR3(ψ)R1(ϑ)R3(ϕ) (4.5)

Hence, the transformation between two coordinate systems is completely known,
if 7 parameters

• three translation parameters,

• three rotation angles,
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• one scale ratio

are known.
In most cases the rotation angles between two coordinate systems are small and
for this reason the transformation matrix can be approximated either by

T = m

 1 δγ −δβ
−δγ 1 δα
δβ −δα 1

 (4.6)

or

T = m

 1 (δϕ+ δψ) 0
−(δϕ+ δψ) 1 δϑ

0 −δϑ 1

 (4.7)

For given coordinates in a system A and for given transformation parameters
between the system A and a new system B click here to start an applet.

http://members.tripod.de/wolke53/GKS/Helmert.html
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In most cases the transformation parameters between two cartesian systems
are not previously known. The can be determined by the comparison of the
coordinates of identical points in both coordinate systems.

4.3 Determination of the transformation Param-
eters

Let us assume that for at least three points their coordinates (xi, yi, zi) with
respect to the cartesian coordinate system {O, e1, e2, e3} as well as their co-
ordinates (x̄i, ȳi, z̄i) with respect to the coordinate system {Ō, ē1, ē2, ē3} are
known. Unknown are

• the translation parameters (t1, t2, t3) between the origins of the two sys-
tems,

• the rotation angle δα, δβ, δγ between the axis of the two systems and

• the difference δm between 1.0 and the scale ratio of the two systems.

The unknown transformation parameters and the known coordinates are in the
following relationship x̄i

ȳi
z̄i

 =

 t1
t2
t3

+ (1 + δm) ·

 1 δγ −δβ
−δγ 1 δα
δβ −δα 1

 ·
 xi
yi
zi

 (4.8)

This a partly linear and partly nonlinear system of equations for the unknown
transformation parameters. Nonlinear because the the products δmδα, δmδβ, δmδγ
between the unknown parameters occur in these equations. Since both the pa-
rameters δm and δα, δβ, δγ are small their products can be neglected. The
simplified equations are x̄i

ȳi
z̄i

 =

 t1
t2
t3

+

 1 + δm δγ −δβ
−δγ 1 + δm δα
δβ −δα 1 + δm

 ·
 xi
yi
zi

 (4.9)

The equations (4.9) are now linear with respect to the unknown transformation
parameters. A re-arrangement leads to the usual matrix form of an overdeter-
mined linear system of equations.

x̄1 − x1

ȳ1 − y1

z̄1 − z1

x̄2 − x2

ȳ2 − y2

z̄2 − z2

...


︸ ︷︷ ︸

b

=



1 0 0 0 −z1 y1 x1

0 1 0 z1 0 −x1 y1

0 0 1 −y1 x1 0 z1

1 0 0 0 −z2 y2 x2

0 1 0 z2 0 −x2 y2

0 0 1 −y2 x2 0 z2

...


︸ ︷︷ ︸

A

·



t1
t2
t3
δα
δβ
δγ
δm


︸ ︷︷ ︸

x

(4.10)
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The unknown transformation parameter x are the usual least-squares solution
of the overdetermined system of equations

x̂ = (A>A)−1A>b (4.11)

Click here to start an applet for 3D Helmert transformation
Besides the general three-dimensional case there is a much simpler solution
for the determination of the transformation parameters in the two-dimensional
special case. In two dimensions the relations between the coordinates of a point
with respect to two different systems are[

x̄i
ȳi

]
=
[
α0

β0

]
+
[

(m cosα) (m sinα)
−(m sinα) (m cosα)

]
·
[
xi
yi

]
(4.12)

In contrast to the three-dimensional case there is only one rotation angle α
and this angle is not restricted in size. The nonlinearity of the problem can be
eliminated by introducing

o := −m sinα , a := m cosα (4.13)

This leads to a linear problem for o, a[
x̄i
ȳi

]
=
[
α0

β0

]
+
[
a −o
o a

]
·
[
xi
yi

]
(4.14)

From the solution a, o of this linear system the original unknowns can be recov-
ered by

m =
√
a2 + o2 , −α = arctan(

o

a
) (4.15)

For the determination of the four unknown parameters a, o, α0, β0 four equa-
tions, i.e. two identical points are necessary.
As a first step for the determination of the transformation parameters the trans-
lation parameters are eliminated from the transformation equations[

x̄2 − x̄1

ȳ2 − ȳ1

]
=
[
x2 − x1 −(y2 − y1)
y2 − y1 x2 − x1

]
·
[
a
o

]
(4.16)

The equations (4.16) have a unique solution if the determinate does not vanish,
i.e. if

0 6= (x2 − x1)2 + (y2 − y1)2 =: s2
12 (4.17)

,which is automatically fulfilled as long as the two identical points do not coin-
cide.
Schreibers rule gives an explicit expression for the solution[

a
o

]
=

1
s2

12

[
x2 − x1 y2 − y1

−(y2 − y1) x2 − x1

]
·
[
x̄2 − x̄1

ȳ2 − ȳ1

]
(4.18)

http://members.tripod.de/wolke53/GKS/popup.html
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Inserting the solution a, o into (4.12) and solving for α0, β0 gives the remaining
parameters: [

α0

β0

]
=
[
x̄i
ȳi

]
−
[
xi −yi
yi xi

]
·
[
a
o

]
(4.19)

Of course, this algorithm is applicable only, if the number of identical points
equals two. The disadvantage is that every error contained in the coordinates of
the identical points propagates uncontrolled into the derived transformation pa-
rameters. The usual measure for error control in Geodesy is overdetermination.
This means that more than two identical points are used for the determination
of the four transformation parameters. In this way, errors that are contained
in the coordinates of one of the identical point can be identified by intolerable
residuals for this point.

Let us assume that (xi, yi) , i = 1, . . . , n are coordinates of n points with
respect to a cartesian System A and (x̄i, ȳi) , i = 1, . . . , n are the coordinates
of the same points with respect to another cartesian system B. If the transfor-
mation parameters α0, β0, a, o from System A to system B were already known,
the transformed coordinates would be[

x′i
y′i

]
=
[
α0

β0

]
+
[
xi −yi
yi xi

]
·
[
a
o

]
, i = 1, . . . , n (4.20)

The residuals

ξi = x̄−x
′
i , ηi = ȳi − y′i , i = 1, . . . , n (4.21)

are the differences between the coordinates of a point in system B and and the
transformed coordinates of the same point. If the transformation parameters
were perfect, all residuals should of course vanish. Since there are always some
small errors in the coordinates in practice they will not.
Therefore, a reasonable strategy for the choice of the transformation parameters
is to chose them in such a way that the square sum of the residuals gets minimal.

Φ :=
n∑
i=1

(ξ2
i + η2

i )→ min (4.22)

The necessary conditions for an extremal point are

0 =
∂Φ
∂α0

= 2
n∑
i=1

ξi
∂ξi
∂α0

+ ηi
∂ηi
∂
α0 (4.23)

= −2
n∑
i=1

x̄i − α0 − xi · a+ yi · o (4.24)

0 =
∂Φ
∂β0

= 2
n∑
i=1

ξi
∂ξi
∂β0

+ ηi
∂ηi
∂
β0 (4.25)
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= −2
n∑
i=1

ȳi − β0 − yi · a− xi · o (4.26)

0 =
∂Φ
∂a

= 2
n∑
i=1

ξi
∂ξi
∂a

+ ηi
∂ηi
∂a

(4.27)

= 2
n∑
i=1

(x̄i − α0 − xi · a+ yi · o)(−xi) (4.28)

+(ȳi − β0 − yi · a− xi · o)(−yi) (4.29)

0 =
∂Φ
∂o

= 2
n∑
i=1

ξi
∂ξi
∂o

+ ηi
∂ηi
∂o

(4.30)

= 2
n∑
i=1

(x̄i − α0 − xi · a+ yi · o)(yi) (4.31)

+(ȳi − β0 − yi · a− xi · o)(−xi) (4.32)

A summation over all n points gives the linear system of equations
n 0

∑
xi −

∑
yi

0 n
∑
yi

∑
xi∑

xi
∑
yi

∑
(x2
i + y2

i ) 0
−
∑
yi

∑
xi 0

∑
(x2
i + y2

i )

·

α0

β0

a
o

 =


∑
x̄i∑
ȳi∑
(xix̄i +i ȳi)∑
(xiȳi − yix̄i)


(4.33)

The equations (4.33) can be simplified, if the origins of the systems A and B
are shifted into the mean values of the given coordinates: Let be

xs :=
1
n

n∑
i=1

xi, ys :=
1
n

n∑
i=1

yi, x̄s :=
1
n

n∑
i=1

x̄i, ȳs :=
1
n

n∑
i=1

ȳi (4.34)

The differences between the individual coordinates and the coordinate mean
values are

ui := xi − xs, vi := yi − ys, ūi := x̄i − x̄s, v̄i := ȳi − ȳs (4.35)

With respect to these variables the equations (4.33) obtain the form


n 0 nxs −nys
0 n nys nxs
nxs nys n(x2

s + y2
s) +

∑
(u2
i + v2

i ) 0
−nys nxs 0 n(x2

s + y2
s) +

∑
(u2
i + v2

i )

·

α0

β0

a
o


(4.36)

=


nx̄s
nȳs
n(xsx̄s + ysȳs) +

∑
(uiūi + viv̄i)

n(xsȳs − ysx̄s)
∑

(uiv̄i − viūi)
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Multiplication of the first equation with xs and of the second equation with ys
and subtraction from the third and fourth equation, respectively , yields[ ∑

(u2
1 + v2

i ) 0
0

∑
(u2
i + v2

i )

]
·
[
a
o

]
==

[ ∑
(uiūi + viv̄i)∑
(uiv̄i − viūi)

]
(4.37)

The solution of (4.37) can be given explicitely

a =
∑
uiūi + viv̄i∑
(u2
i + v2

i )
, o =

∑
uiv̄i − viūi∑
(u2
i + v2

i )
(4.38)

Inserting this in (4.36) the remaining translation parameters can be obtained

α0 = x̄s − axs + oys, β0 = ȳs − ays − oxs (4.39)

Please note, that in contrast to the three-dimensional case the two-dimensional
Helmert transformation does not imply any restriction to the rotation angle.

For a JAVA Applet, performing a two-dimensional Helmert transformation click
here

http://members.tripod.de/wolke53/GKS/popup2.html
http://members.tripod.de/wolke53/GKS/popup2.html
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Chapter 5

Curvilinear Coordinate
Systems

5.1 Coordinate lines

Coordinates of a point in the thee-dimensional Euclidean space are defined as
the triple (x1, x2, x3) of real number, which are in a unique way assigned to
this point. There are of course different ways of such an assignment an each
assignment is called a coordinate system.

If two of the three coordinates are held fixed and the remaining coordinate runs
through the real numbers the corresponding points, addressed by the varying
coordinates, describes a curve in the Euclidean space: A so called coordinate
line. Depending of the curvature of the coordinate lines the coordinate system
is either Cartesian or curvilinear.

Definition 18 Let K : E3 → R
3 a coordinate system with the coordinates

(x1, x2, x3). The set of points

L1 := {(x1, x2, x3)|x2 = const, x3 = const} (5.1)
L2 := {(x1, x2, x3)|x1 = const, x3 = const} (5.2)
L3 := {(x1, x2, x3)|x1 = const, x2 = const} (5.3)

are called the x1, x2 and the x3 coordinate lines in the coordinate system K.

Definition 19 A coordinate system with at least one coordinate not being a
straight line is called a curvilinear coordinate system.

The simplest way to define a curvilinear coordinate system is, to relate it to an
existing Cartesian coordinate system. Let (x1, x2, x3) be Cartesian coordinates

31
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in E3. A bijective mapping U : R → R
3 generates new, in general curvilinear

coordinates by  u1

u2

u3

 = U(x1, x2, x3) (5.4)

In the following some curvilinear coordinate systems, typical for Geodesy, will
be described.

5.2 Spherical Coordinates

Spherical coordinates are usually denoted by r, ϑ, λ and related to Cartesian
coordinates by

r =
√
x2

1 + x2
2 + x2

3, ϑ = arccos(x3/r), λ = arctan(x2/x1) (5.5)

The inverse transformation from spherical to Cartesian coordinates is

 x1

x2

x3

 = r

 sinϑ · cosλ
sinϑ · sinλ
cosϑ

 (5.6)

The coordinate lines are

• r − line : straight line through the origin of the Cartesian coordinate
system.

• λ− line circles parallel to the x1 − x2 plane.

• ϑ− line circles having the x3 axis as diameters.

The coordinate lines for spherical coordinates are displayed in the following
figure
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The interpretation of spherical coordinates is quit simple:

• r is the distance from the origin of the Cartesian coordinate system.

• ϑ is the angle between the x3 axis of the Cartesian coordinate system and
the straight line connecting the point with the origin of the coordinate
system.

• λ is the angle between the x1 − x3 plane and the plane containing the x3

axis and the point.
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If the Earth were spherical the coordinates at its surface would only change
slightly in the r component. The changes in the r- component were exclusively
due to the changes in the height. In reality the Earth is flattened at its poles.
This means that the r component changes by about 20 km due to the flattening.
This exceeds the r-changes due to the hight changes considerably. Therefore,
a coordinate system with the third coordinate not changing along the surface
of the flattened Earth would be very useful. Such a coordinate system is the
ellipsoidal coordinate system.

5.3 Ellipsoidal Coordinates

Ellipsoidal coordinates are based upon an ellipsoid of revolution, centered at the
origin of a Cartesian coordinate system and having its rotation axis to coincide
with the x3 axis of the Cartesian system.

The definition of ellipsoidal coordinates can be explained best geometrically.
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Definition 20 The ellipsoidal height H is the distance to the surface of the
ellipsoid.
The ellipsoidal latitude B is the angle between the straight line connecting the
point with the origin and the x1 − x2 plane.
The ellipsoidal longitude L is the angle between the x1− x3 plane and the plane
containing the x3 axis and the point.

The computation of Cartesian coordinates from given ellipsoidal coordinates is
straightforward

N =
a√

1− e2 sin2(B)
(5.7)

x1 = (N +H) cos(B) cos(L) (5.8)
x2 = (N +H) cos(B) sin(L) (5.9)
x3 = (N(1− e2) +H) sin(B) (5.10)

The connection between ellipsoidal and Cartesian coordinates is more compli-
cated than in the spherical case. This back-transformation is given by the
following set of equations

b = a ·
√

1− e2 (5.11)

e1 = 1− b2

a2
(5.12)

e2 =
a2

b2
− 1 (5.13)

e3 =
√
x2

1 + x2
2 (5.14)

F = 54 · b2 · x2
3 (5.15)
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G = r2 + (1− e1) · x2
3 − e1 · e3 (5.16)

c = e2
1 · F

r2

G3
(5.17)

s1 =
√
c2 + 2c (5.18)

s2 = 1 + c+ s1 (5.19)

s = 3
√
s2 (5.20)

p1 = (s+
1
s

+ 1)2 (5.21)

p2 = 3p1 ·G2 (5.22)

p =
F

p2
(5.23)

Q =
√

1 + 2e2
1p (5.24)

ρ1 =
1
2
a2(1 +

1
Q

) (5.25)

ρ2 =
1
2
pr2 (5.26)

ρ3 =
p(1− e1)x2

3

Q(1 +Q)
(5.27)

ρ4 =
√
ρ1 − ρ2 − ρ3 (5.28)

ρ5 =
Pe1r

1 +Q
(5.29)

ρ = ρ4− ρ5 (5.30)

U =
√

(r − e1ρ)2 + (1− e1)x2
3 (5.31)

z0 =
b2x3

aV
(5.32)

h1 =
b2

aV
(5.33)

bt =
√
r2 + (x3 + e2z0)2 (5.34)

H = U(1− h1) (5.35)

B = arccos(
r

bt
) (5.36)

L = arccos(
x1

r
) (5.37)

The JAVA Applet providing a tool for the conversion between Cartesian and
ellipsoidal coordinates
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can be invoked by clicking here.

The ellipsoid, underlying an ellipsoidal coordinate system does not only serve
as a model for the figure of the Earth but also as a model of the Earth’s gravity
field. Therefore, a gravity field model has to be assigned to a given ellipsoid
in such a way that a certain equipotential surface of this model coincides with
the surface of the ellipsoid. After specifying the value for GM , the product of
gavitational constant and mass of the Earth and fixing the value for the rotation
rate ω of the Earth this so-called normal potential is given by the Somigliani-
Pizetti formula:

U =
GM

ε
arctan(

ε

u
) +

ω2

2
a2 q

q0
(sin2 β − 1

3
) (5.38)

with

q =
1
2

((1 + 3
u2

ε2
)arctan(

u

ε
)− 3

epsilon

u
), q0 = qu=b (5.39)

The meaning of the coordinates u, ε, β can be read from the following figure.

http://members.tripod.de/wolke53/GKS/ellipsoidal.html
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The norm of the gradient of U is called normal gravity γ. It si given by the
normal gravity formula

γ =
aγe cos2 ϕ+ bγp sin2 ϕ√
a2 cos2 ϕ+ b2 sin2 ϕ

(5.40)

with γe, γp being the normal gravity at the equator and at the pole.



Chapter 6

Map Coordinates

For historical but also for practical reasons the description of a position of a point
can be separated into the description of its horizontal and its vertical position.
Historically, this distinction was motivated by different measurement technolo-
gies in the horizontal and in the vertical domain. Practically, this separation is
useful since along the Earth’s surface the variation of horizontal coordinates is
many times larger than the variation of the vertical coordinates.
Coordinate systems, which naturally separate the horizontal and the vertical
description of a position from its horizontal description are the spherical and
the ellipsoidal system of coordinates. There λ, θ or L,B describe the horizontal
position and r or H describe the vertical position, respectively.
Unfortunately, vertical coordinate surfaces are not planes but curved surfaces.
Therefore, the simple formulas of planar Euclidean geometry are not longer ap-
plicable for geodetic computations with horizontal coordinates. This would have
been replaced by the much more complicated relation of differential geometry.
One compromise is to map the horizontal coordinate surfaces into the Eu-
clidean plane and to perform the computations with the plane coordinates of
the mapped points. The Euclidean coordinates of the mapped surface are called
map coordinates.
Any mapping of a surface with non vanishing Gaussian curvature into the plane
is connected with the distortion of geometric quantities as distances, angles,
directions. This distortion is accounted for in two ways:

• The horizontal coordinate surfaces are mapped only piece-wise, in order
to keep the unavoidable distortions for every piece.

• The geometric quantities derived from map-coordinates have to undergo
certain corrections before they can enter geodetic computations.

In the pre-GPS time the differences in the vertical coordinates could not be
measured directly. Therefore, the vertical coordinate was replaced by a closely
related quantity which could be observed by geodetic measurements. Since this
could be done in several different ways several height systems are currently still
in use.
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6.1 Conformal mappings

Definition 21 A injective mapping M : U ⊂ S → R2 of a part U of a vertical
coordinate surface S into the pairs of real numbers is called a map-projection.
The numbers, which a point P is mapped onto are called map- coordinates of P

Let P and P+dP be two points in U ⊂ S having the coordinates ui, i = 1, 2 and
ui + dui, i = 1, 2 respectively. Let be (x, y) and (x+ dy, y+ dy) the coordinates
of of their images under the map-projection M .

The the square of the infinitesimal distance of P and P + dP is

dS2 =
2∑

i,j=1

gijduiduj (6.1)

with gij being the metric tensor of the horizontal coordinate surface S. The
square of the infinitesimal distance of the images of these points is

ds2 = dx2 + dy2 =
2∑

i,j=1

(
∂x

∂ui

∂x

∂uj
+

∂y

∂ui

∂y

∂uj

)
duiduj (6.2)

Definition 22 The quantity

m :=
ds

dS
=

√√√√√∑2
i,j=1

(
∂x
∂ui

∂x
∂uj

+ ∂y
∂ui

∂y
∂uj

)
duiduj∑2

i,j=1 gi,jduiduj
(6.3)

is the length-distortion of the map-projection M .

Let now be P, P+dP 1, P+dp2 be three infinitesimal close points in the horizontal
coordinate plane S. Let ui, ui + du1

i , ui + du2
i be the coordinates of these points

and let (x, y), (x + dx1, y + dy1), (x + dx2, y + dy2) be the coordinates of their
images. The angle between these thee points is

cos Γ =

∑2
i,j=1 gijdu

1
i du

2
j√∑2

i,j=1 gijdu
1
i du

1
j

√∑2
i,j=1 gijdu

2
i du

2
j

(6.4)

and the angle between their images is

cos γ =
dx1dx2 + dy1dy2√

(dx1)2 + (dy1)2
√

(dx2)2 + (dy2)2
(6.5)

=

∑2

i,j=1

(
∂x
∂ui

∂x
∂uj

+ ∂y
∂ui

∂y
∂uj

)
du1

i du
2
j√∑2

i,j=1

(
∂x
∂ui

∂x
∂uj

+ ∂y
∂ui

∂y
∂uj

)
du1

i du
1
j

√∑2

i,j=1

(
∂x
∂ui

∂x
∂uj

+ ∂y
∂ui

∂y
∂uj

)
du2

i du
2
j

(6.6)
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Definition 23 The ratio
δγ :=

γ

Γ
(6.7)

is called the angle distortion of the map projection M .

Definition 24 A map projection is called

• length-preserving, im m = 1 and

• angle-preserving,or conformal if δγ = 1

Theorem 16 A map-projection M is

• length-preserving, if

gij =

2∑
i,j=1

(
∂x

∂ui

∂x

∂uj
+

∂y

∂ui

∂y

∂uj

)
(6.8)

• angle-preserving, if

gij = λ(u1, u2) ·
2∑

i,j=1

(
∂x

∂ui

∂x

∂uj
+

∂y

∂ui

∂y

∂uj

)
(6.9)

Every length-preserving map-projection is also angle-preserving.

Neither for a horizontal coordinate surface of the spherical coordinate system nor
for the horizontal coordinate surface of an ellipsoidal coordinate system a length-
preserving map projection is possible. Therefore, frequently used map projections are
only angle preserving. In order to keep the unavoidable length-distortion small the
coordinate surface is not mapped as a whole but piecewise.
Now some of the most important map projections will be discussed.
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6.2 Gauß-Krüger projection

This map projection was first used by the mathematician Gauß and the geodesist
Krüger. It is one of the most frequently map projections in Europe. The horizontal
coordinate surface for the Gauß-Krüger map projection is an ellipsoid of a certain size
and flattening. This surface is divided in several zones included between Meridians.
Each of the zones is mapped conformally into the map-plane.
This means a Gauß-Krüger projection is defined by

1. The ellipsoid a, f which defines the ellipsoidal coordinate system.

2. The width of the zones.

3. the central meridian L0 of each zone

4. false easting E0

The central meridian is mapped length-preserving to the x-axis of the map-coordinate
system and the intersection of the central meridian and the equator is mapped to the
origin of the map-coordinate system. In order to avoid negative coordinate values in
the map-plane the coordinates (x, y) are replaced by the values N,E (northing, and
easting) in the following way:

N = x, E = y + E0 (6.10)

The transformation from ellipsoidal coordinates L,B into Gauß-Krüger coordinates
N,E can be achieved by the following set of formulae:

Definition of reference point on the central meridian

(L0, B0) B0 ≈ B ⇒ ∆B = B −B0, ∆L = L− L0 (6.11)

Meridional arc length

(e′)2 =
f(2− f)

(1− f)2
(6.12)

a0 = 1− ((e′)2 + 3
(e′)4

16
+ 5

(e′)6

64
+ 175

(e′)8

4096
)/4

a2 = 3((e′)2 +
(e′)4

4
+ 15

(e′)6

128
− 455

(e′)8

4096
)/8

a4 = 15((e′)4 + 3
(e′)6

4
− 77

(e′)8

128
)/256

a6 = 35((e′)6 − 41
(e′)8

32
)/3072

a8 = −315
(e′)8

131072
G = a · (a0B0 − a2 sin(2B0) + a4 sin(4B0)− a6 sin(6B0)

auxiliary quantities:

η2 = (e′)2 cos2(B0), t = tan(B), N =
a√

1− (e′)2 sin2(B0)
(6.13)
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power series coefficients:

a10 = N(1− η2 + η4 − η6)
a01 = N cos(B0)
a20 = 3Nt(η2 − 2η4)/2
a11 = N cos(B0)t(−1 + η2 − η4)
a02 = N cos2(B0)t/2
a30 = Nη2(1− t2 − 2η2 + 7η2t2)/2
a21 = N cos(B0)(−1 + η2 − 3η2t2 − η4 + 6η4t2)/2
a12 = N cos2(B0)(1 + t2 + η2t2 − η4t2)/2
a03 = N cos3(B0)(1− t2 + η2)/6
a40 = Nt(−η2)/2
a31 = N cos(B0)t(1− 10η2 + 3η2t2)/6
a22 = N cos2(B0)t(−4 + 3η2t2)/4
a04 = N cos4(B0)t(5− t2 + 9η2)/24
a13 = N cos3(B0)t(−5 + t2 − 4η2 − η2t2)/6

(6.14)

Gauß- Krüger coordinates

x = G+ a10∆B
+ a20∆B2 + a02∆L2

+ a30∆B3 + a12∆B∆L2

+ a40∆B4 + a22∆B2∆l2 + a04∆L4

y = a01∆L
+ a11∆B∆L
+ a21∆B2∆L+ a03∆L3

+ a31∆B3∆L+ a13∆B∆L3

(6.15)

For the inverse transformation the following set of equations is available:
Definition of a reference point on the central meridian

(L0, B0), B0 ≈ B ⇒ x0 = G,∆x = x− x0 (6.16)

power series coefficients

b10 = (1 + η2)/N
b01 = 1

N cos(B0)

b11 = t
N2 cos(B0)

b20 = 3η2t
2N2 (−1− η2)

b02 = t
2N2 (−1− η2)

b30 = η2

2N3 (−1 + t2 − 2η2 + 6η2t2)
b21 = 1

2N3 cos(B0)
(1 + 2t2 + η2)

b03 = − 1
3
b21

b12 = 1
2N3 (−1t2 − 2η2 + 2η2t2 − η4 + 3η4t2)

b40 = η2t
2n4

b31 = t
6N4 cos(B0)

(5 + 6t2 + η2)

b22 = t
4N4 (−2− 2t2 + 9η2 + η2t2)

b13 = −b31

b04 = t
24N4 (5 + 3t2 + 6η2 − 6η2t2)

(6.17)
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ellipsoidal coordinates

B = B0 + ∆x
+ b20∆x2 + b02y

2

+ b30∆x3 + b12∆xy2

+ b40∆x4 + b22∆x2y2 + b04y
4

L = b01y
+ b11∆xy
+ b21∆x2y + b03y

3

+ b31∆x3y + b13∆xy3

(6.18)

For a JAVA applet converting ellipsoidal coordinates in Gauß-Krüger coordinates click
here.

6.3 Soldner coordinates

Soldner coordinates are map coordinates, which were frequently used in the second
halve of the 19th century. They do not map a whole meridional strip but only a
certain patch of the ellipsoid surface.
For the definition of a particular Soldner map projection a central meridian with the
latitude L0 is chosen, being approximatively in the middle of the area to be mapped

http://localhost/GKS/GK.html
http://localhost/GKS/GK.html
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into the map plane. On this central meridian a fundamental point P0 = (B0, L0) is
selected, which is approximatively in the center of the area to be mapped.

Definition 25 Let g be the geodesic through the point P = (L,B), which intersects
the central meridian L = L0 orthogonally.
The length of the geodesic arc between P and the central meridian is the Soldner
coordinate y,
The length of the meridional arc between B0 and the intersection of the geodesic and
the central meridian is the Soldner coordinate x of P .

The computation of Soldner coordinates from given ellipsoidal coordinates (L,B) is
given by the following set of formulae:
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l = L− L0

x = G(B)−G(B0) + N
2

sinB cosBl2 + N
24

sinB cos2(5− t2 + 5η2)l4

y = N cosBl + N
6

sin2 B cosBl3 − N
120

sin2 B cos3 B(8− t2)l5
(6.19)

The inverse transformation from give Soldner coordinates to ellipsoidal coordinates
can be accomplished by the set of formulas:
First determine the latitude Bf as the solution of

G(B0) + x = G(Bf ) (6.20)

The determine Bf −B and l = L− L0 as

Bf − b =
V 2
f

2N2
f

tfy
2 −

V 2
f

24N4
f

tf (1 + 3t2f + η2
f − 9η2

f t
2
f )y4

l = 1
Nf cosBf

y −
t2
f

3N3
f

cosBf
y3 +

t2
f

15Nf cosBf
[1 + 3t2f )y5

(6.21)

In these formula the quantity V is defined by

V =
√

1 + (e′)2 cos2 B (6.22)

The remaining quantities G,N, t, η are defined exactly in the same way as in the section
Gauß - Krüger coordinates.

6.4 UTM coordinates

Definition 26 The UTM projection is a Gauß - Krüger projection of that part of the
ellipsoid, which is between 80◦ S and 80◦ N latitude. The meridional zones have a
width of 6◦ with their central meridians at 3◦, 9◦, . . . , 177◦ longitude East and West
of Greenwich. As length-distortion along the central meridian the value m = 0.99996
was assigned.
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Reference systems and
Reference Frames

Physical quantities which are observed during a geodetic measurement are

• travel times of electromagnetic waves,

• interference patterns between a received signal and a reference signal,

• interference patterns between a signal received at two different locations, ...

These observed quantities are converted to geometrical quantities like distances and
angles. From distances and angles observed between the points of a network coordi-
nates of these points are to be derived. This is only possible,if

• a coordinate system is defined, where the coordinates refer to and

• physical quantities like the vacuum velocity of light are adopted, which allow
the conversion of the observed physically quantity into geometric quantity.

Definition 27 A coordinate system together with a set of parameters, which com-
pletely describe the physical model of observations which are to be related to this coor-
dinate system are called a reference system.

Definition 28 Let be N a network of points with given coordinates with respect to a
coordinate system. A minimal set of parameters, which uniquely define the position
and orientation of N in space and the physical model of the observations is called a
datum of this reference system.

Obviously, a reference system can have several equivalent datum parameter sets. For
instance the orientation and position datum parameters can be given as

1. the position of the origin and the orientation of the axes or

2. as adopted coordinates for a set of points or

3. as transformation parameters which relate this reference system to another ref-
erence system.

The definition of a coordinate system can be made in two different ways:

47
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1. explicit:
by describing the the location of the origin and the direction of the axes in
relation to some material points.

2. conventional:
by assigning coordinates to a selected number of material points

Example:
Let P,Q,R be three points in the Euclidean plane. Then a Cartesian co-ordinate
system can be defined explicitely by

• letting the origin coincide with the point Q,

• letting the x-axis coincide with the straight line ~QR,

• letting the y axis being perpendicular to the x axis and

• defining a length-unit l

With respect to this co-ordinate system the points P,Q,R have the coordinates

P =
1

l
(| ~QP | cosα, | ~QP sinα) (7.1)

Q = (0, 0) (7.2)

R = (0,
| ~QR|
l

) (7.3)

, where α is the angle between the straight lines ~QR and ~QP .
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The conventional way to define a coordinate system is to assign coordinate-values to
a fixed number of points.

P = (xP , yP ) , Q = (xQ, yQ) , R = (xR, yR)
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Hence the distances of the origin of the coordinate system to the three points are

rP =
√
x2
P + y2

p , rQ =
√
x2
Q + y2

Q , rR =
√
x2
R + y2

R

Consequently, the origin is at the intersection of three circles with the radii rP , rQ, rR
and the centers at P,Q,R.
From the assigned coordinates the angles αP , αQ, αR between the lines connecting the
origin with these points and the x-axis can be computed:

αP = arctan(
yP
xP

), αQ = arctan(
yQ
xQ

), αR = arctan(
yR
xR

)

The x-axis can be chosen so that it includes the angle αP with the line connectingP
with the origin.

α P
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Click here to see an animation

Independent of the way of its definition a coordinate system is always a mathematical
fiction. Therefore, it is impossible to have access to the coordinate system by geodetic
measurements. A materialization of the coordinate system is needed. Such an realiza-
tion of a coordinate system by material points with given coordinates with respect to
the coordinate system under consideration is called reference frame .

Definition 29 A set of material points with given coordinates with respect to a par-
ticular coordinate system is called a reference frame of this coordinate system.

Unfortunately, the terminology is not clearly used in geodetic literature. Fre-
quently, the concepts of reference systems and reference frames are not clearly
distinguished. Additionally, every reference frame defines, by conventional defi-
nition also a coordinate system, which approximates the underlying coordinate

http://members.tripod.de/wolke53/GKS/explicit.html
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system and forms together with the geodetic datum parameters a new reference
system. For this reasons, the points of a reference frame are sometimes also
called a reference system.



Chapter 8

Time Systems

Many geodetic observation techniques measure travel times of electromagnetic
waves. Therefore a precise definition of time is fundamental to geodetic obser-
vations. Presently, two time systems are in use

• atomic time,

• dynamical time

Before atomic time was available civilian time systems were based on the Earth’s
rotation and were called universal or sideral time.

8.1 Atomic Time

The fundamental atomic time scale Temps Atomique International - TAI is
based on atomic clocks, operated by various national agencies and kept by the
International Earth Rotation Service - IERS and the Bureau International de
Poids et Mesures -BIPM).

Definition 30 TAI is a uniform time scale coinciding with Universal Time
(UT) at midnight January 1, 1958.
The fundamental interval unit of TAI is one SI second.
The SI day is defined as 86400 SI seconds and the Julian century is defined as
36525 SI days.

Definition 31 The Julian Date is the number of days and the fraction of a day
elapsed since 12, h UT on January 1, 4713 BCE.

For conversion from Gregorian to Julian date click here

51
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Since the origin of Julian Date is much to far in the past, UT has another
fundamental epoch to refer time differences to:

Definition 32 The Julian Date of the standard epoch of UT is called J2000.0.
It is defined as the Julian Date at 1 January 2000 12:00 GMT.
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Hence,
J2000.0 = JD2451545.0 (8.1)

All time variables, denoted by T are measured in Julian centuries relative to the
epoch J2000.0.

TAI is a continuous time scale, it does not maintain synchronization with the
solar day (UT) .Since the rotation rate of the Earth is slowing down the TAI
will get more and more ahead UT. This problem is solved by the definition of
the Universal Coordinated Time UTC.

Definition 33 UTC runs at the same rate as TAI but is incremented periodi-
cally by leap seconds.

Leap seconds are introduced by the IERS if necessary. The introduction of leap
seconds makes sure that the difference between UTC and UT (more precisely:
between UTC and UT1) is not larger than 0.9 s. The difference DUT1 := UT1-
UTC is brodcasted by the IERS.

A third atomic time is the GPS time.

Definition 34 The GPS time (GPST) runs at the rate of the atomic clock of
the GPS Master Control station in Colorado Springs. GPST and UTC coincided
at oh January 6 1980.

Since GPST is not incremented there is a 19 seconds offset between TAI and
GPST

GPST = 19s+ TAI (8.2)

8.2 Dynamical Time

Definition 35 Dynamical Time is the independent variable in the equations of
motion of bodies under gravitational forces according to the theory of General
Relativity.

Since the best approximation of an inertial system is centered at the barycen-
tre of the solar system, the dynamical time measured in this system is called
Barycentric Dynamical Time (Temps Dynamique Barycentrique - TDB).
An Earth based clock will show periodic variations of about 1.6 milliseconds
with respect to TDB due to the motion of the Earth in the gravitational field
of the sun.

Definition 36 Terrestrial Dynamical Time TDT (Temps Dynamique Terrestre)
is the independent variable in the equation of motion of a body in the Earth’s
gravitational field.
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The relations between TDT and TDB are given by

TDB = TDT + 0s.001658 sin(g + 0.0167 sin g) (8.3)

where
g = (357◦.528 + 35999◦.050T )

π

180
(8.4)

T is the time in Julian centuries TDT.

8.3 Sideral and Universal Time

Prior to the operationality of atomic clocks, the Earth’s diurnal rotation was
used to measure time. Two different time systems were connected to the rotation
Earth:

• sideral time

• universal time

These two times are still used as an angle measure for the transformation be-
tween celestial and terrestial systems.

Definition 37 The angle between the observers local meridian and and the true
vernal equinox corrected for precession and nutation is called apparent sideral
time (AST).
If this angle is referred to the Greenwich mean astronomical meridian, it is called
Greenwich apparent sideral time (GAST)

besides the times AST and GAST, which refer to the true vernal equinox
there are corresponding times MST and GMST, which refer to the mean vernal
equinox.(corrected only for precession)

Definition 38 The difference between GAST and GMST is called the equation
of Equinox EqE

Eq.E := GAST −GMST = AST −MST = ∆ψ cos(ε+ ∆ε) (8.5)

where the nutations in longitude and obliquity ∆ψ,∆ε are given by (9.8) and
(9.9).

According to Kepler’s second law the Earth doesn’t revolve the sun at a constant
angular velocity. For this reason a fictious sun was invented which moves with
constant velocity.

Definition 39 The hour angle of the fictious sun is called Universal Time UT.
The Time UT1 is the Universal Time corrected for polar motion.
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The relationship between sideral and universal time is given in terms of the
IAU(1967) system of constants by

GMST = UT1 + 6h41m50′′.548481 + 8640184′′.812866Tu
+0′′.093104T 2

u − 6′′.2 · 10−6T 3
u

(8.6)

With Tu being the Julian date since J2000.0 in Julian centuries

Tu =
JulianUT1date− 2451545.0

36525
(8.7)
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Chapter 9

Geodynamics

9.1 Earth rotation

The rotation axis of the Earth is not fixed in inertial space neither it is with
respect to the Earth’s body. The gravitative forces of the Sun and Moon acting
on the equatorial bulge of the Earth are changing the orientation of the rotation
axis in inertial space. These changes are called precession and nutation and can
be predicted with a very high accuracy.
Additionally, there is a small movement of the Earth’s rotation axis with respect
to its crust, which is called polar motion. Both nutation and polar motion are the
Earth’s response to external forces. Nutation is primarily the forced response of
the Earth and can be predicted by geophysical and orbital models. The polar
motion represents the forced and the free response of the Earth to external forces
in almost equal parts. Again the forced part can be predicted but the free part
can only be determined by Space Geodesy methods.

9.1.1 Motion in Celestial System

Moon and Sun and the planets exert gravitational forces on the equatorial bulge.
Since the rotating Earth behaves like a gyro, it reacts to this forces by a clockwise
movement of its rotation axis. This movement consist of two constituents

• precession and

• nutation

Theorem 17 Luni-solar precession is the the circular motion of the celestial
pole with a period of 25, 800 years and an amplitude equal to the obliquity of
the ecliptic of 23◦.5. The precession causes a westerly movement of the equinox
of about 50′′.3 per year.
Planetary precession consist of a 0◦.5 per year rotation of the ecliptic re-
sulting in a easterly motion of the equinox by about 12′′.5 per century and an
decrease of the obliquity of the ecliptic by about 47′′ per century.

57
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γγ

Ecliptic

Equator

Ecliptic pole

Earth’s rotation axis23.5

Definition 40 The combined effect of luni-solar and planetary precession is
called general precession or simply precession

Definition 41 The short periodic motion of the pole superimposed on the pre-
cession with oscillations of 1 day to 18.6 years (the main period) and a maximum
amplitude of 9′′.2 is called nutation.

Ecliptic pole

23.5

18.6 years

Precession transformation

The transformation of stellar coordinates from the mean equator and equinox
at epoch ti to the mean equator and equinox at another epoch tj is performed
by the means of the following rotation matrix

P = R3(−zA)R2(θA)R3(−ζA) (9.1)

The precession angles , defined by the 1976 IAU conventions, are given by

ζA = (2306′′.2181 + 1′′.39656Tu − 0′′.000139T 2
u)t

+(0′′.30188− 0′′.000344Tu)t2 + 0′′.017998t3 (9.2)
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zA = (2306′′.2181 + 1′′.39656Tu − 0′′.000139T 2
u)t

+(1′′.09468− 0′′.000066Tu)t2 + 0′′.018203t3 (9.3)

θA = (2004′′.3109− 0′′.85330Tu − 0′′.000217T 2
u)t

−(0′′.42665− 0′′.000217Tu)t2 − 0′′.041833t3 (9.4)

where

Tu := (JD − 2451545.0)/36525 (9.5)

and t is the interval between tj and ti in Julian centuries.

Nutation transformation

The transformation of stellar coordinates from the mean to the true equator
and equinox at a epoch is given by

N = R1(−ε−∆ε)R3(−∆ψ)R1(ε) (9.6)

The nutation time series according to the 1980 IAU conventions are

ε = (84381′′.448− 46′′.8150Tu + 0′′.00059T 2
u + 0′′.001813T 3

u)
+(−46′′.8150− 0′′.00177Tu + 0′′.005439T 2

u)t
+(−0′′.00059 + 0′′.005439Tu)t2 + 0′′.00181t3

(9.7)

The nutation parameters ∆ψ and ∆ε can be represented by series expansions

∆ψ =
N∑
j=1

[
(A0j +A1jT ) sin

(
5∑
i=1

kjiαi(T )

)
)

]
(9.8)

∆ε =
N∑
j=1

[
(B0j +B1jT ) sin

(
5∑
i=1

kjiαi(T )

)
)

]
(9.9)

The α coefficients are arguments of the motion of Sun and Moon:

1. mean anomaly of the Moon

α1 = 485866′′.733 + (1325r + 715922′′.633)T + 31, ′′.310T 2 + 0′′.064T 3

(9.10)

2. mean anomaly of the Sun

α2 = 1287009′′.804+(99r+1292581′′.224)T−0′′.577T 2−0′′.012T 3 (9.11)

3. mean argument of latitude of the Moon

α3 = 335778′′.877 + (1342r + 2995263′′.137)T − 13′′.257T 2 + 0′′.011T 3

(9.12)
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4. mean elongation of the Moon from the Sun

α4 = 10072261′′.307 + (1236r + 1105601′′.328)T − 6′′.891T 2 + 0′′.019T 3

(9.13)

5. mean longitude of the ascending lunar node

α5 = 450160′′.280− (5r + 482890′′.539)T + 7′′.455T 2 + 0′′.008T 3 (9.14)

Here 1r means one revolution , i.e. 1r = 360◦ = 1296000′′ The coefficients
Aij , Bij , kij are given by the standard 1980 IAU series and can be found in [?].

9.1.2 Motion in the Terrestrial System

Besides the movement of the Earth’s rotation axis in space there is an addi-
tional variation of the rotation axis relative to the Earth’s crust. This motion is
primarily due to the elastic properties of the Earth and due to the exchange of
angular momentums between the solid Earth, the oceans and the atmosphere.

Definition 42 Polar motion is the rotation of the true celestial pole as defined
by the precession and nutation models with respect do the z-axis of a conven-
tionally chosen terrestrial reference system.

Polar motion consists of a free and a forced oscillation. The free oscillation is
counterclockwise with a period of 430 days (Chandler period) and an amplitude
of 3− 6m.
The forced component again consists of two parts. One part is exited by the
tidal forces and therefore has a diurnal period, with an amplitude of one order
of magnitude smaller then the free oscillation. The second part has an annual
period since it is exited by the annual changes in the atmosphere. Its amplitude
is about as large as the free oscillation.

Polar motion cannot be predicted by models, it has to be observed by space
techniques. The accuracy of those observation has achieved a very high level,
accounting for 0.2 - 0.5 miliarcseconds which is equivalent to 6 - 15 mm at the
Earth’s surface. Polar motion values can be downloaded from the International
Earth Rotation Service (IERS) as tables of daily values of pole coordinates.

Earth Orientation Transformation

The transformation from the celestial to the terrestrial system includes the
Earth’s rotation and the polar motion. Consequently it can by represented
as the product of three rotation matrices:

S = R2(−xp)R1(−yp)R3(GAST ) (9.15)

The Earth rotation is the rotation around the instantaneous rotation axis with
the rotation angle being the difference between
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the true vernal equinox of the date to the meridian of the 1903.0 Greenwich zero
longitude.

R3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , θ = GAST (9.16)

where GAST is given by

GAST = GMST0 +
d(GMST )

dt
(UTC − (UTC − UT1) + Eq.E (9.17)

with Eq.E being again the equation of equinox. Here the difference UTC−UT1
has to be interpolated from IERS tables.

The polar motion rotation is the transformation between the instantaneous pole
to the the pole given by nutation and precession theories.

Definition 43 Polar motion rotation is defined by the left-handed pair of angles
(xp, yp) . The first angle is the angle between the mean direction of the pole
during the period 1900.0 - 1906.0 (the IERS Reference Pole (IRF)) and the true
rotation axis. It is defined positive in the direction of the x-axis of the terrestrial
system. the second angle is positive in the direction of the 270◦ meridian.

Since both angles are small the rotation can be approximated by

R2(−xp)R1(−yp) =

 1 0 xp
0 1 −yp
−xp yp 1

 (9.18)

where the angles are interpolated from the IERS tables.
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9.2 Earth Deformation

9.2.1 Rotation versus Deformation

The location of a point at the Earth’s surface in inertial space changes due to
two reasons

1. the rotation of the Earth’s body,

2. the deformation of the Earth.

Since, with the help of Space Geodesy only the position of a point or the change
of the position of a point in inertial space can be measured, a additional criterion
is needed to distinguish the deformation from rotation.
Let vI be the velocity of a point at the Earth’s surface in inertial space. Then
it can be decomposed into

vi = vT + ω × r (9.19)

The first term is the movement of the point with respect to an Earth-fixed
system, i.e. the deformation and the second term is the movement of the point
due to Earth’s rotation. The vector ω is the rotation vector of the Earth. From
measurements only vi is accessible, and this vector has to be separated somehow
into deformation and rotation. This separation is ambiguous, but at least there
is a restriction which all possible deformations have to fulfill.

Theorem 18 The velocity vector vT of the Earth’s deformation has to fulfill
the following condition ∫

ρ(r× vT )dV = 0 (9.20)

Proof: Since the deformation rate is small compared to the rotation rate, the
following condition can be used to define a mean rotation axis ω

T :=
∫
ρ(v>T vT )dV →min

ω

Inserting (9.19) one obtains

T =
∫
ρ(vi − ω × r)>(vi − ω × r)dV

=
∫
ρ(v>i vi − 2v>i (ω × r) + (ω × r)>(ω × r)dV

The necessary condition for an extremum is the vanishing of the gradient of T
with respect to ω.

0 =
∂T

∂ω
= −2

∫
ρ(vi × r)dV + 2

∫
ρ(r× (ω × r))dV
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or equivalently ∫
ρ(vi × r)dV =

∫
ρ(r× (ω × r))dV (9.21)

On the other hand the total angular momentum is

H =
∫
ρ(vi × r)dV

=
∫
ρ(ω × r + vT )× rdV

=
∫
ρ(r× (ω × r))dV +

∫
ρ(r× vT )dV

Comparing this with(9.21) yields∫
ρ(r× vT )dV = 0

9.2.2 Global Plate Motion

The NNR-NUVEL1 plate tectonic model by [?] describes the angular velocities
of the 14 major tectonic plates defined by the constraint (9.21).
The velocity a station i in a plate j is given on a spherical Earth as a function
of ϕ, λ,R by

vij = Ωj × ri = Rωj

 cosϕj sinϕi sinλj − sinϕj cosϕj sinλi
sinϕj cosϕi cosλi − cosϕj sinϕi cosλj

cosϕj cosϕi sin(λi − λj)

 (9.22)

Consequently, the station coordinate corrections for global plate motion are
given by

rij(t) = rij(t0) + vij · (t− t0) (9.23)

9.2.3 Tidal Effects

The gravitational attractions of Moon and Sun cause tidal deformations of the
Earth which result in periodical changes of station coordinates. Therefore, a
tidal model needs tio be included in the definition of a terrestrial reference
system.
Earth tides have four main constituents:

1. solid Earth tides,

2. ocean loading,

3. atmospheric loading

4. pole tide
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Solid Earth Tides

Let P be a massive body with mass MP at the distance RP from the mass
center of the Earth. This body generates a tidal potential with the value

Utidal(rS) =
GMP

RP

(
[
rS
RP

]2P2(cosϑ) + [
rs
RP

]3P3(cosϑ)
)

= U2 + U3 (9.24)

at the location rS at the Earth’s surface. The angle ϑ is the angle between the
position vectors of rS and the tidal force generating body P.
Thee resulting displacements expressed in a topocentric system are

δ =
3∑
i=2

hi
Ui
g

eV + li
cosϕS ∂Ui∂λS

g
eE + li

∂Ui
∂ϕS

g
eN (9.25)

In this equation

• the vectors eE , eN , eV are unit vectors pointing in East, North and vertical
direction,

• the real numbers hi, li are the vertical and horizontal Love Numbers and

• g is the gravity acceleration.

The following values have been recommended by the IERS for tidal corrections:

• h2 = 0.609 , l2 = 0.0852 , h3 = 0.292 , l3 = 0.0151

• GME = 3986004.356 · 108m3s−2 (Earth)

• GMS = 1.32712440 · 1020m3s−2 (Sun)

• ME/MM = 81.300585 (Earth/Moon mass ratio)

Ocean Loading

Ocean loading is the elastic response of the Earth to ocean tides. This effect
can reach tens of millimeters for stations near the ocean shelves. Corrections
for ocean tides displacements have the form

δj =
N∑
i=1

ξji cos(ωit+ Vi − δji ) (9.26)

The IERS standards include N = 11 tidal constituents. For each constituent i

• ωi is its frequency,

• Vi is the astronomical argument and

• ξji , δ
j
i are the amplitudes and phase lags.
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Atmospheric Loading

Atmospheric loading is the elastic response of the Earth’s crust to varying at-
mospheric pressure distribution. This effect can reach several millimeters in
vertical direction.

Pole Tide

The pole tide is the elastic response of the Earth’s crust to the to the shift of
the rotation axis. The maximum displacements of the pole tide are 10-20 mm.
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Chapter 10

Conventional Reference
Systems and Reference
Frames

10.1 International Earth Rotation Service (IERS)

Recent reference systems are maintained through international cooperation.
The International Association of Geodesy (IAG) has set up a service, the In-
ternational Earth Rotation Service (IERS), which is concerned with the main-
tainance of the IERS Reference System. In different IERS Analysis Centers
for geodetic space techniques as VLBI, SLR LLR, GPS the parameters for the
Earth rotation are computed. In the Central Bureau these informations are
combined and in regular updates the IERS Reference System is released.
The IERS Reference System is composed of

• IERS Standards, a set of models and parameters, which are used by the
Analysis Centers.

• the IERS Celestial Reference Frame (ICRF) and

• the IERS Terrestrial Reference Frame (ITRF)

The ICRF is realized by a catalogue of compact extragalactical radio sources.
The ITRF is realized by a set of terrestrial station coordinates and velocities.

10.2 Celestial Reference System

Definition 44 The small motions of the Earth’s rotation axis can be described
as the sum of two components

1. astronomical nutation

67
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2. polar motion

The direction of the axis which is computed from the theory of nutation and
precession is called Celestial Ephemeris Pole (CEP)
The origin of the ICRS is the barycentre of the solar system.
The axes of the ICRS are defined as the

• the CEP,

• the equinox

• and a third axis completing the former two axis to a Cartesian coordinate
system

at the epoch J2000.0

The ICRF is a realization of the IERS consisting of catalogue of astronomical
coordinates of about 200 extragalactical radio sources at the epoch J2000.0.
By adopting coordinates of quasars, implicitly a coordinate system is conven-
tionally defined. The conventionally defined coordinate system differs in the
orientation of its axis by about 0.0001 arc-seconds from the ICRS.
The transformation from the ICRF to a system with its third axis to CEP is
given by the theory of nutation and precession.

10.3 Terrestrial Reference Systems

The CEP moves with respect to the Earth’s surface. In order to have a coordi-
nate system , which is fixed with respect to the Earth the ITRS is adopted.

Definition 45 The mean direction of the the Earth rotation axis determined by
the five International Latitude Service stations in the period 1900.0 to 1906.0 is
defined as the Conventional Inertial Pole (CIO) at the epoch 1903.0
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Definition 46 The ITRS is defined with its origin at the Earth’s geocenter.
The axes of the ITRS are oriented in the following way:

• the Z axis is oriented to the CIO,

• the X-axis is oriented towards the 1903.0 meridian of Greenwich

• and the Y axis completes the former two axes to a Cartesian coordinate
system.

The ITRS is realized by the ITRF, a catalogue of Cartesian coordinates and
velocities of globally distributed tracking stations.
The adopted coordinates of these stations implicitly define a new coordinate
system, which differs from the ITRS by about 10mm in position and several
mm/year in velocity.

The transformation between the ITRF and the ICRF is given by the pole coor-
dinates xP , yP and the nutation and precession parameters dψ, dε.
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10.4 WGS84

Besides the ITRF several other terrestrial reference systems are in use. Proba-
bly, the most important is the WGS84. The WGS84 is maintained by the US
Department of Defense (DoD) and is the reference system of the GPS system. It
is an implicitly defined system. It is defined by adopting Cartesian coordinates
of the ten DoD GPS Monitoring Stations derived from Doppler observations on
these sites. This results in a accuracy of the WGS84 System of about 1..2 m.
In order to align the WGS84 with the more accurate ITRF the DoD has recom-
puted the coordinates of the ten monitoring stations using GPS observations at
these sites and at at ab subset of IGS tracking stations whose ITRF coordinates
were held fixed. This refined WGS84 System is called WGS84 (G730).
The WGS84 system is realized by the ephemerides of the GPS satellites. In
order to compute the orbits of these satellites some additional constants have
to be adopted.
An ellipsoidal coordinate system is attached to the WGS84 by locating an el-
lipsoid at the origin of the WGS84 system and letting the rotation axis coincide
with the Z-axis of the WGS84. This means the datum parameters of the WGS84
are

Parameter Symbol numerical value
semi-major axis a 6378137 m
reciprocal flattening 1/f 298.257223563
angular velocity ω 7.292115 · 10−5s−1

geocentric
gravitational constant GM 398600.5km3s−2

second zonal harmonic C̄2,0 −4884.16685 · 10−6
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10.5 Ellipsoidal Reference Systems

For many purposes ellipsoidal coordinate systems are more convenient than
Cartesian systems. Ellipsoidal systems can be distinguished between global
systems which approximate the Earth as a whole and local ellipsoidal system,
which approximate the Earth’s surface in a certain region.

10.5.1 The GRS80 Reference System

The most important global ellipsoidal System is the GRS System. It is defined
as an ellipsoid centered at the origin of the ITRS and having its axes coinciding
with the axes of the ITRS. The additional datum parameters of the GRS80
Reference System are

Parameter Symbol numerical value
semi-major axis a 6378137 m
reciprocal flattening 1/f 298.257222100827
angular velocity ω 7.292115 · 10−5s−1

geocentric
gravitational constant GM 398600.5km3s−2

dynamical form factor J2 108263 · 10−8

The GRS80 Reference system is a global ellipsoidal system. It approximates the
Earth as a whole. Besides global ellipsoidal systems a number of local ellipsoidal
systems are in use. The approximate the Earth’s surface only in their region of
validity.

10.5.2 Local Ellipsoidal Systems

The Rauenberg Datum

The Rauenberg datum is the official reference system for the western part of
Germany. It is an ellipsoidal System which is based on the Bessel 1841 ellipsoid.
This ellipsoid has the dimensions

a = 6377397.155m, 1/f = 299.15281285 (10.1)

The position and orientation datum parameters are not given as the position
of the origin and the orientation of the axes but in an equivalent way. First a
initial point in the center of the region of validity of the reference system has to
be fixed. For this initial point the following quantities are assigned

• the ellipsoidal coordinates L,B are set identical to the astronomic coordi-
nates λ, ϕ,

• the geodetic azimuth A to a specific target is set identical to the astro-
nomical azimuth a
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• a specific value N is adopted for the separation between the geoid and the
ellipsoid in the initial point.

For the Rauenberg datum the Helmert Tower of The GeoForschungsZentrum in
Postsdam was used as initial point. Its ellipsoidal coordinates were set to

B = 52◦22′53′′.9540N, L = 11◦34′26′′.483E (10.2)

The coordinate system was oriented by setting the geodetic azimuth of the line
Rauenberg - Marienkirche Berlin to its astronomical azimuth.

The reference frame of the Rauenberg datum are the points of the German
Hauptdreiecksnetz (DHDN) whose Gauß - Krüger coordinates based on a 3◦

zone-width are given.
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The 42/83 Datum

The system 42/83 used to be the official reference system in the eastern part
of Germany. It is based on the Krassovsky 1940 ellipsoid with the following
dimensions

a = 6378245m, 1/f = 298.3 (10.3)

Its initial point is the Centra Astronomical Observatory Pulkovo (close to St.
Petersburg) and its reference frame are the points of

• the Einheitliches Astronomisch-Geodätisches Netz(EAGN) and

• the Staatliches Trigonometrisches Netz 1st Order (STN1.O)

whose Gauß - Krüger coordinates based on a 6◦ zone-width are given.
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10.6 Height Systems

So far, the horizontal position of a point is given by its ellipsoidal coordinates
L,B. The vertical position, the ellipsoidal height H is given by the shortest
distance of the point from the surface of the ellipsoid. Despite of this conceptual
simple concept the ellipsoidal heights do not have property, which is intuition-
ally expected of heights:

there is no water floating between points of identical heights

In order to fulfill this requirement points of identical heights have to lie on
an equipotential surface W (x) = c0 = const of the gravity potential W of the
Earth. Hence, a useful definition of a physical height system is to let the heights
be proportional to the negative difference of the potential difference between the
ocean-surface and the point

hP ∼ −(WP −W0) (10.4)

The choice of the proportionality factor distinguished the different height sys-
tems.

10.6.1 Dynamical Heights

Definition 47 The dynamical height hdynP of a point P is given by

hdynP (P ) := W0 −W (P ) (10.5)

, where W0 is the value of the gravity potential at a tide - gauge.

This height system has the disadvantage that the dynamical heights don’t have
a metric unit but the unit m2s−2 . For practical purposes it is more convenient
to have heights given in metrical units. Therefore, a quantity with the unit
m−1s2 . Dependent of this choice orthometric or normal heights are generated.

10.6.2 Orthometric Heights

Heights Reference System

Definition 48 The orthometric height horthP of a point P is given by

horthP (P ) :=
1
ḡ

(W0 −W (P )) (10.6)

, where W0 is the value of the gravity potential at a tide - gauge and ḡ is the
mean value of the gravity along the plumb line between the surface W (x) = W0

and the point P .
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The orthometric heights have a nice geometric interpretation: They equal the
length of the plump-line between the surface W (x) = W0 and the point P .

The disadvantage of the orthometric heights is that the value ḡ cannot be mea-
sured but has to be computed from gravity measurements at the Earth surface
including some hypothesizes about the density distribution inside the Earth’s
body. Therefore in some countries, for instance in the western part of Germany,
mean value ḡ of the real gravity is replaced by the mean value of a gravity
model , the so-called normal gravity γ. The resulting heights are called normal
orthometric heights.

Heights Reference Frame

The reference frame of the orthometric height system in the western part of Ger-
many are the heights of the points of the Deutsches Haupthöhennetz (DHHN).
The heights refer to the equipotential surface W = W0 , which passes a point
37m beneath the Berlin Astronomical Observatory.(Normalhöhenpunkt von 1879
(NH1879)). The height of the NH1879 was connected by spirit-leveling to the
Amsterdam tide gauge.
Due to the demolition of the Berlin Astronomical Observatory the NH1879
was replaced by a NH1912 in Hoppegarten 40 km eastward of Berlin. Hence,
the normal orthometric heights are more or less the vertical distance from an
equipotential surface passing the tide gauge in Amsterdam.
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10.6.3 Normal Heights

Normal Heights Reference System

Definition 49 The normal height hnP of a point P is given by

hnP (P ) :=
1

γ(P )
(W0 −W (P )) (10.7)

, where W0 is the value of the gravity potential at a tide - gauge and γ(P ) is the
mean value of the normal gravity at the latitude of the point P .

The normal heights do not have an obvious geometric interpretation but the
can be derived without any geophysical hypothesis.
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Normal Heights Reference Frame

The heights of the points of the Staatliches Nivellementsnetz 1st Ordnung (STNN1O)
form the reference frame of the normal height Reference System in the eastern
part of Germany. They refer to an equipotential surface passing the tide gauge
in Kronstadt (close to St. Petersburg).
Due to oceanographic effects the tide gauges in Amsterdam and Kronstadt do
not belong to the same equipotential surface of the gravity potential W of the
Earth. This has the consequence that the orthometric and the normal height of
the same point differ by about 15 cm.

10.6.4 Conversion between geometrical and physical heights

Since due to GPS a direct access to geometric heights is possible and since
physical heighst can be measured by a combination of spirit leveling and gravity
measurements, the question of a conversion of the two types of height systems
arises. The height systems are in a conceptally simple relationship

H = h+N + ζ (10.8)

with

• H the ellipsoidal height,

• h the physical height,

• N the so called geoid undulation,

• ζ the deviation of tide gauge from the geid, the so called sea-surface to-
pography

The central concept, connecting geometrical with physical heights is the concept
of the geoid.
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Definition 50 The equipotential surface

W (x) = W0 = const (10.9)

, which coincides with the undisturbed surface of the oceans is called the geoid.

If the Earth were a regular body with homogeneous mass distribution being in a
hydrostatic equilibrium, its shape would be an ellipsoid an its gravity potential
W would coincide with the normal potential U . Due to the deviation from this
model assumptions the gravity potential W and the normal potential differ from
each other. Let be U0 the value of the normal potential at the surface of the
ellipsoid, than the geoid is the equipotential surface W = U0, and the separation
between ellipsoid and geoid is called geoid undulation N . It can be determined
from gravity measurements along the surface of the Earth. The determinationof
the geoid is one central topic of Physical geoid.
Assuming that the tide gauge would be exactly located at the surface of the
geoid , the following simple relation between physical and geometrical heights
were true

H = h+N (10.10)

In practice it is impossible, to locate a tide gauge at the geoid, it is alway located
at the mean surface of the ocean insteadt. The mean surface of the oceans differs
by some dm up to some meters from the geoid. this small difference is the cause
of stationary ocean circulations like the gulf stream. It it is called sea-surface
topography and can be determined by oceanographic measurements and satellite
altimetry.
Due to the sea-surface topography the height reference surface is not the geoid
but another equipotential surface passing thrugh the tide gauge. Both surfaces
differ in height by the amount ζ.
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