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Preface

This primer is meant as an introduction into the basic ellipsoidal coordinate systems ap-
plied in geodesy, navigation, geo-referencing and geo-information technology. Common
examples for such coordinate systems are transverse Mercator—coordinates (world—wide
in use as UTM-system), stereographic coordinates (like the dutch RD—coordinates or the
polar UPS-system), and, of course, the familiar geodetic A, ¢—coordinates.

In these fields we are dealing with two-dimensional curvilinear coordinates. Curvilinear
means that the coordinate systems are defined on (parts of) a curved surface of reference.
In the applications mentioned above, this surface of reference is chosen routinely as an
ellipsoid of revolution. As a consequence, coordinate lines are in general never straight
lines and in most cases not even representable by closed expressions. Two-dimensional
means that we refer to positions on the reference surface by attaching a pair of surface
coordinates to them. It is straightforward then to define three-dimensional coordinates
simply by adding a “height” to the surface coordinates, which itself is measured with
respect to the same reference surface (as with the ellipsoidal heights) or to a different
reference surface (the geoid, for example).

The focus here is on the differential geometric background and on the ideas and con-
cepts, which lead to the definition of so much different surface coordinate systems. Also
some methods to derive the transformation equations — preferably by series expansions —
between different systems are covered. We try to explain things first in general, i. e.
valid for arbitrary surfaces, and specialize afterwards to the ellipsoid of revolution. More
implementation—specific details can be found elsewhere. Free software for coordinate
transformation (source codes, Java applets, etc.) is widely available on the internet mean-
while.

Transformation between curvilinear coordinates is often (and particularly in cartogra-
phy) considered as a mapping process, and the transformation equations are interpreted
as mapping formulas or projections. For a spherical reference surface this allows geometric
representations: Spherical Transverse Mercator coordinates, for instance, may be imag-
ined as derived from a conformal projection of the sphere onto an prescribing horizontally
aligned cylinder. Such mapping formulas are often available as closed—form expressions.
For an ellipsoid of revolution these intuitive geometric representations usually break down,
and for geodetic purposes the closed spherical relations are by far not sufficient. This is
the reason why we avoid such geometrically oriented interpretations and arguments in
this primer.

Jiirgen Kusche Delft, July 2001



Recommended reading includes

1. Strang van Hees, G., Globale en lokale geodetische systemen. Nederlandse Com-
missie voor Geodesie, Publikatie 30, 1994

2. Heitz, S., Coordinates in Geodesy. Springer, 1988
Technical information can be found, for example, in

1. Defense Mapping Agency, The universal grids: Universal Transverse Mercator and
Universal Polar Stereographic, Technical Manual, DMATM 8358.2

Further references can be found in the above mentioned publications.

A lot of material is available on the world wide web, do a search with keywords ‘mapping’,
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Chapter 1

Differential Geometry on
2D—Surfaces

1.1 Basics of differential geometry

The most simplest and straightforward way to represent mathematically a 2-dimensional
curved surface in 3—dimensional space is the Gaussian representation. Here, the vector
x, pointing from the origin of an 3-dimensional x, y, z—coordinate system to an arbitrary
point on the surface, is given as a function of two independant parameters u' and u?. The
parameters are usually denoted to as Gaussian parameters or surface coordinates.

z(u', u?)
z = | y(u',v?) | = z(u!,u?) = z(u®) (1.1)
z(ut, u?)

It is a common convention to make use of upper (superscript) Greek indices for 2-
dimensional curvilinear coordinates — so u? does not mean “square of u”.

a € {1,2}

Thus, Greek indices «, 3,7, ... always take the values 1 or 2. However, in old-style
textbooks the coordinates are sometimes denoted by v and v.

Coordinate Lines



If we keep one of the coordinates u' or u? at a given value ¢ = const and consider the
other coordinate as an independant parameter, we will obtain a (1-dimensional) space
curve. These particular space curves — which are obviously embedded in the surface under
consideration — are called coordinate lines:

1

u' =c=const : z(c,u?) = x(u?)

u?*=c=const : z(u',c)=x(u')
Next we will look at the local basis, which is nothing else than a kind of ‘natural’ basis of
the tangent plane. Consider the vectors

ox ox

b1 = ? 9 1= p
U u

They are tangent to the coordinate lines, but in general neither perpendicular nor of unit
length (since u' or u? do not necessarily equal to the arc length s). Both b; and b, are
contained in the tangent plane, and can be used as basis vectors in order to represent
arbitrary vectors of the tangent plane. This means, if a lies in the tangent plane, we may
write @ = a' - by + a? - by with certain real numbers a', a®. The basis is called local since
the tangent plane of a curved surface differs from point to point. Of course, there are
other possible systems of base vectors for the tangent plane than the b, defined by (1.2),
but these are most straightforward to derive if the Gaussian representation of the surface
is given.

(1.2)

Local basis

Since both basis vectors are contained in the tangent plane, the unit normal vector n of
the surface can be obtained from

b1 X b2
by X byl|

An important quantity in differential geometry is the arc length s along arbitrary curves on
the surface. It can be (at least in theory) measured directly, using a tape for example or by
counting your steps when “walking” on the surface (imagine an ant crawling on the surface
of an apple). Therefore it must be invariant against the choice of the coordinate system
as well as against rotations and translations of the surface as a whole in 3-dimensional
space.



The differential ds of the arc length (thus the length of an infitesimal short arc) is called
the line element. It is interesting to look closer at the line element since for small (in the
limit infitesimal small) regions every curved surface may be approximated ((in the limit,
replaced) by its tangent plane, regardless “how strong” the curvature is.

x+dx

Line element

For the line element ds, connecting two (infinitely close) neighbouring points & = x(u®)
and ' = &'(u* 4+ du®) = x + dx, one has

ds* = da® + dy* + d2*

=dx-dx
_(Ox  , Oz  ,\ (O , Oz 6 ,
= <8u1du + aquu) <8u1du + aquu

= (by du' + by du?) - (b du' + by du?)

Here we made use of the fact that for infinitely small domains the distance along the
curved surface equals to the distance measured in 3-dimensional space. This can be
written

ds® = gu1(du')® + 2g1adu’ du® + gao(du®)?
when collecting all scalar products of the base vectors in the metric tensor

. (biby by-by
ga,b’-—ba bﬁ_(bz-bl b2,b2>

What is a tensor? The answer is quite involved, but for the moment we can say that
it is an object which can be written as a matrix but is invariant against coordinate
transformations, just like a vector. This means that the object as a whole is invariant,
not its individual components.



Finally we may write the line element (in the most compressed and very elegant notation)

ds® = gup du® du® 1.3
B

Here we applied Finstein’s summation convention: Whenever a Greek index appears twice
in a product, this means, that we sum up over 1 and 2. The summation signs are simply
omitted, which will save a lot of writing in what follows.

2 2
ds® = gap du® du® = Z Z Jap du® du®

a=1p=1

Eq. (1.3) is known as the Ist fundamental form of the surface. It is a quadratic form, and
in matrix—vector notation it may be finally written as ds? = v Gv, with v = (du!, du?)T.
It relates the line element, a measurable quantity (remember an ant crawling on an apple’s
surface and counting steps), to coordinate differentials. This means, when we know the
metric tensor of a surface and the coordinate difference of two (infinitesimal closely)
neighbouring points, we can derive the (infinitesimal) small distance between them. The
1st fundamental form is therefore the generalization of Pythagoras’ rule As? = Ax? + Ay?
(which is valid only for cartesian coordinates in the plane) for arbitrary coordinates and
curved surfaces. However, unlike Pythagoras’ rule, the first fundamental form can be
applied only to (infinitesimal) small areas.

Some notes from a practical viewpoint: When the Gaussian representation of a surface is
given, it is rather straightforward to derive the base vectors and then to form the scalar
products to get the metric tensor. Since the base vectors depend on the position on the
surface and on the choice of the surface coordinates, the same holds for the metric tensor:
its 3 independant entries (note that g;2 = go1) are functions of the position

Gap = Gop (ul, U'Q)

Along the coordinate lines, /g1 and /g2 act as scale factors,

ds' = \/g11 du’ ds® = \/ga2 du?

since either u! = const = du! = 0 or u? = const = du? = 0. Here ds' means a line
element along the u? = const line, and ds? a line element along the u! = const line.

Line element along coordinate line



If g1o = 0, the coordinate grid is orthogonal, since this means that for the base vectors
(which are tangent to the coordinate lines)

bl-b2:0

holds.

Another invariant property is the length of a vector. Assume the vector a contained in
the tangent plane. The we may write @ = a' - b; + a? - by, with components a', a® with
respect to the local basis. The length of the vector a, usually expressed by its cartesian
components

1 0 O Ay
lal?=0aZ+al+a.=(asaya;) [0 1 0f]ay
0 0 1 a,

can be related to the local basis components by
||a’||2 =a-a= (al b +CI,2 b2) . (Gl b, +CL2 bg) =a” CL’H 9ap

Again, the metric tensor plays the same role than the unit matrix (more precisely the
delta tensor) in cartesian coordinates.

Finally we mention that in ancient textbooks on differential geometry, gi1, g12, 922 are
sometimes denoted by E, F, G, to the honour of C. F. Gauss.

Apart from the 1st fundamental form, there is also a 2nd fundamental form, which refers
to the normal curvature of a surface with respect to a certain direction. It might be
less important from our current point of view (which is towards the definition of suitable
coordinate systems), but it represents an interesting concept of differential geometry. We
consider a surface and an arbitrary curve completely located within the surface: a surface
curve. The normal curvature k, is (by definition) the projection of the total curvature
vector k = d?z/ds? of the (surface) curve onto the surface normal vector,

_ dx

=g "

n

Normal vector n, tangent vector t, and total curvature vector k



We will understand the meaning of this definition from the following. First, remember
that the curvature vector of a space—curve is the derivative of the tangent vector t = dxz/ds
with respect to the arc lenght. The length of k is a measure for the (local) curvature of
the space—curve; for example, for a circle with radius R it would be constant ||k|| = 1/R.
The normal curvature is obviously the part of the total curvature which cannot be seen
in the tangent plane (since it is perpendicular on it). An ant on the surface of an apple,
following a given curve, could not sense the normal curvature as a change in horizontal
direction. What an ant could sense, is called the geodesic curvature and will be discussed
later.

The total curvature vector can be expressed using the local basis:

de Oz du' Oz du? o
PR L A A

T ds  Oul ds ou? ds

2
K= % = % (bauo") = b,'u® + byu*"

where the ' means d/ds. The first equation is the decomposition of the tangent vector

for a given surface curve (which obviously lies in the tangent plane) with respect to the

local basis by, by. The derivatives u'' = du'/ds and u* = du?®/ds completely determine

the direction of the tangent vector, and therefore determine the direction of the surface

curve.

b1 u, Tangent plane

2

Decomposition of the tangent vector w.r.t. the local basis

The last relation can be re-arranged (use db,/ds = (9b,/0u')u'’ + (db,/u®)u?) to

d’x  0b,

o = g’ + bou”
Since b, - n = 0, this means
ob
Kn = 0 Z n Ualuﬁl
u

It is conveniant to decompose the derivatives of the local basis vectors with respect to the
local basis itself,

0b,,
oub

:F(lxﬁ b1+Fi,B b2+La/3n OZ,IBE{LQ}



dbq/ dul

Derivatives of local basis

.5, %4 are the so—called Christoffel symbols, sometimes called connection coefficients.
They play a major role when dealing with geodesics, but here they may be considered
briefly as linear factors or components with respect to the local basis. Since we cannot
assume that the db,/0u” vectors are contained in the tangent plane, it is necessary to
consider components L,z perpendicular to the tangent plane. Inserting the last expression
now into the equation for the normal curvature leaves us with

kin = (Thy b1+ T2 by + Lag 1) - 10 u®'u”

or, since b, - m =0

Kn = Lag uu?’ (1.4)
This is the 2nd fundamental form. It relates the normal curvature (the curvature of a
normal section) to the direction u® of the surface curve. Thus, if the 2nd fundamental
tensor Log is known, the normal curvature can be calculated. The entries of L,g are
obtained from
_ 0b,
=55
rather straightforward, if the Gaussian representation of the surface is given.

Lag

On an ellipsoid of revolution, when using A\, ¢—coordinates, one has

N cos ¢ cos A oz —N cos ¢ sin A o — M sin ¢ cos A
x=| NcospsinA bl:a_)\: N cos ¢ cos A bgza—: M sin ¢ sin A
N(1—¢€*)sing 0 ¢ M cos ¢
with
1—¢€? 1—¢€?
N: a = a M_a'( 6) — CL( 6)

W(¢) /1 —e?sin? ¢ COW3(9) (1 —e?sin’ ¢)3/?

N2%cos?¢ 0
gaﬂ = 0 M2

For the 2nd fundamental tensor we obtain

—Ncos?¢ 0
Lap = 0 -M

and therefore



1.2 Switching between different coordinate systems

Of course we may use different sets of coordinates or surface parameters in order to
describe a surface as a whole or, thinking in terms of geodesy or geo-referencing, to
describe positions with respect to this surface. The Gaussian representation of the surface
by two different sets of coordinates reads then formally

z=x(u',u?) = z(a", u?)

They describe the same surface, but the functional relations hidden in x(u',u?) and
z(u', u?) will be different for different sets of coordinates.

u?

Different coordinates on the same surface

In our applications, one wants to switch between these different coordinates without mak-
ing use of the (3-dimensional) vector . This is possible, if the transformation equations
between them are known:

u' =u'(a',a?) uw? = u'(a', 7°) (1.5)
a' = u'(u',u?) u? = u'(u', u?) (1.6)

A trivial example would be 2-dimensional cartesian coordinates u® = (z, y) and spherical
coordinates 4® = (r,¢) on a plane sheet of paper. The transformation equations (1.5)
then read explicitly u' = @' - cos @? and u? = @' - sin %, and the inverse ones (1.6) read

a' = /(u')? + (u?)? and ©? = arctan(u?/u').

The situation is quite straightforward, if the definition of a new u® coordinate system
starts with the transformation equation. This is often the case in textbooks on differen-
tial geometry. In geodesy, unfortunately, the problem is more involved: When defining
coordinate systems on ellipsoids of revolution, for instance, our point of departure are
certain desired differential properties of the new system. The coordinate systems pre-
sented in chapter 3 are perfect examples. Typically this leads to the situation that we
have some knowledge about partial derivatives of the transformation equations, rather
than on the transformation equations themselves. A way out is to write the unknown
transformation equations as a Taylor series with two variables, and then to determine
the series coefficients (i. e. the partial derivatives) afterwards from the desired properties
of the new system. In theory the Taylor series have to be expanded until infinity, in
practice it is usually sufficient to term of 5th or 6th order. This means that in total one
has to determine 40-60 coefficients. Whether this is really difficult, depends on a clever
formulation of the underlying desired differential properties.



A 1-dimensional Taylor (power) series expansions of a function y = f(z) reads

y = f(zo) + (%)0(36—%)-1—% <%)o($_$0)2+m

with the ezpansion point zo. The inverse, as an approximation to z = f~'(y) = g(y)
reads

z = g(wo) + (Z—z)o(y—yoH% (%)O(y—yo)Qv““-

Here the expansion point was yo = f~(z9) = ¢g(z0). Consequently, a 2-timensional
Taylor (power) series expansions reads

out out 1 [ 0%ut 2
1 1 1 -1 9 9 11
w =)o <8u1>0 (u —uo) + (@)0 (u —uo) + 2 (W)O (u —uo) +oe

=@+ (Gor) (8- ud)+ (5e) (=)

The coordinates of the expansion point, (u®)o, (4%)p have to be known in both systems.
Often this is the origin of one of the systems. If the partial derivatives Ou'/du', ... are
known to sufficient order, the series expansions are as good as a “closed” expression.
But what means sufficient? Fortunately the contributions of the higher—order terms will
decrease quickly. A common situation in geodetic coordinate systems is, that terms of 6th
order and higher give contributions of less than 0.1mm, and can be neglected therefore.
This, if course, depends as with all Taylor series on the distance from the expansion
point: for larger distances one has to consider more series terms. The statement above
concerning geodetic coordinate systems holds for distances of up to 300-500km.

It should be mentioned that, if only the first series (transforming @* into u®) is known,
there are methods (“power series inversion”) to find the inverse series in a clever and
fast way. This requires the solution of linear equation systems with analytically given
coefficients, and is therefore best performed using algebraic manipulation programs like

MAPLE or MATHEMATICA. For a deeper insight see Heitz, pp. 67 and 71, and the
references he gives.



Once the coefficients are determined (i. e. formulas for the coefficients), the implemen-
tation of the coordinate transformation in a computer program is straightforward. In
symbolic notation such a program looks like

begin: read(ellipsoid_parameters)
read(coordinates_of_expansion_point)
compute (series_coefficients)

label: read(coordinates_of_point_in_old_system)
compute (coordinates_of_point_in_new_system)
goto label

end:

At this point it is probably still unclear what the nature of the above mentioned “de-
sired differential properties” could be? To understand this in the next chapter, we need
some preparations: When creating a new coordinate system, say, by applying a certain
transformation

what happens to the metric tensor? This is clearly an important question, since the metric
tensor components determine the local scaling as well as orthogonality, for example. The
line element ds itself is independant from a particular coordinate representation, thus

ds? = Gop du® di’ = g,5 du” du®

(Remember: greek indices run over {1,2}. When they show up twice as in the last
equation, it does not matter whether to use «, 8 or 7, d, because we sum up over {1,2})
Since ( use again the chain rule!)

our _,  our
we have
our oud
2 __ il Y I P}
ds® = gys 550 9P du® du
and, by comparison
our oul

JaBd = — 1.7
This rule governs the transformation of the components of the metric tensor, when switch-
ing to another coordinate system. It may be written in matrix notation as G = UGU™ .

Note: Equation (1.7) involves the derivatives of the inverse transformation u® = u®(u?).



Ezample: RD-coordinates. 1t is convenient to use the series expansions, see e.g. [Strang

van Hees, Globale en lokale geodetische systemen, p. 29,30]. With u! = \,u? = ¢,a' =
=2

x,u” =y

1:)\:/\0+b10(.’1)— )
>=¢ = o+ ao1(y — yo) + azo(x — x)* + - - -
1:$:$0+001(/\— )
2:y:yo+d10(¢— )

IS
8
(=]
+
[l
=
8
|
8
o
~
N4
|
<
(=)
~
+

A

The coefficients are known, e.g. co; = 0.36 - Cy; = 0.36 - 190066.98903. Therefore the
derivatives are also series expansions with known coefficients, for example

ou' O\

90l or bio + b11(y — yo) + -
ou? ¢
i = 5y = 2 a0(z —z0) + -

We have (since g2 = 0)

oul)” ou2\?
g11 = g1 (ﬁ) + goo (ﬁ)
:N2(;OSQ¢_ (b10+b11(y_y0)_|_...) + M?. (2-@20(33—330)-{—---)

In the next chapters we will learn that g,, = g1; for this case.



Questions

1. A surface is given by the explicit form z = f(z,y). Give the Gaussian representation
with u! = 2, u? = y. Give the line element as a function of dz and dy.

2. Why does it hold
¢l =1

for arbitrary surface curves on arbitrary surfaces?

3. How would you compute the length of a meridian of an ellipsoid of revolution, from
the equator to the pole?

4. What does it mean if

10
GaB = (0 g22> 922 = 922(U1au2)

holds for a curvilinear coordinate system?

5. The vectors a and ¢ are contained in the tangent plane of a curved surface. Express
the angle v between a and ¢ by the local components and the metric tensor.

6. The 2nd fundamental tensor can be derived from

_ 0b,
- oup n

Lag

for a given surface. Why can we use alternatively the following formula?

on

Lop = —by -
p oup



Chapter 2

Isothermal Coordinate Systems

2.1 Basics

In general, isothermal coordinates (also called isometric or conformal) u* = (u', u?) are
defined by their special metric tensor

Jap = (é(ga) @(?ﬂ)> = G(a®) <(1) 2)

where the scale factor G/(u®) varies with the position on the surface. Practically this means
that we simply claim this property, and lateron ask for the transformation equations.
Remember: G = 1 all over the surface is impossible even for the sphere. (Why?) The
line element therefore is given by

ds® = gop du® duf = G(u®) ((dut)? + (du?)?) (2.1)

For areas with (at least approximately) constant scale factor G isothermal coordinates
“behave like cartesian coordinates”: As? ~ G - (Ax? + Ay?). In geodesy and mapping
theory, one always tries to define isothermal coordinate system where the scale factor is
close to 1 for a whole area (usually along a meridian) or even for a whole country:

G=1+6G,
and consequently
As? =~ Ax® + Ay? +6G - As* + - -

For As? on the right-hand side, some crude approximation will be sufficient, if §G is
small. From the mapping point of view, (infinitesimal) small square grid meshes are
mapped onto square meshes. Thus, angles remain unchanged, and this kind of mapping
is called “conformal”.



du2=dc ds:Gllde

dul=/dc

ds = Gﬂzdc

Infinitesimal grid mesh in isothermal coordinates

Note: This definition says nothing about the coordinate lines. Coordinate lines of isother-
mal systems are in general not geodesics.
2.2 Differential equations

In this section we will see how the property of “being isothermal” can be formulated in

terms of partial derivatives; thus, suitable for the construction of transformation equa-

tions. For an arbitrary coordinate system u® = (u!,u?) the 1st fundamental form reads

ds? = gop du® du®

By comparison with the desired isothermal coordinates we obtain

_ our o’ . (1 0
gaﬂ_g”‘S%W‘G(“)(o 1)

We assume now that the original u“—system is orthogonal, thus g2 = g2; = 0. Then we
obtain explicitly
~ out\? u?\?
i =G = o gu
gi gi1 (8111) + 922 (8@1>

_ _ out)’ ou?\>
g2 =G = g1 (ﬁ) + g22 (ﬁ)

_ out\ [out ou?\ [ou?
gi2 =0=g1; 9ul 902 + g22 9ul 902

These expressions are satisfied, if

Ou' _ [922 ou? ou' —_ [922 ou? (2.2)

aﬂl 911 aﬂ:Q (9112 911 8’[7,1 )
Or, the other way round,

ou' _ [gu Ou*  oul _ [g OW (2.3)

ou! goo Ou? ou? g11 Oul )

These are the so—called differential equations of isothermal coordinates or conformal map-
ping. They involve partial derivatives, so they are PDEs. We have 2 relations between



the 4 first derivatives, thus only two of the first derivatives will be independent.

Differential equations, which involve second and higher partial derivatives, are obtained
by successive differentiation of the above given equations. To show how this works, we give
an example: From the first relation in (2.2), and by further differentiation with respect
to @', it is clear that

0%ul o 0 922 ou? g22 0%u?

o(ul)z [ ] oz g (8&28111)

ﬁ g11

Probably we will have g5 as a function of the u', u*>-coordinates instead of u',u?, so it
is wise to re-formulate the second derivative using the chain rule

Pul (0 fam\ o, (9 [am) o] F [ o
o(u')? ou'\ g1 ) ou' ou?\ g11) Ou'| Ou? g11 Ou?oul

The first term in brackets may be replaced using the original PDEs,

Pu__ (0 [gm) [ 0w (0 [gm) O] 0w = [gn 0w
a(at)? out \ g11 g 0u? ou?\ g1 ) ou'| 0u? g11 0u2out

This is only one of the several relations between the second derivatives (left—hand side
and right-hand side). It involves also first derivatives, as well as the metric tensor and
its first derivatives.

If the u®*—system is also an isothermal system (g11 = goo = G), the differential equations
above simplify to the Cauchy—Riemann differential equations.

oul  ou? ou! ou?
ot ou:  ouw?  ou (2:4)
out  ou? ou' ou?
oul _ ou? o oul (2.5)

Example: Geodetics ellipsoidal coordinates u® = (), ¢) and arbitrary conformal coordi-
nates a® = (z,y). We obtain

8_:5‘_W200sq5@ @__W%osqﬁ@_x
N 1—e2 0¢ N 1—e2 ¢
This means, in a series expansion
ox ox
.T—SU()+ (a)O(A—)\o)ﬁ- <%>0(¢—¢0)+

y=yo+<%>0(>\—/\o)+<%>O(¢_¢O)+...

only 2 of the 4 first order coefficient are independent. Two additional constraints on the
first order coefficients will come from the special definition (e.g. transverse Mercator or
stereographic) of the system. This can be generally stated by defining a surface curve
(the abscissa line) explicitly in both coordinate systems, as we will see later.

The fact that the differential equations do not allow a unique determination of the trans-
formation equations, may be seen from a different viewpoint: At the moment, we have
agreed about the properties of the coordinates (to be isothermal), but the location of
the origin as well as the orientation of the system is still unspecified. Also the “overall
scaling”, say, a mean value for G, is still undetermined.



2.3 Complex mapping

In this chapter we consider transformations between two isothermal systems, where the
Cauchy—Riemann PDEs hold. For this particular case there exists a tricky and elegant
representation using complex analysis, which is almost exclusively used in the literature.
However, it must be emphasized that in principle everything can be done without the
complex formulation.

Having said this it makes sense to define a complex variable
u=u"+iu?

where ¢ is the imaginary unit. A complex number u therefore represents a point on the
surface with coordinates u®. Note: The complex number plane has nothing in common
with the tangent plane at the surface! A coordinate transformation can then be described
by the complex mapping

a = u'(u®) +i u*(u®) = f(u) (2.6)

Here f is an arbitrary complex—valued function, and both real and imaginary part of @
are generally functions of u®.

It is interesting to consider the partial derivatives of the complex—valued function

on _d ou_q
oul  du Oul  du

ou _df Ou _ ., df
ouz  du 8u2_ldu

Here the chain rule was used. On the other hand, clearly one has

ou  out . 0u®
= —|—7/

oul  Ju! oul

ou ou' . 0u?
= —|—Z

ou?  Ou? ou?

From the first two relation we have

ot df .01
_ = — = ——
oul  du ou?
and applying this to the other ones:
out o Ou? _out N ou?
oul oul! ou?  Ou?

Separation into real and imaginary part finally yields

ou'  0u? out 0u?

oul  Ou? ou? oul

This means that the real and imaginary part of an arbitrary complex-valued transfor-
mation automatically satisfy the Cauchy—Riemann PDEs, and therefore generate a new




isothermal system of coordinates.
Especially useful in geodesy and mapping theory are complex power series

i = f(u) =3 an(u—up)" (2.7)

n=0
with complex coefficients a, = a} + i a2.

We show for a 1st-order expansion (N = 1), that the Cauchy-Riemann PDEs in fact are
satisfied:

g
S
+

>
=

Real- and imaginary part are

Re(An) = Au' = a;Au' — @l Av?
Im(Au) = Au? = a?Au’ + al Av?

Thus, in fact

out oAt | 0Aw* 0u?

= :a/

oul ~ OAu!

L= 9Au? ~ ou?

ou'  0Au! Ly OAT? o’

o2~ oA T T ToaAd | out

2.4 Role of the abscissa line

We will see in this chapter how an isothermal coordinate system can be defined in a
unique way. This means, we will fix the origin and orientation of the system, and find the
remaining constraints for the determination of the power series coefficients.

The basic idea is to agree on a certain surface curve (the abscissa line) in the “old”
u®*—system, preferably represented by

u® = u*(t) (2.8)

where t is a curve parameter, and to attach coordinates of the new system to this curve:

a® = u*(t) (2.9)



ud ()

Abscissa line in different coordinate systems

“Attach” means that we simply claim the coordinates (2.9) for the curve. This is a very
general description, allowing for arbitrarily strange coordinates. In practice, one would of
course choose a “simple” curve. An example, which will show up later again, would be to
choose a certain meridian with latitude Ay on the ellipsoid of revolution as abscissa line.
In this case is it quite natural to use the geodetic latitude as a curve parameter ¢t = ¢:

(u'(9), w*(9)) = (M9), 8(8)) = (Mo, )

For the isothermal coordinates along the meridian one is tempted to choose

(a'(9), 2%(8)) = (S(6 = ¢0),0)

where S(¢ — ¢y) would be the distance along the meridian arc, measured from a point
with latitude ¢o. Obviously the point with geodetic coordinates Ay, @9 would be the origin
of the isothermal 4® system, and for all points along the meridian one would have 42 = 0.

What can be said about the partial derivatives? If the representation of the curve is
known in both systems as a function of £, it makes sense to consider the derivatives with
respect to ¢:

du'  Ou' du' out du?

@ T ow dt | oow dt
The left-hand side (du'/dt) is knowns, since u!(t) is known. On the right hand side
du'/dt and du?/dt are also known, since u'(t) and u%(¢) are known. This means we have
something of the type

(2.10)

c=ax+ by

thus a linear equation with known coefficients a, b, ¢ and two unknowns z,y. The second
linear equation comes from

du®>  ou® du' N ou? du?
dt — oul dt ou? dt
But this introduces two new unknown partial derivatives, so we have now two linear equa-

tions with given coefficients (du®/dt and du®/dt).

Together with the differential equations of isothermal coordinates, we have four linear
equations for the four unknown partial derivatives of the first order. So the series coeffi-
cients can in fact be computed, by solving a four-by—four linear equation system!



Linear equations for the higher partial derivatives can be found by successive differentia-
tion of the abscissa line representation, for example:

d*(u') d <8u1 du! N ou' du2>
dt? dt \ ou' dt ou? dt
L (o) o b g (o) a2 o o)
dt \oul ) dt oul  dt? dt dt ou?  dt?

0u?
(82u1 du' N 0*ul d_a?) du' N ou' d*(a')
d(ul)? dt dulou? dt ) dt oul  dt?

U dat 0*u'  du*\ du? ou' d*(u?)
dual dt d(u?)? E) @ T e ap

The relations get quickly complicated, but we can can see that

- 1st and 2nd derivatives with respect to ¢ show up, which are known (from the curve
representation)

- 1st order partial derivatives show up, which are known (from the previous four-by—
four equation system)

- 2nd order partial derivatives show up: in total 6 unknowns, for which we get now
two equations (the 2nd one follows from d?(u?)/dt?)

Four relations come from the differential equations of isothermal coordinates. Again,
this kind of problem is typically best solved by algebraic manipulation problems like
MATHEMATICA or MAPLE.



Questions

1. We have seen that for the 4 1st—order terms of the power series 2 relations come
from the differential equations, and 2 relations from the abscissa line.

Hoe does the picture look like for the 2nd and 3rd order? And what changes if the
complex series are used?

2. Show that for a 2nd order expansion of a complex power series (N = 2)

A =y (u — ug) + as(u — ug)?

the Cauchy—Riemann PDEs are fulfilled!



Chapter 3

Isothermal Geodetic Coordinate
Systems

3.1 Mercator—Coordinates

Mercator—coordinates are also called isothermal geodetic coordinates. For ellipsoidal geode-
tic coordinates we have the line element

ds? = N2 cos? ¢(d\)?2 + M2 (d¢)>?

They are clearly not isothermal, since g1; # g9o. But when defining the isothermal latitude
q, by the relation

2

_ 2
- N2cos? ¢ (d¢)

(dg)* :

we obtain a new coordinate system 4% = (J, ¢) with the desired property of conformity
ds* = N?cos® ¢ ((d)\)2 + (dq)Q)

These coordinates A, g are called isothermal geodetic coordinates or Mercator—coordinates.
They are, as we have seen, obtained by a simple re—scaling from the geodetic coordinates.
The scale factor between the line element and the coordinate differentials is given by
G = N?cos? ¢. However, for the polar regions ¢ — 7/2 obviously one runs into trouble.

Since always M > N and cos ¢ < 1, for the differentials of the latitude must hold
dg > d¢

This means that the parallels ¢ = const. of the A, g—system will be “denser” than the
parallels ¢ = const. of the common \, ¢—system:

Geodetic coordinates A, ¢ (left) and isothermal geodetic coordinates A, q (right)



Up to now, we have a differential re-scaling between the latitudes:

M 1—¢e? 1

dq = N cos ¢ i = W?2cos ¢ a = V2cos¢ a¢

This last expression can be integrated analytically

¢ 1

e 39 7 d '
q ¢=0 V2 cos ¢ ¢
1 —esing
=1 4+9/2) +ef2In| = !
ntan (7/44+¢/2) +e/ n<1+esin¢) &y
Together with
A=A (32

this is already the transformation 4* = @*(u”). The longitude does not change, and
the isothermal latitude depends only on the geodetic latitude. Thus, meridians will be
mapped on meridians. The respective formula given by Strang van Hees on page 34 is
valid only for the sphere, where e = 0.

However, the equation above for the latitudes is not handy and difficult to invert (this
means to solve for ¢). Better suited for practical use are series expansions

COS ¢y

1= = 5 (1+ tan® ¢o) (¢ — o)

cos ¢Pg
2V4

(1+ tan® go)(2 = 3V7) (6 — ¢)” + ---

2
¢—do = VZcosgy (g —qo) + V?cosQ¢0tan¢0(2—3V2) (¢—a)* + ---

Coefficients up to including 5th order are given, e. g., by Heitz on page 132 and 133.
Isothermal geodetic coordinates are extremely useful in geodesy and mapping theory,
since the transformation from (), ¢) to another isothermal system can be handled very
elegantly with complex power series. They serve as an intermediate coordinate system.

On the sphere, it is common to consider
r=R-\ y=R-q

as coordinates. Mercator coordinates on the sphere share the nice property that a
“straight line” in Mercator coordinates, this is a curve where

z(s) =20+ a-(s—so) y(s)=yo+b-(s— so)

holds and which is therefore literally straight in a plane map of (z, y), crosses all meridians
under the same angle (azimuth). Such a curve is called a “loxodrome”. A loxodrome
connecting two points differs from the great circle passing through the same points (the
“orthodrome”), but it can be sailed easily: In fact a ship following a constant azimuth
(which, at former times, was measured by astronomical and sun observations) sails along
a loxodrome. This is the reason why Mercator coordinates played such an important role
in the historical development of nautical maps. G. Mercator developed this coordinate
system about 1570.



3.2 Transverse Mercator—Coordinates

Transverse Mercator—coordinates are conformal (isothermal) coordinates u® = (u!,u?) =
(x,y) on an ellipsoid of revolution. They fulfill the additional condition, that for a certain
(central) meridian A = )\ the mapping is equi-distant, and the z—cooordinate equals to
the meridional arc length S (distance from equator measured along meridian).

Transverse Mercator—coordinates

This means: For the central meridian, parametrized by the geodetic latitude ¢ in both
coordinate systems, holds:

A(B) = Ao, p=0¢ in geodetic coordinates (3.3)

z(¢) = S(9), y(p) =0 in transverse Mercator-coordinates  (3.4)

In the following, we want to derive transformation equations. A power series expansion
of the transformation reads

or or 1 (0%x
= — 1 A -1 A == (AN +---
e=r+ (G5) 23+ (55), 203 (5w, @7+
_ 9y 9y 1(0% 2
y_y0+<8A>OA/\+<8¢>OA¢+2(8)\2 O(A)\) +
with
AN =X — X Ap = ¢ — ¢

The expansion point may be at the equator: zo = 0,49 = 0, ¢ = 0, but this is not strictly
necessary. g is the given longitude of the central meridian. Thus the partial derivatives
(series coefficients) have to be determined.



For the 1st order, 4 coefficients have to be determined:

(1), @5, (@), (),

The differential equations of isothermal coordinates read (see last chapter)

or _ W?cos¢ dy Oy _ W2 cos ¢ Oz

N 1—e ¢ oA 1—e€ 9¢

They hold everywhere on the surface, and this means, they also hold along the central

meridian:
Oz W cos ¢ dy dy __WOQCOS(ﬁQ Oz (3.5)
or), 1—-e \9¢), or),  1—e \9¢), '

We have 2 relations. We use (3.4), the representation of the central meridian in the new
coordinate system, to obtain additional information:

26)=S(6) = (g—¢) = % — g = M) (3.6)
y(p) =0 = (%) =0 (3.7)

Central meridian and line element

With (3.6), (3.7), and (3.5) the 4 1st derivatives are determined.

2nd order deriwatives. In practice, it is necessary to go to higher derivatives. We use,
again, the differential equations of isothermal coordinates. They can be differentiated,

e.g.

1—e2

Ov _ W?cos¢ Oy %z 0 <W2cosq§> dy  W?cos¢ 0%

N 1-¢ 96 o o 96 T 1—¢ 060x



This leads to

(8290) _ W§ cos ¢y ( 0%y )

oA/, 1—e2 0poA /

We obtain relations involving the second derivatives. And, again, we can use the repre-
sentation of the central meridian

Pzx\ d’s [dM
o), = ae = s ),

0y .
(aﬁo =1

In this way, all derivatives (series coefficients) may be computed.

Acceleration. It is common to choose the latitude ¢ of the expansion point to the actual
latitude ¢. This means

e Ap = ¢ — ¢y =0 and all parts with A¢ vanish in the series expansion
e The computation is accelerated, since only AA-terms remain in the series expansion

e But now we have to know xg, the arc length from the equator to the parallel with
latitude ¢

Choice of the expansion point

This solution is explicitly given in “Globale en lokale geodetische Systemen”, Strang van
Hees, p.37.

Transverse Mercator—coordinates are well-suited in the neighbourhood of the central
meridian, where the metric factor G, equals to 1. For larger distances from the central
meridian, G increases. For the Universal Transverse Mercator coordinates, the choice
Go = (0.9996)2? was made, in order to keep G close to 1 for an extended region. This is
achieved by the definition

z(¢) =m - S(8)
with the factor

m = 0.9996



3.3 UTM-Coordinates

The Universal Transverse Mercator (UTM-) coordinate system was adopted by the U.S.
Army in 1947 for designating ‘rectangular’ coordinates on large scale military maps. It
is defined on the Hayford—ellipsoid. UTM is currently used by the United States and
NATO armed forces. With the advent of inexpensive GPS receivers, many other users
and institutions are adopting the UTM system for coordinates that are simpler to use
than geodetic latitude and longitude.

The UTM system divides the earth into 60 zones each 6° of longitude wide. This means,
in total 60 different central meridians with 6° spacing are in use, and each zone defines
an individual transverse mercator system. UTM zones extend from a latitude of 80° S to
84° N. In the polar regions the Universal Polar Stereographic (UPS) coordinate system is
used.

UTM zones are numbered 1 through 60, starting at the international date line, longitude
180°, and proceeding east. Zone 1 extends from 180° W to 174° W, with the central
meridian on 177° W. Important for the Netherlands are zones 31 and 32: Zone 31 covers
0° E to 6° E and Zone 32 covers 6° E to 12° E. Each zone is divided into horizontal bands
spanning 8° of latitude. These bands are lettered, south to north, beginning at 80° S
with the letter C and ending with the letter X at 84° N. The letters I and O are skipped
to avoid confusion with the numbers one and zero. The band lettered X spans 12° of
latitude.

UTM grid coordinates are expressed as a distance in meters to the east, referred to
as the ”easting”, and a distance in meters to the north, referred to as the "northing”.
To avoid negative coordinates, 500.000m is generally added to the y coordinate (”false
easting” ). On the southern hemisphere, 10.000.000m is added to the z coordinate (”false
northing”).

We give an example for the transformation between geodetic coordinates and UTM-
coordinates:

given coordinates A\ = 5°. 123 45 ¢ =52° 123 45
to be transformed in zone 31
parameters Hayford—ellipsoid a = 6378388. 000 1/f =297.0 e =6.722 67-107°

Zone 31 means that we will use the central meridian with longitude \g = 3°. Due to
numerical reasons (which will become clear in the following) it is wise to introduce an
auxiliary point located on the central meridian, for whom both geodetic latitude ¢ as
well as the meridional arc length s are already known. Such points are tabulated for
the most ellipsoids, and the same point can be used for all computations within the
same domain (say, central europe, for example). Moreover, we will use the acceleration
technique described in the last chapter, that is, choose the latitude ¢ of the expansion
point to the actual latitude ¢. The picture then looks like
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Ezxample: UTM coordinate transformation

Here £ = m - § is the x—coordinate of the auxiliary point, and xy = m - s the z—coordinate
of the expansion point. The expansion point for the power series is therefore given by

)\0 = 90 ¢0 = ¢ = 520. 123 45

The power series, expanded until the order 5, is then (since ¢y = ¢ and therefore A¢ = 0)

a}L(A)\)”

M e
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WE

Ay =y
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_

n

with coefficients (see Heitz, page 138, 139, denoted as a§,,, or Strang van Hees (p, ¢, 7, ...)),
page 37, 38)

al =0 a? = mN cos ¢
N
ay = mo cos® ¢ tan ¢ a3 =0
ai =0 a2 = mﬁ cos® ¢ (V2 — tan? qb)
3= 3 =M%

N
aj = —my cos'ptang (4~ 9V +tan’p)  af=0

N
a; =0 a; = mm cos® ¢ (5 — 18tan® ¢ + tan* (b)

where
V =4/1+e€%cos? ¢ N=—_ %
/1 —e2sin? ¢

Using the values given above, we find

Az =042 1264774+ 0+ 0.309 + 0 = 2 126.786
y = Ay =145 381.672 4+ 0 — 8.158 + 0 — 0.007 = 145 373.506



Obviously it is not necessary to consider higher—order terms of the expansion. The y—
coordinate is already completely determined, but for the z—coordinate

r=x0+Ax =2+ (xg— )+ Az

the coordinate xqg = m - s¢ of the expansion point still has to be determined. This will be
done by numerical integration: Along the meridian we have the relation ds = |/geod¢ =
M (¢) - d¢, which could in principle integrated starting with ¢ =0 to ¢ = ¢,

=0

xozm-sozm-</:0 M(¢)d¢> ~m-0op- (éM((]—%)éqﬁ))

with J steps and stepsize ¢ = ¢¢/J. The problem is that for large distances from
the equator (as in our example), the integration is quite difficult to perform: Round—off
errors accumulate. The simplest solution is to make use of an auxiliary point with known
latitude and meridional arc length (see the figure), for example

¢=148°4 T=m-5=75 360 865.469
It remains to solve for zy — Z, and this is simply

®o

o~z =m-(s9—5)=m" </¢:$M(¢)d¢> %m-éaﬁ-(

:M(q3+(j—§)-5¢)>

7j=1

With J = 100 steps we find
To — T =m-414 189.305 = 414 023.627

To make things shure, we re-do the integration with J = 1000 steps and find differences
of less than 0.1mm. Therefore the final result for the z—coordinate is

x =2 126.786 + 5 360 865.469 + 414 023.627 =5 777 015.882
and expressed as ‘northing’ and ‘easting’ in zone 31,
N =5777015.882 E =645 373.506

For comparison, in zone 32 we would find

N =5 781 979.611 E =234 642.395



3.4 Stereographic Coordinates and RD—Coordinates

Stereographic coordinates are, first of all, considered on the sphere. Later we will see how
this concept can be used on the ellipsoid of revolution.

Po S

)]

Stereographic coordinates on a sphere

A central point Py has to be chosen. Stereographic mapping means that the distance s of
an arbitrary point on the sphere w. r. t. the central point maps onto the distance

5§ = 2Rtan(¢/2) = 2Rtan(s/(2R))

See the figure for a geometric interpretation. Rectangular coordinates @' = x, 4% = y are
then introduced using the spherical azimuth o and the distance 3,

T =35cosa+ Ty Yy = §sina + ¥

The azimuth refers to the spherical meridian passing through the central point.

Stereographic coordinates on the sphere are isothermal/conformal. An additional prop-
erty, which is clearly understandable from their definition, is that great circles passing
through P, are mapped as straight lines. It is one of the reasons why stereographic coor-
dinates are often applied to map the earth’s polar regions.

Obviously by differentiation w. r. t. the arc length s

1
du'/ds = cos a d5/ds = cos d%2Rtan(s/(2R)) = COs OAW
du®/ds = sin a d5/ds = sin i2Rtan(s/(2R)) = sin a;

B B ds B cos?(s/(2R))

Since ds? = gapdu'du® = gi1(du')? + goo(du?)?, and for the metric tensor entries hold

G = §11 = Goo = cos*(s/(2R)) =: F(s)

G is a function of the distance s only (this is obvious from the definition of this coordinate
system).



For stereographic coordinates on an ellipsoid of revolution there is no geometric interpre-
tation. However, they can be introduced in two ways: directly or as a so—called double
projection. We follow the the direct (modern) definition.

The idea is as follows: We propose that the mapping properties of spherical stereographic
coordinates should at least hold approximately for ellipsoidal stereographic coordinates,
where the radius of the sphere should be the Gaussian radius at the central point

Ry = /N (o) - M(¢y) (3.8)

We simply claim that they hold exactly for the meridian A = Ay passing through the
central point. That means, for the central meridian (the abscissa line) we have the
representation (compare with transverse Mercator—coordinates)

A(P) = Ao o=0¢ in geodetic coordinates (3.9)
z(¢) = u' = 2Ry tan(s/(2Ry)) + zo y(¢) =yo  in ell. stereogr. coordinates
(3.10)

where s = s(¢) can be considered as a known function of s

It also means that along the central meridian
Go = cos'(s/(2Ry)) = F(s)
but for arbitrary points on the ellipsoid only
G = cos*(s/(2Ry))

Now we can proceed in the same way than with introducing transverse Mercator-coordinates.
A power series expansion of the transformation reads

ox ox 1 [(0%*z 9
T =X+ (a)OA)\-F <%)OA¢+§ (W)O(A)\) + -

_ dy % 1(o% 2
y—yo+(m>om+(a¢)oa¢+2(W (a2
with
AX=)X— )X Ap=¢— ¢y

The partial derivatives (series coefficients) have to be determined, e. g. for the 1st order

(1), (), @), (@),

From the differential equations of isothermal coordinates (see chapter “Isothermal coor-

dinates...”)
Oz _ Wicosgo (Oy Oy\ _ Wgcos¢y [0z (3.11)
n), " 1-e \og), )~ T1-e \9g), |

we have 2 relations. We use the representation of the central meridian in the ellipsoidal
stereographic coordinate system, to obtain the remaining 2 relations



z(¢p) = 2R, tan (‘;(—}?3) + =

(%)0 = QROa% (tan (82(—53»0 = 2R0dils (tan(s/(2Ro))), (j—;)o = mM (¢o)

(3.12)
W) =0 = ((%) —0 (3.13)

0
With (3.12), (3.13), and (3.11) the 4 Ist—order derivatives are determined. Higher—order
derivatives follow in the same way: Always 2 relations from the representation of the
central meridian by differentiation, and the remaining relations from differentiation of the
differential equations (3.5).

A figure of the coordinate grid looks (qualitatively) similar to the grid of transverse
Mercator—coordinates:

x=2Rgtan(s/(2Rp)) + xg

Stereographic coordinates on an ellipsoid of revolution

Ellipsoidal stereographic coordinates are in use in the netherlands, and are called RD-
coordinates (RD = Rijksdriehoeksmeting). The chosen ellipsoid was the Bessel-ellipsoid
(which differs from the Hayford—ellipsoid used for UTM—coordinates!). The central point
is the station Amersfoort, located at

Ao = 57,387 638 889 ¢o = 52°,156 160 556

This means the central meridian of the system is defined by Ay given above. More (and
also historical) information can be found in Strang van Hees, chapter 6 and 7). For the
(initial) spherical stereographic mapping was chosen

§=2k Rtan(y/2) =2 k Rtan(s/(2R))

with
k = 0.9999079

This factor £ < 1 keeps the metric factor

1 4
Gy = 7 cos (s/(2R))



closer to 1 for a larger area, since G decreases for increasing distance s from the central
point. The figure shows the functions cos*(s/2R) and cos*(s/2R)/k? for s/R € [0...0.05].
This means the metric factor Gy is approximately 1.0002 at the central point, and ap-
proximately 0.999 at 300km distance. Strictly speaking, the figure holds for spherical
stereographic coordinates as well as for the central meridian of ellipsoidal stereographic
coordinates. The deviations of G from G are much smaller, fortunately, and can hardly
be shown in the same diagram.

: : : : C(I)S(X/Z)**4 I
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x=s/R

Metric factor for stereographic coordinates (k =1) and RD-coordinates

For the spherical case this can be seen geometrically as a mapping onto an intersecting
plane.

Use of intersecting plane

The series coefficients are given by Strang van Hees, on pages 29,30, or Heitz, page 163,
164.



Questions

1. How would you derive transformation equations for 2 neighbouring UTM-systems
(zomes) , e. g. Ay = —3° and Ay = +3°, without going back to geodetic coordinates?

2. RD—coordinates: In many books you will find the (approximate) formula

,’,.2

for the reduction of measured (horizontal) distances S to “RD-distances” Sgp =

\/(xl — 29)% + (y1 — y2)?. Here r means the (mean) distance of the end points to

the central points. Derive this formula! Hint: Show that m = (Gy)~2. Can you still
work with this formula at 1000km distance from the central point?

3. Why is the factor k& for RD—coordinates much closer to one as the factor m for
UTM-coordinates?

4. When computing UTM-coordinates in two neighbouring zones for the same station,
both z (northing) and y (easting) will differ. Why? Are there points where only y
will differ?



