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Adjustmgnts by Least Squares is the most frequently used estimation
proéedure in Surveying Engineering and related disciplines. Anyone
trying to gather information about specific quantities, either by direct
or indirect measurement has to be fundamentally concerned with concepts
such as random measurement errors, systematic measurement errors, pro-

pagation of errors and Wariances, precision and accuracy’estimates,

hypothesis testing, etc., order to ensure a fulfi/Ament of accuracy

in Photogrammetry, Engineering Surveying, Control Surveying, Geodesy or
Land Surveying. Such efforts finclude consideration regarding instrumenta-
tion and geometry of the desigh. With the help of a simulation study,
in which case only the anticigated measurement accuracy is required,
an optimal design can be reagfily established long before the actual
field work stants, thus mgking a meaningful planning of the field work
possible. This in turn can lead to a decisive reduction of expenses.

Least squares estimation is but one of several estimation techniques
regularly taught in statistical courses. The appeal of the least squares
approach in Physical Science is that the required statistical information
about observations is minimal and that the normal equations are linear
algebraic equations which are conceptually easy to solve.

An elegant derivation of the adjustment modeis and a thorough under-
standing of subsequent analyses and statistical testing require a pro-
found knowledge of linear algebra and statistics. In this course, there-

fore, adjustments is not considered an "exclusive domain of surveying"

with its own jargon, but rather a general estimation technique applicable
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to a variety of disciplines. This understanding is reflected in the
choice of symbols, in the terminology and in the generality of the deri-
vations. Application of the models to specific surveying engineering
problems is the subject of laboratories, which in itself is a sufficient
Jjustification for a separate course in a Surveying Engineering curriculum.
This general approach Rakes it possible to fully utilize the students®
prerequisite knowledge &f linear algebra and statistics.

Since a complete codrse in adjustments must include a discussion
on statistical hypothesis|testing, and thus must inevitably be con-
cerned with statistical tg¢rminology and interpretation, it is logical

to base the treatment of/adjustments right from the beginning upon

statistical co y i.e., the observations. are said to be corrupted

by random noise and have a variance-covari respect to

some unknown probability distribution,frather than referring to wei
observations where no statistical condepts are needed at all. For the
estimate itself this distinction is noY} important since the algebraic
expressions are identical in both cases\ In hypothesis testing, however,
assumptions regarding the probability dis¥ribution have to be made,

unless so-called distribution-free tests aré\employed, which is rather
unusual.

It is important to realize that the prerequisites of this course
include at least one course in statistics and linear algebra respectively.
Only such a prerequisite makes it possible to 1imit adjustments to one
course j.e., 45 lecture hours, and yet present a complete derivation of
the most important models, study their use in carefully selected labora-

tories, and cover the necessary statistical testing procedures. In
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fact, the deriyations make total use of matrices which provide a clear
and easily comprehensible means of derivation. In order to refresh
the students' knowledge on statistics and linear algebra, the basic
concepts are reviewed during the various phases of the course. However,
such a review cannot be, and by no means is intended to be a substitute
for a separate course.

As for the review of linear algebra it is assumed that the student
is familiar with the essential matrix operations. In a minor attempt
the concepts of vector spaces are reviewed in order to give occasionally

least squares estimation.

But in general, the "vector space methods/arf de-emphasized for the
benefit of the theory of matrices and inants. The review includes
eigenvectors and eigenvalues.
The Cholesky algorithm for invg

ting symmetdic and positive definite

matrices is discussed in de{gif so that the students are able to pro-
gram the algorithm. This section also includes a discussion on the
linearizations of multi-dimensional functions, which is of particular
importance since most models in Surveying Engineering are inherently
non-1inear.

In the first part of the review of statistics basic concepts such
as random variables, probability density functions, cumulative distri-
bution functions, mathematical expectations, mean and variance are
discussed. The review is extended to multivariate distributions,
variance-covariance matrices and correlation matrices. A key part of
this review is the derivation of the law of variance-covariance pro-

pagation in matrix notation for linear functions of random variables.

111 University of Maine, Orono
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Finally, some of the characteristics of estimation (unbiased, minimum
variance) are examined. Note that thus far, no specific distribution

has been examined.

By far the most extensive portion of the course is devdted to the
derivation of the various adjustment models. The standard methods of
observation equations, condition equations and the mixed model, \in
which the observations and parameters are related implicitly,
treated exhaustively. Then follows a discussion of the cases ofjJcondi-
tions between parameters, sequential solutions and weighted (ob

parameters. In the latter instances the derivations are carrieg out

certain matrices. The iterations wath are necessary due tg the non-
Tinearity of the mathematical In
Taboratories all adjustments tisfactory

conversion occurs.
In the second part of fthe review of statistics those elements which
pertain to post-adjustment fiypothesis testing are exposed. The review
includes normal distributions, t-distribution, F-distribution, the
principles of hypothesis testing and confidence intervals including Type
I and Type II errors. The goodness-of-fit test and the distribution-free
sign test are also part of the review. Particularly important for
post-adjustment analyses are the multivariate normal distribution and
the distribution of certain quadratic forms. An example is the test on
the a-posteriori variance of unit weight which is an indicator of the

distortion of the adjustment and which is based on a quadratic form.

University of Maine, Orono
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Applying this test systematically to sequential solutions provides a
powerful tool for the detection of blunders and even systematic errors.
Next, the generalized linear hypothesis is discussed in detail which
permits statistical tests on the parameters. This portion of the
course is concluded with a discussion of error ellipses and aspects
of the analysis of adjusted residuals.

Horizontal network adjustment based on distance, direction and
angular measurements, adjustments of level networks and station directions,
all of which occupy a large portion of the laboratory program, are

systematically used to ingroduce the student to the concepts of minimal

and inner constraints. e course contents includes an introductory

discussion on generalized\inver estimable functions. However,
most of the emphasis is placed on the lwboratory work, not on the

teaching of some beautiful generalized gheory. The latter would be
more appropriate for a graduate course.

Laboratories are an indispensible part of this course. There is

one extensive laboratory e k. Lpboratories are intended to supple-

ment the lecture and toprovide am\gpbortunity to use the various ad-
justment models and tgchniques in solving typical problems from the
geﬁera] area of Survgying Engineering. The laboratories generally
require extensive cgmputer programming in order to handle practical and
relevant examples. | Each student is given free computer time and can use
in-house terminal In an effort to lessen the programming load the
sub~routines for glementary matrix operations are provided.

This course pas been developed essentially on the basis of class

notes of adjustmehts and statistics courses taken by the author while a
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student at Ohio State University. The notation used for representing
the mathematical expressions of the adjustment models was the one used
by Prof. U.A. Uotila, Department of Geodetic Science, Ohio State

University, at the time when the course was taken.

June, 1980 A. Leick
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1. Review of Some Concepts from Linear Algebra

This section contains some of the elements of linear algebra which
are needed in adjust

In general, proofs are not given here. The
student may find the proofs™\qnd a more detailed exposition of linear alge-

bra in the standard literatureNe.g., Lipschutz (1968), or Graybill (1969).
A summary on matrix operations caMalso be found in Mikhail (1976, Appen-

dix A).

1.1 Matrix Operations

Definitions: A matrix is an array ¢f real numbers which are sub-
divided into rows and columns:

d d a

11 12 lu

491 822 -+ 3y

an1 2 ... Ay

aij is an element of the matrix A with thellocation at the ith row
and the jth column. n and u denote the to

columns respectively. If n=u, the matrix i

1 number of rows and

called a square matrix,
and if n#u, the matrix is called a rectangular matrix. A square ma-
trix for which aij=0 for all i#j is called
in addition, all diagonal elements are the

diagonal matrix. If,
me, we speak of a

scalar matrix. In the case that the diagonall elements are unity,
the matrix is called an identity matrix or uhit matrix. Finally,

a matrix is called symmetric if aij = aji fok all i and j.
Matrix Transpose: If B is the transpose of A , i.e.,
B =Al
then bij = aji for all i and j.
The transpose of a sum or product of matriced is respectively,
(A + B)T =,AT + B
(AB)T = 8TAT
] University of Maine, Orono
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T
It is obvious that (A')
then the products

=A, It follows, that if B is symmetric ,

ABA' and A'BA

are also symmetric.

Orthogonal Matrix: Let P be an n x n square matrix. P is defined to

be an orthogonal matrix if and only if P

Linear dependency: The columng”of a matrix are said to be linRarly

independent if there is no
such that

zero,

g *°

t of scalars a, a,. . a , not al
172 u

Determinants: Aach u x u square matrix A has a uniquely define

scalar which/is called the determinant of A. The following ngftation

is used for/the determinant:

#hant. If we have a 1x] matghx then the

|A| = a1

general, the deterfninant of a u x u matrix is expressed in terms
f determinants of sukmatrij of size (u - 1) x (u - 1), etc.
onsider the matrix

[o7]

411 212 213 -y
321 322 %23 %
A = . *
41 2 T
University of Maine, Orono
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For each element we can compute the minor, which is equal to the

A after the respective row and column were deleted.
The minor for i=1

(1.4)

uu

The cofactor c,. is equal to plus or m§nus the minor depending on

1J
the subscripts i and j:
= (-1)1H
Cij (-1) m1.j (1.5)
Finally, the determinant of A can be expre}sed as
u
|Al = £ a,:cp.: (1.6)
521 kj~kJ

The subscript k is fixed in equation (1.6) bu} can be any value
between 1 and u; i.e., the determinant can be Yomputed based on

the minors for any of the u rows.

The determinant of a matrix and its transpyse are the same,
i.e., |A| = |AT|. Also, the determinant of a magrix is not changed
a scalar and
f the h-th column,
h#i. It follows that the determinant of a matrix 16 zerc if the

columns are linearly dependent. In that case the mdtrix is said to

if the elements of the i<{h column are multiplied
the result is added to the corresponding elements

be singular.

In the case of u=2 the determinant is

A= TRl L e (1.7)
351 359 11722 12721

University of Maine, Orono
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Rank of a Matrix: The rank of a matrix is the order of the largest
non-singular square submatrix (largest non-zero determinant) that
can be found.

For finding the rank of a matrix it is ugeful to know that
elementary row and column operations do not/Change the rank of a matrix,

such as interchanging two rows (columns), multiplying a row (column)
by a constant, and adding one row (cp/fumn) to another.

The following are some ruley/pertaining to the rank of matrices:
a) The rank of an n x u rectangfilar matrix A with u<n is

R(nAu) <u

b) The rank of a product matrices cannot exceed the rank of the
matrix with lowest rghk,

R(A{By ...D) A& min [R(A),R(B): ... R(D)]

c) Multiplication offa matrix by a non-singular matrix does not
change the rank

d) IfR(,A ) =ufand RCB ) =u then R(AB) = u.

Trace of a Matrjfx: The trace of a square matrix is

(1.8)

a) Tr(A'f) = Tr(A)

b + B) = Tr(A) + Tr(B)
¢ pfq q'p) = TrigFp pEq)
d s AZ ee Au are the eigenvalues of a u x u matrix A, then
Tr(A) = &
i=1
and y
-1, _ 1
TY‘(A ) =% N
i=1 7
University of Maine, Orono
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Algebra of Matrices and Determinants: Here only a few remarks regard-

ing the multiplication of matrices will be made. The multiplication
of matrices is defined by

mAk an = an (1.9)
where the elements are related as
r=k
C:: = L a,b.. (1.10)
ij p=q 1T Y]

We observe that the number_g olumns of the first matrix must be

equal to the number of/ rows of th&second matrix, and that the size
determined by tig number of rows of the first

matrix and the numgber of columns of thg

of the new matrix iy

second matrix. The following
relationships hofd:

A(BC) = (AB)C H ABC associative la

A(B+C) = AB +
(A+B)C = AC +[BC
AB # BA in gdnerfl: commutative law

[t is importpnk to note that the product of two matrices can be zero,

qu = nop (1.11)

although neither A or B is the zero matrix. In fact, if the rank of
A is r<u, then there always exists a matrix B of rank u-r such that
the product is zero. The rank of B cannot exceed u-r. If A is a
square matrix, then there exists a non-zero matrix B such that AB=0
only if A has a rank defect. See also the section on vector spaces.

Finally, the determinant of the product of two square matrices
is equal to the product of the determinants of each matrix:

{nAn an| = |A| - |B] (1.12)
The algebraic operations explained above can be performed on
submatrices as if they were elements of a matrix provided precautions

are given to the dimensions. An example of partitioning is

University of Maine, Orono
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a1 212 213 294 -

31 8pp dp3. 84 -

337 83 33383 .-

The manner in which atrix is being partitioned depends on the cir-
In order to demonstrate the

submatrices two examples are given:

cumstances of the
multiplication o

rticular problem.

Example 1: T are partitioned as follows:

{5))

matrices A and B
1 A

and B
Aa1 A2 )

/M By T ARE,
LA, B, +A.B

21 By * AgBy
Ay
Examgfle 2: If A = A, and B = (B]Bz)
A3
A, A8, A8,
thep AB = [ A, (5152) = | AB, A8,
Ay A8, A8,

It\is emphasized again that the partitioning has to be such as not

to \iolate the rules of dimensioning as expressed in equation (1.9).

University of Maine, Orono
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Vector Spaces

This segtion contains a summary of definitions and theorems
on vector spaced\as can be found in Graybill (1969, Sections 2 and
5).

Definition: Let Vi b\a set of n-dimensional vectors such that for
every two vectors in Vn’ the sum of the two vectors is also in Vn’
and for each vector in Vn d each scalar, the product is in Vn' This
set V is called a vector spa

The vector space Ryt Let R be Xpe set of all n x 1 vectors for a
fixed positive n, that is

R = {Y:Y=‘ ] ey =12 ..0n)

then Rn is a vector space. For n=3, R is the\gpace we generally
think of in three dimensional geometry

Subspace: Let Sn be a subset of vectors in the vecor space Vn'
If the set Sn is itself a vector space, then Sn is cled a subspace
of the vector space Vn'

Basis: Let Vn be a vector space. If each vector in Vn n be obtained

by a 1inear combination of the vectors {A1A2 Ar} then §he set

{A1A2 'Ar} is said to generate (or span) Vn' If, in add\tion, the

vectors {A]AZ"'Ar} are linearly independent then the set i\ called
a basis for Vn' There are many bases for a given vector spacq. Recall

that any two linearly independent vectors in a plane form a ba}is for
that plane. The number of vectors in any basis for Vn is uniquge. Let
r be the number of base vectors for Vn’ then r is called the diension

of Vn‘

University of Maine, Orono

Example: Let V3 be a vector space spanned by

Adjustment Computations 7

www.gnss.umaine.edu/lectures

Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick

1980 Lecture Notes in Surveying Engineering For personal use only
1 1 1 2
A1=1 ’A2=-1 ,A3= 0 s A4= 0
0 0 0 0
Then the dimension of V3 is 2 since the rank of A = (A1A2A3A4) is
two. FEach of the sets (A1A2), (AIA ), (A1A4), (A2A3), and (A2A4)

is a basis for V3.
Generally, if r>0 is the rank of the matrix of the vectors

A1 U An that span the vector space V,,then there are exactly r
linearly independent vectors in the set,and every vector in Vn can
be expressed uniguely as a 1in

It follows that R dimension n
since all n x 1 vect dependent

vectors. For exa

0

1 0
0 0
A s A2 =l - An 1
0 0
0 1

the basis vectors are mutually orthogonal, that is the inner

product A1TAj = 0 is zero for all i#j, then the basis is called ortho-

gonal. If, in addition, A1TA1. = 1 for all.i, then the basis is called

orthonormal.

Every vector space Vn has an orthfgonal base.

is defined to be the Euclidian
Space, denoted by En’ if the distapfe between any two points (vectors)
A and B in Rn is defined to be

Euclidijan Space: The vector space R

n 3
d =[ : (a1.-b1.)2]

%

[(a-8)T (A-B)] (1.13)

Intersection of two vector spaces: Let S1 and S2 be two vector sub-

spaces in En. The intersection of these two subspaces, which we
denote by s'=‘s1n S,» is defined as the set of vectors A that belong to

both S1 and 52, that is

University of Maine, Orono
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S = {A:AsSaAsSZ}

1

Sum of Vector Subspaces: Let S] and 52 be two subspaces of the vector

space En' The set of vectors S, denoted by S = s]esz, is called the
sum of the ve d 52 and is defined by

S is a yector subspace of En.

Orthogonal Vector Subspace in E : Let S\and 52 be two subspaces in

~ thogonal complement of S] in E, if and only if 3,

En. If AT B=0 for each vector A in S] and\for each vector B in 52,

then 51 and 52 are defined to be orthogonal
denote this by S]J.Sz.

ubspaces in En and we

QOrthogonal Complement of a Vector Subspace in E\:

subspace in En. The vector subspace 52 in En is\defined as the or-
52 and S]@Sz = En-

of a subspace S1

Let S] be a vector

We sometimes denote the orthogonal compleme

by S{L . For a given subspace S] in En’ the ortho nal complement
Sf’ always exists and is unique.

Let 51 be a subspace of En and let L be any yector in E_, then
L can be written as a sum of two vectors L = Z + V where Z is in 5

and V is in the orthogonal complement of S].

Figure 1.1 Example for Geometric Representations in
Estimation Theory.
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The subspace S] is a plane in En of dimension R(A) = r<u, i.e.,

S.I = {Z:2-= ﬁAuX, A= (A]AZ -"Au); for all uX]}

~

Z is the orthogonal projection of L (line in E_ through origin 0)
onto the subspace S], which is spanned by the columns of the A

matrix. The orthogonal projection of L onto t r-dimensional sub-

space is unique ,as can be seen from simple g€ometric considerations.

In adjustments we will determine a set &

A

=A% (1.14)

It may be mentioned already at this point, that Yhere is only a
unique X fulfilling equation (1.14) if R (nAu) =fu. In all other
cases a minimum number of u-R(A) conditions wi
to find an X. It is
ditions imposed.
We obsepffe that V is completely contained in the n - R(A) dimen-
sional ortpfgonal complement of s]. Moreover, the length of V, i.e.,

have to be used
at the resultjg X depends on the con-

nimum and is unique for the given subspace Sy as can be seen
imple geometric considerations.

Colum\ Space of a Matrix: Ltet A be an n x u matrix. We denote the

u co]u%\i\:: A as vectors in En’ so that A = (A1A2"'Au)‘ The vector
space spanhed by these u column vectors of A is called the column space

of A. The dimension of the column space is equal to the rank of A,
that is the number of linearly independent columns. The column space

of A and the column space of AAT are the same.

Null Space of a Matrix: Let A be an n x u matrix. The null space of
the matrix A is defined to be the set of vectors S where

S= (Y : AY =0, VY ¢ Eu}

The null space of an n x u matrix A is a vector subspace of Eu with
dimension u - R{A).

The null space of AT and the orthogonal complement of the column
space of A are the same.

University of Maine, Orono
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1.3 Quadratic Forms:

Let X be a u x 1 vector and A a u x u symmetric matrix, Then

¥y = XTAX

is called a quadratic form

If A=Al
and XTAX>0
then the matrix A and the quadratic form are called positive semi-
definite.

If A=Al
and XTAX>0

then the matrix A and the quadraffi
The following properties
trix A:
a) R(A) = u (full rank)
b) a;;>0 for all i
c) A™ is positive defj
d) Let B be an n x ix With rank u < n. Then the matrix BAB
is positive dgfinite. R(B) = r<u then BTAB is positive semi-
definite.

form are called positive definite.
p1f for an u x u positive definite ma-

e) Let D be a 4 x q matyix formed by deleting u - p rows and the
correspondind\u - pf columns of A. Then D is positive definite.

Necessary and sufficient conditions for a symmetric matrix to
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be positive definite are
a) Every principal minor determinant is positive

a a
a;50, [ V12 g, -t Al > 0

11
a1 322
b} The eigenvalues of A are all real and positive.

c) There exists a u x u matrix D such that DTD = A (see next section)

1 University of Maine, Orono
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1.4 Eigenvalues and Eigenvectors

Consider the equation

Agg® = A

u"uu (1.16)

The
and the scalar A is the eigexvalue. The equation (1.16) can be
rewritten as A

(A -2F) X=0

Adis a u x u matrix. x 1 vector X is called the eigenvector,

(1.17)

This is a homogeneous equation. If is a solution of (1.17) then
scalar. Thus, the solution of
equation (1.17) provides only the direXtion of the eigenvector. There

exists a non-trivial solution for X if

a XO is also a solution, where o is

A -2l =0 (1.18)

This is the characteristic equation. It is'y polynomial of the u-th

order in A providing u solutions Ags i=1-Xu. Some of the eigen-

values can be zero, equal (multiple solution),\or even complex.

In adjustments we are mainly interested i} eigenvalues of

symmetric and positive definite matrices. For § symmetric matrix
solutions. The

number of zero eigenvalues equals the rank defegt. Thus, computing

all eigenvalues are real. There may be multipl

the eigenvalues provides one method of findingfout the rank defect

These notes are made available:for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.
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of a matrix. For a symmetric matrix the eigefivectors are mutually

orthogonal, that is 4/,

X;X; = 0. | (1.19)
The eigenvectors are, therefore, suitable far spanning the column' space of

the matrix. The eigenvectors corresponding to the non-zero eigenvalues
span the subspace in Eu with dimension r=R(A). The eigenvectors

corresponding to the zero eigenvalues span the orthogonal complement
of the vector subspace.
If the matrix is positive definite then all eigenvalues are pos-

jtive. For a positive semidefinite matrix, all nonzero eigenvalues are

positive.
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In actual computations the eigenvalues are computed first from
equation (1.18), and then the eigenvector can be computed for each
eigenvalue from equation (1.17). The eigenvectors can be normalized

as follows:

£ 1

C= o X
LY
s

u
with  |X] = [fxf]

If we combine all u normalized eigenvector® to form a matrix E]

)

then E is an orthonormal matrix, oy a rotation matrix, for which

E = (E]Ez'"Eu

(1.20)
holds.

The Use of Eigenvalues and £igenvectors in Adjustments:

1) Using the relations (A.16) and (1.19) we can write the product AE

as

AE

E A
is a diagonal matrix with Ay as elements at the diagonal.
ip1ving " this equation by ET from the left and making

. (1.21)

E =4 (1.22)

University of Maine, Orono
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Both relations are frequently used in adjustments. Equation
T

(1.21) simply states that if a matrjx A is premultiplied by E
and postmultiplied by E, where the £olumns of E are the normalized
eigenvectors, then the product isf/a diagonal matrix whose diagonal
elements are the eigenvalues of

From equation (1.21) we fee that

ATETAEL T = 1,

or D'AD

1]
—

(1.23)

1]
m
-

where D

2)
The center of the ellipsoid is
(1.24)
(1.25)
(1.26)
But tHis is the equation for the u-dimensional ellipsoid in the
princiLa] axes form, i.e., the coordinate system (Y) coincides
with tRe principal axes of the ellipsoid,and the lengths of the
principd] axes are proportional to the reciprocal of the square
root of \he eigenvalues. The situation is demonstrated in the
following example:
University of Maine, Orono
Adjustment Computations 14
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Let Abe a 2 x 2 positive definite matrix

_ (62
A=\22
then xTAx = is the equation of an ellipse. The chgricteristic

equation |A - AI'\g 0 has the solutions

>
e
n

where the ants C1 and C2 are chosen according Thus, the

eq of the ellipse in the coordinate system (X) aMd (Y) is:

6x12 + 4x1x2 + 2x22 =\

x>
><
[}

=YV
4 8
%
direction of E/

1

Figure 1.2 Geometric Significance of Eigenvectors and Eigenvalues.

3)

If the u x u matrix A is positive semidefinite with R(A) = r<u,
equations similar to (1.21) and (1.26) can be found. The matrix
E is of sizen x r, and A is an r x r diagonal matrix containing
the non-zero eigenvalues at the diagonal; and the ellipsoid, as
expressed by the quadratic form, has the dimeDﬁM@kﬂ}ofMame,OKmo

Do not remove PDF watermark
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In general, for any positive semi-definite matrix uAu with
R(A)=r<u, we can find a matrix D such that

1.0
T
0 AD =(‘”0” 0) (1.27)

where the identity matrix is of the order r. Consider the matrix

(uFr uGu—r)’ where the columns of G span the null space of

A=AT, i.e., AG =
is non-singular,

0 posen such that the matrix (F:G)
One obvious choice
vectors of A af columns, although this is Wgt the only possible
choice. Any s¢t of r vectors spanning the cQlumn space of A will
be sufficient. \For applications in Surveying} a matrix G can

F is to use the r eigen-

usually be found
This aspect of choos

imply by inspection of the flesign matrix.
™. G will be discussegd/in a later section.

With the stated properties 0 we obtain

(&) r oo -(878)

This matrix is of rank r and, therefore, FT

AF isanrxr
nonsingular submatrix. If F consists of the eigenvectors of A
then FTAF = A is a diagonal matrix with r non-zero eigenvalues
at the diagonal. The matrix D becomes

5= (Fa™%  g)

In the case that F has been chosen differently, we can find a
matrix E such that

(FAF) E=17,

is the eigenvector matrix of FT

E
where E AF and A is the diagonal

matrix with the corresponding eigenvalues. Finally,

k. __-h

r B (FAF)ETX =1,
so that

_ __=h

D = (FEA i G)

is a non-singular matrix.
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Inverse of a Matrix (Caley-Inverse)

There are several techniques for computing an inyérse of a matrix.

In this section we will only discuss the inversion mon-singular
square matrices, i.e., |A| # 0 (Caley-Inverse). ch inverses have the
property,

AATT =1

ATlA =1

It is sometimes useful to know that

(aB)~! = g-1a"T,

where both A and B are nonsingul

Inverse by Adjoint Matrix

Replace each elemen aij of A by the cofactor Cij’ The cofactor

has been explained in Seftion (1.1). Thus we have a matrix,

The adjoiny matrix, denoted by adj A, is,

adj A = ¢!

The inflerse becomes,

. T
A-] - adJ A = C

|Al Al

(1.28)

Thg method of inverting a matrix is explained in any course on linear
alfebra. The proof of equation (1.28) can therefore be found in the
sthndard literature. This method is applicable to a non-singular
sdquare matrix. However, since this method requires a large computa-
tibnal effort other methods are usually preferred.

17 s University of Maine, Orono
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For the 2 x 2 matrix
\ - (an 3 2)
a1 %22
we find

Al 1 ( %22 ‘az1>
311922 " 31291 N3y 3

That A-] is indeed the inverse of A can be verified by straight forward
matrix multiplication.

Inverse by Matrix Partitioning

Partition the nonsingular square matrix N, whi inverted,

as follows :

NNz
N= N, N
21 M22

where N]1 and N22 are square pglatrices, althodgh

(1.29)

necessarily of the

same size. Denote the inveyse matrix by Q an®partition it accordingly,

i.e.,
. Q
Q- n - (Qn Q12 (1.30)
27 "22
so that the size of N]] ., are respectively

the same. Since § is the inverse of N the foMlowing equations must
be fulfilled:

N Q
and QN

I (1.31)
I (1.32)

i

Each of the equations (1.31) and (1.32) is itself a set of 4 equations.
Each set can be solved for the unknown submatrices (Q;1> Qo> Qqs 022)
in terms of the known submatrices (N]], N12’ Noqs N22). Thus, we find
two solutions for Q, each solution being a different function of the
submatrices Nij' The actual solution for the submatrices Qij is
carried out according to the standard rules for solving a system of
linear equations,with the restriction that the inverse is defined only
for square submatrices. The solution is

University of Maine, Orono
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1

2
"

.5.3

——— D ———— — . —— — — —— — — — e e — — - — — vt m— m— A E— —— — —

T BT
=(Nyp=NaiNyp 7 Npp) N Nip Npo)

-1

———————— —f-———7-—F3~— -\~ T, T
N1 (Nj-N XYoo Moy NyoNgs

(1.33)
We observe that through systematic application of theymatrix

ove

The actual inversions of the smaller sub
is done with other] methods.

should be inverted.

The respective submatrices in equation (1.33) have to bd the
same since there is only one inverse Q. These identities wil] be used
frequently in Section 3. It is therefore recommended that th7 students
fully understand the derivation of equation (1.33).

The Algorithms of Gauss and Cholesky.

The Gauss algorithm for solving a system of linear equptions and
inverting matrices is assumed to be known to the student f
in Tinear algebra. The solution is simply found through elgmentary
row and column operations. A complete description of the pfethods in-
volved can be found, e.g., in Graybill (1969, p. 276 and 2B9). The
Gauss algorithm is very efficient for inverting large matfices. It in-
volves. fewer = multiplications than the method of computi
matrices.

courses

the adjoint

The Cholesky algorithm, sometimes called the "Squire Root
Method", is a modification of the Gauss algorithm. Thj
is tailored to positive definite matrices. If it is

procedure
ed for com-
puting the inverse of a non-positive definite matrix jfmaginary

University of Maine, Orono
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found again in Graybill (1969, p. 298).
positive definite matrices have to be inverted,

for using the Square Root Method are repeate

ere.

For personal use only

A description of the Square Root Method can be

Since in adjustments mostly

principle steps
In those rare

instances, as e.g., in Section 3.5, where Mlon-positive definite matrices
may occur, any of the previously discusged methods can be used.

Assume the system of equations

uNu uX1 = uU1

has to be solved. N is a posityve definite matrix.

terested in the quantity

(1.34)

We are also in-

v = Uy (1.35)
Since N is positive definitg we can write
N=LLT (1.36)
where L is a lower triangular matrix,
58!
b1 22 o
L={T31 T3z~
]ul ]u2 o ]uu
Multiplication of (1£34) from the left by L] gives
T nx= L
Substitution of exgression (1.36) for N results in
L'x = ™l (1.37)

the elements of L and L']

equation system (1.34)"

The computation of
"reduction of the

system (1.37) is

referred to as the "back-solution".

U is referred to as the
and the solution of the

The elemengs of L are
_ k=1 .
sk = [ "sk £ im Tk } / Tk k<J
(1.38)
j-1 2 _
Y33 Vs i m .

njk is, of courfe, an element of N.

University of Maine, Orono
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The complete solution involves the following steps:

1)
2)
3)

4)

5)

Compute the elements ]jk from the elements ]nm with n<j and m<k.
Compute ]jk either column-wise or row by row.

As soon as ]jk is computed it can be stored in the position N5k
in the computer since njk will not be used anymore. This saves
storage.

1

The computation of L is now completed. The column L™ "U is computed

by applying the algorithm (1.38) to the augmented matrix No:

No = _N :_Ua
u+1 Ou+ GT;d

It is clear that in this step only th

(1.39)

ast row has to be reduced
since the other rows had already b reduced in steps 1) to 3).

d is a fictitious diagonal e}ment. From the algorithm (1.38)
we find that

2

1 utl, u+l

(1.40)

(— Frte it ot ( )
- . 1.41
( |-

and the pack solution of (1.37) can be started.

Note fthat the vector U in (1.39) can be replaced by any other
"rigift hand side”. Only the reduction of the last row in (1.39)
has?to be done again.

Usually we are not only interested in the solution of equation
(1.34) but also in the inverse N1, The inverse is computed

column by column. Replace the U vector in (1.339) by the vector

University of Maine, Orono
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c OO

0

which consists of zeros except at the position « where there is a one.
Compute L-1c(e) by reducing

for q(a) which is the a-th col\mn of N-1.

The fo11owing observations {re made regarding Cholesky's algorithm:

1) From (1.38) it is seen that the reduction does
not have to start before co\umn a since all reduced ele-
ments 1,41 5 with i < « are Aero. Yet, the computation
of the inverse requires a mucf higher computational effort
than is needed for the mere solution of (1.34). Since
the columns of the inverse can computed separately,
one might, in the case of very lafge systems, compute
only those colums and elements wh§ch are really needed.
The meaning of this statement will Hecome clear in Section

1 is related the variance-

3 where the inverse N~
covariance matrix of the adjusted parameters.

2) From (1.38) it is also seen that if N has zeros in the
upper part of the columns, the matrix LT has zeros at the
corresponding positions (up to the first non-zero position
in the respective column). This fact should be used in any
computer programming if the matrix N is diagonally banded
in order to avoid too many zero multiplications.

University of Maine, Orono
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1.6 Matrix Differentiation

Case 1: A matrix is differentiated by differentiating each of the

elements:
da.. da .... da
dsil a§21 agJu
da
21 :
als) | & C| (1.42)
ds . :
Sinl fipu
ds oooooooo ds

[f the elements of the matrix are a function of sevgfal variables,
then the partial derivative of the matrix is ob
partials of each element.

ined by taking the

Case 2: The differential of an n-dimens#onal vector function
£, (X)
v o= rx) =20

£ (X)
n
where each component is a fungtion of u variables X = (xl, Xo s xu)
is
af1
. — dx
axu 1
g?_ | dx,
aF u (1.43)
df = 3% :
oy dx
ax u

Denoting the/n x u matrix which contains partials by G, then

dY nGudX

G has as/many columns as there are parameters. The number of rows is

equal ‘the dimension of Y.

23 University of Maine, Orono
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Case 3: In this case the columns of A are constant.

a) ¥y = AKX 3 (AX)
The differential is dY = Y dX = AdX,
or
¥ - 3 g (1.44)
daXx oX
T

b) 1Yy = 1Xunhy  The differential is

ar. = dx'A
c) u= 1XzAqu Since u matrix we can write
u=XTAY = Yy

It follows that the ferential

du = &4 dx + 23U 4y

X oY
becomes
du = YTATdX + x'AdY (1.45)
since
du - yTaT U - T

d) v = 1XEAuxl. The differential of the Quadratic Xorm follows from

T

dv = 2X AdX

or
dv _ 3v _ . T
ax = ax - 2XA

24 University of Maine, Orono
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1.7 Linearization

In surveying, the _pa ers and the observations are usually

related by a non-lipfar function. \In order to perform an adjustment

these relationships farized. This is accomplished by
expanding the function or series and retaining only the
linear terms.
Consider the ‘non-Tinear function
y = f(x) (1.47)
which has only one variable x. The Taylor series expansion of

this function is

2
_JL QAZ// 2
dx + dx“ + ..., 1.48
y = / 4| ax2/ % (1.48)

The linearized form of (1.47) is

_ d
y = f(xo)+a‘,y;/ %o dx (1.49)

Figure 1.3 Linearization

Xq is called the point of expansion. At that point the linearized and the
non-linear functions coincide. If the non-linear relationship is
replaced by the linear function then the error e =y -y increases
as the free paramf
if we would 1

departs from the expansion point X, Therefore,
drized form (1.49) to be a sufficiently ac-

curate represeMN@ation gf/the .non-linear relation (1.47) for a given
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y (observation) and the corresponding x

gmeter, i.e., coordinate
of a station) we have to make sure thft the expdgsion point Xg 18

close to x. Since x is itself an unfnown it will\be necessary to use
iterative procedures to ensure that tge point of gxpansion x, converges

toward x.

Usually the observation is related to several parameters. The
Taylor series of

z = f(xy) (1.50)
is

z = f(xoyo) +-%§ // dx + %5— dy + ¢ (dxz, dyz, dxdy, ..
*oYo *oYo

The point of expansion is P (x=xo, y=yo). The 1inearized
form,

z = f(xoyo) + = dx + 3_2 dy (].5])

aX 3y
xO‘y o] XO‘YO

represents the tangent plane on the surface (1.50) at the expansion
point.

In the most general case there are observed n functions with u
parameters:

f1(x]x2 "'xu)
fz(x]x2 Tt xy)

f (x]x2 eeXy)

dX (1.52)
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Review of Statistical Concepts (1)

The relevancy of statistical concepts with respect to adjustments
can be divided into two parts. A first set of concepts is applicable
to the set-up of the adjustment itself, whereas a s
in analyzing the results of the adjustment.

In this section only the first set £t concepts will be discussed.
Some of the important items are the cpfegorization of observational
errors, the definition of accuracy And precision, and of mean and
variance. Since in adjustments

are involved it is necessary t

ually several parameters (unknowns)
introduce some aspects from multi-
variate statistics which leag to the concept of the variance-covariance
matrix. Essential for adjyStments are the techniques of propagating

the mean and the variancefcovariances. Finally some of the properties
in estimation will be dyscussed in general. In Section 3, when the
least squares estimatef have been obtained, we will verify some of their

properties.

Some Definitions

Event (zobservatign) The outcome of a statistical experiment, e.g.,

throwing a dice,/measuring an angle, a distance, etc.

Random Variablef/ Denoted by x or X; the name for the outcome of an

event. It takgs on the values of the respective outcomes. X denotes

a vector of rgndom variables. Note that a linear function of a
random varialfle, such a

The totality of all events. It includes all possible
values off the random variable. The population is described by a

finite spt of parameters (population parameters).

Sample fA subset of the population. For example, if the same distance
is meagured 10 times, then these 10 measurements are a sample of all

possiffle measurements.
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Statistics The sample is used to compute one or more statistics
which represent estimates of the population parameters or functions
of the latter. Thus, with the 10 measurements of one and the same
distance we compute statistics which are estimates of those parameters
which describe in some way the outcome of all possible measurements

of the same distance.

Probability Related to t{e frequency of occurrence of a specific
event. Thus, each value of

probability.

random variable is associated with a

Probability Distribution descriyes the various probabilities as related

to the possible values of the randgm variable.

Observational Error The difference\petween the sample and the

population parameter (true value)
Blunder Usually large errors are dye to a careless observer;
the experiment should be designed sucN that blunders are discovered.

Example: 5m error in distance measuregents.

ign (effect) for all
10 cm.

Constant Errors Errors having the same

observations. Example: a tape is short b

Systematic Errors Errors which vary systemgtically in sign

and/or magnitude. Example: lateral refractiok when measuring angles.

Random (Accidental) Errors The probability of\a positive or

negative error of a given magnitude is the same Yequal frequency of
occurrence). The error is usually small.

Blunders, constant and systematic errors, can largely pe avoided through
a careful observer, adequate instrument calibration, ad observing

under various conditions (weather, etc.). The constant] and systematic
errors are particularly dangerous since they tend to acgumulate. Random
errors are unavoidable. In adjustments it is assumed tHat the only

errors present are the random errors.

Independent Sampling: The previous event does not inflgence the

subsequent event.
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Histogram In the usual measuring processes in Surveying smaller
random errors occur with higher frequencies than larger errors.

Assume that the same distance has been measured n times. Let
us plot along the x-axis the numerical value of each of the measurements.
Then subdivide the x-axis into intervals of equal length Ax and count

the numbers n; of measurements within each interval. The relative

33

Ax

sample
mean

Figure 2.1 Histogram

frequency "i/" is plotted along the ordinate. Next, a rectangle whose

height is a function of the relative frequency, is constructed as shown
in Fig. 2.1. This plot is called a hj Provided that the
measurements are only affected b he smoothed step

andom error,
function of the histogram hag”a bell-1ike shape. Yhe maximum occurs
around the sample mean wh#Ch is an estimate of the] true length of the dis-
tance. The larger theAleviation from the sample mgan, the smaller is
the relative frequenfy.
It is emphaghzed again, that not all histograms of any conceivable
iments have the same characterAstics as described
repeated measurements of distances, angles, etc.

statistical exp
above. But,
result in such bell-shaped histograms.

Accuracy and Precision Accuracy refers to the closeness of observations

to the true value of a quantity. Precision refers to the closeness of
repeated observations around the sample mean.

University of Maine, Orono
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Consider again the smoothed curve of the histogram as a charac-
terization of an observation sequence. In the figure below several such
curves are shown.,

Figure 2.2 Accuracy and Precision

We see that the curves 1 and 2 are symmetric with respect to the true
value. We say that the measurements have a high accuracy. But the
shape of both curves is quite different. Curve 1 is tall and narrows
i.e., most of the random errors are very small. We say that the
measurements of sequence 1 have also a high precision, whereas the

precision of sequence 2 i ince the relative frequency of

ase 1. The curves 3 and 4

are symmetric with respect to the sample Wean Xgs which is different
from the true value X Both sequences ha
the precision of sequence 3 is high. The di¥ference Xp = Xg is due

to constant and systematic errors (bias). 1[4 is clear that an

larger random errors As larger than 1

a low accuracy although

increase in the number of observations does ot reduce the bias.
The above definition of accuracy and precision does not only

refer to direct observations but also to linear functions of the

observations. This is important in adjustments since the least

squares estimates are linear functions of the observations.
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2.2 Probability Density Function and Cumulative Distribution Function

2.2.1 Discrete Case

Statistical experiments with Wiscrete probabilities do not occur very
frequently in Surveying. This case i

here.

therefore, only discussed briefly

The probability that x occurs is P We write

P(x = x) = R, (2.1)
and define
a) >0 (2.2)
b) £ p =1 (2.3)
pop?‘

The definition of 2.2 is quite logical since a\negative probability has no
méaning. Either a certain event occurs with a gertain finite probability
(frequency) or it does not occur. In the latte
The definition 2.3 says that the sum of all pr

As an example for discrete probability confider the throwing of two

case the probability is zero.
babilities is one.

dice. The random variable X is the sum of the jwo dice for one throwing.
A11 possible combinations of the two dice constifute the population:

Population = (2, 3, 4, 5, 6, 7, 8, 9, 10, Ji1, 12}

The probability p, that a certain event occurs, €.g., throwing x = 5, is equal

to the number ny of possible combinations giving this event x, divided by the
total number of combinations of the two dice,

& zn

X

It follows that the probabi]ify density function [for this experiment is

1/36 if x = 2,12
2/36 if x = 3,11 "
=23/36 if x = 4,10
% *4/36 if x = 5.9
5/36 if x = 6,8
6/36 if x =7
We see that each Py > 0 and that the sum of all probabilities is one.
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The cumulative distribution function F(X) gives the probability that

the random variable is equal to or smaller than x,

F(x) = P(

(2.4)

In the case of a d{screte probability density function the probability

becomes:

0 if x<2

1/36 if 2<% <3

3/36 if 3 <x<4

6/36 if 4 < x <5
10/36 if 5 <X <6

F(x) =Y15/36 if 6 < X <7
21/36 if 7 <x <8
26/36 if 8<x<9
30/36 if 9 < x <10
33/36 if 10 < x <11
35/36 if 11 < x <12
\36/36 if X > 12
r

Fix)

| e

Figure 2.3 Example of Probability Density Function and Cumulative
Distribution Function in the Discrete Case
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There are two important parameters which help in characterizing the
distribution of random variables. They are the mean and the variance.
The mean, also called the expected value, or expectation, is a para-

rete probabilit)Nthe expected value

meter of 1ocation.v In the case of dj
is given by

w o= E(x) = (2.5)

where the definition f2.3) was used. Note the similarity between the ex-

pected value and the¢/ conventional weighted mean. For our example of
throwing two dice fhe expected value is Hy = 7.

The variange is a parameter of dispersion. It measures the dispersion
of the distributfion around the mean. In the case of discrete probability

the variance i

a

) (2.6)

For the example of throwing two dice we find ax2 = 5.83.

2.2.2. Contffinuous Case

Consfider an outcome of an experiment which falls within the interval
a§ shown in Fig. 2.4 Subdivide this interval into n equal sub-
of length ax. We define the probability that the outcome falls

[a, b]
interval

" f(x)

Figure 2.4 Probability Density Function in the Continuous Case
as a Limit of a Step Function
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in that subinterval which contains Xs as
f (xi) AX

The probability that the outcome falls in the interval [a,b] is
P(a E;EP) = ? f(xi) AX

Taking the 1limit Ax>0 we obtain
- b ;
P(a<x<b) = s f(x)dx (2.7)

a

The definition (2.7) presupposes
integrated from a to b (b > a), giv

e existence of some function f which,
the probability that the random variable
a,bl] . Note that f(x) itself does not give
the probability that the rangfm variab]g assumes the variable x. In the
continuous case the probabf1ity is defined by an integral. It follows that

assumes a value in the interval
P(x = a) = 5 f( =0 (2.8)

Thus, the probabili
value x. This doe

is zero that the random variable takes on a certain
not imply that it is impossible to obtain the value x
in an actual expefiment due to limitations in our ability to measure. Say
that we have a fape with cm-division and that the reading for a certain
distance is 1008.06 m. In this case, we actually mean the interval [100.055,
100.065] .
measurement/technique. Repeated measurements of a distance is a sample from
a continuofis distribution and not a discrete distribution although our read-

lity is finite.

erefore, equation (2.8) implies an infinitely accurate

order for f(x) to be a probability density function it has to
certain conditions. Firstly, f(x) has to be a non-negative function
since fthere is always an outcome of an experiment. Secondly, we would like
obability that x is one of all possible outcomes to be 1. Thus, f(x)

has fto fulfill the following conditions:
a) f(x) >0 (2.9)
b) I f(x)dx =1 (2.10)

Note that the integration is taken over the whole range (population)
of the random variable. The condition (2.10) also implies that f(-=) =
f(=) = 0.
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f(x)

Fiqure 2.5 The Probablity Density Function in the Continuous Case

From equation (2.7) it follows that the probability of the outcome to be

smaller or equal to x is
- X
P (x<x) = F(x)

f(t)dt (2.11)

e nd

F(x) is the cumulative distribution fuNction.
tion since f(x) > 0.

It is a non-decreasing func-

A

‘m : +m

Figure 2.6 Cumulative Distribution Functfon

2.2.2.1 Mean
The mean, or the expected value, in the case of the continuous distri-
bution is defined by
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woo= E(x) =, xf(x)dx (2.12)

We see that the mean is a function of the density function ofAhe random
variable. The concept of the mean is very important in the Lheory of esti-
mation. Note that the integration in (2.12) is extended/over the whole

population, Equation (2.12) is the analogy to the weighted mean in the
case of continuous distributions. E(i) is the absci#sa of the center of
gravity of the area under f(x}.

2.2.2.2 Variance

The variance is defined by

oxz = E(x - ux)z = _;? (X-ux)i/ffi)dx (2.13)

The variance measures the spread

the probability density in the sense that
it gives the expected value of phe squared deviations from the mean. A
small variance, therefore, ingficates that most of the probability density
is around the mean. This i¢/a very desireable situation. As for sampling,
a small variance indicates/high precision. For example, interpreting the

curves in Fig., 2.2 as defsity functions, the variances of the curves 1 and
3 will be smaller than/the variances of the curves 2 and 4.

2.3 Multivariatfg and Marginal Distributions

Since in adjfustments usually more than one random variable is involved,
some of the concepts related to multivariate (multi-
tistics.

we have to revi
dimensional) s

Any fungtion f(x1,x2, e xn), of n continuous random variables i],

ié, . in cfn be a joint density function provided that

- (2.14)
I ..._i f(x], xz,...xn)dx dxz...dxn =]

Thus, the probability

37 University of Maine, Orono
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P(x]<a1, Xp<@ps ...X <@ )

2.3.1 Mean

The expected value for the p

= E(ii) =_£"‘ I x, f(x]

U
X —co i
i

Using vector notation we can write the

E(>~<])
E(Xz)
E(X) = :
E(in)
2.3.2 Variance-Covariance Matrix, Correlatiof Matrix
The variance of the random variable ii i

2 5 P

" =E(>~<.i-u.i) =f...f(x1._

>0

In the case of muitivariate distributions we can

two random variables. The covariance is computed by

IxX E [ (ii - ui) (ij - uj) 1

-0

1

For personal use only

(2.15)

"dxn (2.16)

pected value of all parameters as

(2.16a)

computed by

2
“1) f(xl, x2,...xn) dx]...dxn (2.17)

ompute another number

f”"::P (xi'“i) (x:-u) f(x]...xn) dx; .. .dx_ (2.18)

Whereas the variance is always larger or equal to zero the covariance can be

negative, positive, or even zero. Immediately related to the variances and

covariance of two random variables is the correlation coefficient

E [(X:-u:) (X:-u. I .X.
Px.x. = Lt ! u1) (J uﬂ = ﬂ__
LAY OX. Ox. ) c’x.c’x
1 J M7
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/ -2
a

. is called the standard deviation. Thus, the correlation co-
i i
efficient of any two random variables is defined be the covariance of

the two variables divided by their standard deviations\ [t can be shown that,

1o,y <] (2.20)

i%5 T

This is an important relationship.

The covariance and the correlation coefficient are helpf}l in finding
a geometric interpretation of the density function. Here, we w\ll state
only some characteristics without giving the mathematical derivakion. Figure

2.7 shows a typical density function for two random variables i] nd iz.

J f(xl,xz)

Figure 2.7 Two-Dimensional Density Function

The point (“x]’ u, ) is the origin of a new coordinate system (yhyz)

X

2
whose orientation differs from the (x1,x2) system by the angle 8. The
following properties can be found:

1) There is always a coordinate system (ypyz) for which py1y2 = 0.

Thus, we can always transform the random variables i] and ;2

into a set 91 and yz for which the covariance is zero. In later
sections we will make frequent use of this property.
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The variances c& and °y are either maximum or minimum.
1 2

The orientation of the trace of f(xsz) in the plane (x],xz),

which is an ellipse in our case, is a function of the magnitude

and sign of Ty

1%2°

The shape of the ellipse is a function of the correlation coefficient.

For o =+ 1 the ellipse degenera into a line. refore,

XqX

172
the correlation coefficient can looked upon as a measure o
the intensity of the concentrafion of the probability about the

semi-major axis. For exampfe, in the case of a large positive

correjation between two Fandom variables we can say that there
is the same tendency f6r the outcome of both random variables,

i.e., as X, gets lapger, Xo gets larger. Only if the correlatio
is unity is there An exact linear relationship between the outcoges.
In that case the/random variables are said to be linearly depen

0 = g < 0
x4 %f > 4 Oy X, A
2 xz / 2 X X5
3
/
A1 Xy X,
X2 »
pX'l :X2=
%

Figure 2.8 Geometrical Interpretation of the Covariance and the

Correlation Coefficient for two Random Variables.
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In the case of n random variable we can compute n variances as
per equation (2.17) and one covariance according to (2.18) for each pair of
random variables. The result is arranged in the form of a matrix, called
the variance-covariance matrix. Let us write

matrix becomes

2
g [e) (-]
S IR K X1 Xn
. , T . g ? .
Iy = EL(xfy) (k=mg) 1 = X5 : (2.21)
sym. .. ' 2
..o
n
This is a symmetriq matrix since o =g . Computing the forrelations
X% X5%4
according to equatign (2.19) and arranging them in a matrix givds

1 012 013 ...Dln
1 923 "'DZH

sym. o (2.22)

P

This is the correlation matrix. It is an n x n symmetric matrix]whose
diagonal elements are one.

2.3.3 Marginal Density Function

Given the joint density function for n random varialfles we need
also the density function, called the marginal density functionj of a subset

of random variables. Let f(x],x2 "'Xn) be the joint density Function, and
g(x],xz...xp) be the marginal density of x]gz,..xp;then ]
g(X]’XZ"'Xp) - _“{...:“{ f(x]xz,..xn) dxp+] dxp+2...dxn (2.23)

The marginal density of any other subset of variables is obtained in an obviously

similar fashion.
University of Maine, Orono
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2.4. Propagation of Mean and Variance

The contents of this section has wide-spread application in adjustments
and should therefore be studied carefully. Usually we are more interested
in a linear function of the observations than in the observations themselves.
In such cases a propagation of variances becomes necessary.

From equation (2.12) it is found that for a constant c:

a) E(c) =c¢ fn f(x)dx = ¢

(2.24)

The relations (2.24) also hol
can be seen from equation (2.%6). Let y = X
then

if weNqave a mul#fvariate density function as
1t 22 be a2 simple linear func-

tion of the random variables:

-co

E(x1+x2)

]

dx1dx2 + 32’ xzf(x1)<2)dx1dx2

(2.25)

Thus, the expected value of the sum of two random variables is equal to the
sum of the individual expected values. Combining the results of (2.24) and
(2.25) we can find the expected value in the case of a general linear

transformation of random varijables:

Y9 310 T X T appX te

Yp = ppt ap1X) tagoXy v ap Xy

Ym = %m0 * qm X * an2%2 . &mn*n
This transformation can be written in matrix notation as

mY1 = Ao + mAnX (2.26)
where elements a,; of A are constants.
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It follows that

E(Y) = A, + AE(X)

(2.27)
This is the law for propagating the mean. A corresponding expression
for propagating the variances can be found as follows:
Consider the simple transformation
Y T 0 T anXy T X,
Ya = apt Xy * ayX (2.28)
with the givea probability density function f(kl,xz). We find that
2
Cyl = E(yl = H
Similarly,
.2
O‘ -
Y2
Note that the constant term dropsfjout. For the covariance we obtain:
cy1y2 = E [(y1-uy1)(y2 o
= E{[a-”(x] H (XZ-HXZ)] [aZI(X-I'IJ'l) +322(x2’1-1x2) ]}
2 ' - z : 2
E{apay, #(a)1329"319%1) (X1 7y H(XpmHp) +a15355 (xpmwy )7
_ 2
T a2t An%22"1280) Oxx, + P12%22 5
2

It can be easily verified that the last three expressions can be written as

2 2 T

a
Yy Yiy g o
5 ! 5 122>=<a11312) X x1:2><a11a12> (2.29)
y y g g :
21 V2 351355 /\ XoX{ Xy 2351322
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Thus, the variance-covariance matrix of the transformed variables P is ob-
tained by pre- and post-multiplying the variance-covariance matrix of the
original random variables by a matrix whose coefficients are the constant
elements of the transformation. The relationships (2.28) and (2.29) can
readily be generalized. It follows that given the linear transformation
(2.26) and the variance-covariance matrix Iys the variance-covariance
matrix of the transformed variables Y is

T

(2.30)

Ly = A ZXA

This is the law for propagatip§ variances and covariances. It is extremely
important in adjustments. lease note, that the constant term AO has no
effect on the propagatiopf of variance-covariances.

The relationship/(2.30) can be derived more elegantly by using matrix
notation right from the outset. Given the linear transformation (2.26)
and the expected vafue (2.27) we find the covariance matrix, upon using the
definition (2.21), to be

Zy = E[ {(Yfuy) (Y-uy) ']
T
=E[Y- Ay - AE(R)] [V - Ay - AE(X)]
T
= E[JAX - AE(X)] [AX - AE(X)]

As an example for the application of the above law we compute the variance-
covariance matrix of

Y-I = AO + AX-I
Y2 = Bg * BXp
with
z z

= M X142
Yo\x, I

2°1 2
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It follows that

-
I L A z Z A O
Y PR Xy X1%2
Z = =
vy =\ g £ 0 8/\z Z 0 B
LhoY XXy Xy
Ay Al Ay o g
) 1 142
T
BzxleA BZXZB
The relation
X
Y.Y, = Az, . B
172 X1 X,

is sometimes referred to as the covariance propagation. Note, although

f1 and Yé are functionally independent they are correlated because i] and
X2 are correlated.

Finally, an alternatiyf expression for the variance-covariance matrix
is given. It follows fropf the propagation of the mean that

Ly =
(2.31)

(2.32)

the cofactor matrix. The scalar

ular then the weight matrix P is

(2.33)

The genergl weight matrix P can be full, ™ , Or can even be the

identity matrix. Usually the weight matrix of the observations will be
diagonal in which case the observations are uncorrelated. Thus,
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It is seen that in this particular case the weights are proportional to the
2

reciprocal of the variances. If the 2s 0o  then the weight is

unity. It is because of this relation that 002 and op\are called the

variance of unit weight and tW€ standard deviation of un\t weight.

2.6 Measures of Position/and Dispersion of a Sample

It was mentioned n) and the
variance are measuresjfof position and dispersion for the population. The

integrations involve

reviously that the expected value (

in computing these quantities must be taken over
the whole populatiof. However, we do not have immediate access to the
population since oyr sample can only consist of a finite number of events

nce, we have to nr ample in order to determine

specific quantities
from the sample, called stati
parameters,

ics, which are estimates of the population

In the following a fep statistics are given which can be used to

estimate the parameter of position. Assume that we have a sample (x1,
x2...xn) of one and the same random variable Xx.

a) Sample mean:
- 1n
X = =

=X, ' (2.34)

i

—y

b) Median: Arrange the sample according to size. If n is odd, the
median is the observation numbered (n + 1)/2; if n is even, the
median is defined as the average of the observations numbered n/2
and (n + 2)/2.

The median has a disadvantage in that it does not utilize
fully all the positional information contained in the sample. It
tends to fluctuate.
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c) Mode: The mode is the sample value which occurs most often. The
mode and the mean are not necessarily t

same. As will be seen
later, in the case of the normal distribution the mode and the
mean coincide.

d) Midrange: The midrange is simply the mean
minimum sample value:

f the maximum and

+x . )/2

midrange = (xmaX min

Statistics for estimating the dispersion of a distribution can be:

a) Range: The range is the difference between fthe maximum and

minimum value,

range = X - X .
g Mnax mn

b) Mean (average) deviftion: \he average deyiation is defined by

average deviation = | wherg/X is the sample mean.

c) Variance:

(x; - 0% (2.35)

The sample variance measures the average of the squared deviation
from the mean. The divisor is n-1 and not n! There are only n-1
deviations independent for a sample of size n. The n-th deviation

can be expressed in terms of the other n-1 deviations and the mean.

It is instructive to emphasize again that in the above dis-
cussion we assumed a sample size of n for one and the same parameter. This is
quite different from the usual case in adjustments where the sample size is
one and we would 1ike to estimate a number of unknown linear functions of
the observation, based on several samples of as many populations; thus each
sample is of size one. For example, we measure a certain distance with a
specific instrument. The measure itself is a random sample of the random
variable "distance". If only one measurement is taken then this sample is
jdentical to the sample mean and is as such an estimate for the population
mean. But the instrument can provide the distance with only a finite accuracy.
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From experiences of previous experiments, comparison of other instruments,
or- from measuring a known distance (calibration) we usually have an idea

about the measurement accuracy of the instrument
constitutes a sample and as such is an estim

ed. This information
of a second population

parameter, i.e., the dispersion. It will
sufficient to have for each population t

shown in Section 3 that it is
estimates for these two population
parameters. Sometimes the sample size As larger than one, e.g., we measure
the same distance several times in orfer to eliminate blunders, systematic
errors, etc. In that case the samp}e mean and variance are computed according
to equations (2.34) and (2.35) andfused as estimates of the population mean
and variance in the adjustment. Jt is interesting to note that computing

the sample mean according to (2.J4) is itself a least squares solution.
The student will be able to verij

in Section 3 have been studied.

y this fact as soon as the basic models

2.7 Types of Estimation

Estimation means making[inferences regarding parameters of population
(distributions) on the basis
the samples (observations).

f statistics, which in turn are functions of

ut any estimation is made with respect to its own
criteria. Recall the statem
mean is a "least squares" so]

t of the last section that even the sample
ution. In general, then, we will obtain dif-
ferent estimates for populat{on parameters depending on the criteria chosen
for the estimation. Natural]y, we would like to impose reasonable criteria so
as to obtain a "useable" so]Ltion with a reasonable amount of computational
effort and which has some opfimal properties. Any function of the samples
used to estimate the populatjon parameters and having certain properties is
called an-estimator. If the|function is linear we speak of a linear estimator.

Unbiased Estimation: Any estimator é whose mathematical expectation is equal

to a parameter © is called an unbiased estimator for the parameter o,

E(e) = o (2.36)
The concept of unbiased estimation is important in Surveying. This results
from the fact that a given measurement tool might not be able to observe certain

parameters. Typical examples are adjustments of station directions, leveling

nets, and horizontal networks. Let us consider the tlatter case. Assume that
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a trilateration network has been observed. The extension of the network may
be relatively small so that a "plane" computation can be carried out. We
would like to describe the net by Cartesian coordinates; that is, o denotes
the vector of coordinates. It is obvious that the distance observations do
not contain information about a unique set of Cartesian station coordinates.
Although the relative positions of the stations are determined by the distance
measurement it is possible to translate or rotate all stations by the same
amount without changing any of the station distances. This fact shows up in
the design matrix of the adjustment which has a rank defect of 3 in this par-
ticular casesand, consequently, the normal matrix is singular. It can

be shown that the relation (2.36) is not fulfi
are therefore not unbiasedly estimah

ed and that the coordinates
We can fix ™

coordinate system
arbitrarily, say, by choosing the”origin of the coordiyate system at one
particular station and letti

station (minimal constraint/.

f one of the coordinate ajes pass through another
We are then able to co
all other stations. Thesefcoordinates are, of cour
trarily fixed system. Asgq

bute the coordinates of
£, relative to the arbi-

eams have observed the same
€1r adjusted coordinates. A

me that two surveying
net independently and would Tike to compare
comparison makes sense only 1 puse the same definition of the
coordinate system (same minimal constraint). If the two teams agree
to compare, for example, the adjusted angles of the net, they could do this
at once, although both might define - the coordinate system differently.
This is a consequence of the angles being unbiasedly estimable. If o denotes
the angles, then the relation (2.36) can be shown to be fulfilled.

We thus recognize the importance of properly identifying unbiased es-
timable parameters. This subject will be treated in great detail in labora-
tories.

Minimum Variance Estimation: The minimum variance estimator gives an

estimate which has a minimum variance compared to other estimators. This is,
of course, a desireable property since the precision increases as the variance
decreases.
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In Section 3 the above two properties will be verified for the least
squares estimator. As a special case we show here that the sample mean and
variance are unbiased estimates of the population mean and variance. Consider
n random variables,each describing the same population with mean p and variance

g 2, then
X
E(X) = E{l— (’:1 £ X+ .x )
= LEx) fEx) £ B, M= w
Thus,
E(X) = u,

The mean of a sample is an unbiased estimate for the population mean. In
the case of the sample variance we obtain

-2
)= Bl -0 )

E(s —

X
After some rearrangement, which can be found in any introductory book on
statistics, we find
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3. Adjustments by Least Squares

In the first three subsections the three basic adjustment models are
introduced. There is sufficient reason to treat each of these models separately
since, for a given adjustment problem, one of the models may appear more
readily applicable than the other. It is shown how the models of observation
equations and conditjon equations can fg a11y‘be derived from the mixed

model through specifying certain matrfces.
fact in Subsections 3.4 to 3.6
done for the mixed modelsand the sj

ddvantage is taken of this
e derivations are principally
of the other model are found

formé]]y through the specificati@ns menfioned above. This method provides
a good means of systematizing the WepHous solutions. Of course, each of

the solutions can be derived separately starting with the respective mini-
mum condition.

Since in Surveying most of the relationships are inherently non-linear
special attention is given to the linearization and the iteration techniques
for each of the cases.

Although the review of statistical concepts in Section?2 may appear
lengthy and in much detail, it is worth noting that, thus far, the density
distribution has notbeen specified. In fact, the mere existence of the
mean and the variance-covariance matrix is sufficient to perform a least
squares adjustment. A specific density function is not needed.

3.1 Method of Observation Equations

This is probably the most often used method in Surveying. It is easy
to implement on the computer. The main characteristic of this model is the
explicit functional relationship between the observations and the unknown
parameters.

The following symbols will be used throughout this section:

Xo vector of approximate values for the variables (=parameters =
u unknown)- These values are assumed to be known a priori, and
they should be as close as possible to the true values.
University of Maine, Orono
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Xa vector of parameters as obtained from the adjustment (adjusted
parameters )
X = Xa - X0
X. = X_ +X
a 0
nL% vector of observation; (sample)
L0 numerical value of the observed quantity as comp
adopted mathematical model and the approxi
La adjusted values of observed quanti

y

L=L,-L, (3.3)

V= La - Lb

V is the vector of "Residuals". Tiey result from the random observational
errors. Finally, the mathematicgl model for adjustment by observation

equations is

La = F(Xa)
Note that the mathematical mpdel relates the true values, i.e., the
adjusted observations and the adjusted parameters!
With the symbols explaingd above we can rewrite the relation (3.5) as
by * ¥ (x,)
or Ly +y (X + X)
Linearizing this relftionship with the expansion point at X gives
0
Lb +y
where
nAu
52 University of Maine, Oron
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and L= F(X.) (3.10)

The 1inear equation (3.8) can be written in the form

nV.| = nAu X] + b (3.11)

These are the observation equations in matrix form. The matrix A is
called the "design matrix" or the "coefficient matrix".

Besides the functional model (3.8) wegmust have a stochastic
model, that is, the variance-covariance matri IL of the observations.

According to the equation (2.33) we write,

TR (3.12)

= P (3.13)

As far as notation is concerned we recognize that L in equation (3.11)

denotes the sample value of E. Since most of this section is more con-
cerned with the numerical aspect of the estimation than with the statis-
tical aspect the symbol "~", denoting a random variable, will only be

used when absolutely necessary. The complete observation equation model

can be written as follows:

E(-L) = AX ‘ (3.14)
- e =T 21
EfL - E(L)ML -E(L)} 1=2, =g, p (3.15)
b
implying E(G) =0 (3.16)
Since L = L0 - Lb we have E o= sz
_ University of Maine, Orono
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Note that the unknown X is a fixed parameter and not a random variable.
The variance-covariance can have the following special forms:
a) identity matrix

b) diagonal matrix
c) full matrix

d) non-singular

e) singular

In case e) the observations are functionally dependent; that is, at Teast
one observation can be expressed as a function of the others. This case
will not be considered any further here. If the variance-covariance matrix is

non-singular the observations are functionally indepe
only deal with this case. If the variance-covariape® matrix is full, (case
c), then the observations "are stochastically dgffendent, or, correlated.

In the cases a) and b) we are dealing with sficorrelated observations.

Having the functional and the stgchastic model we can proceed with

the solution by applying the "princifle of least squares" :
WX) = VPV = minimu (3.16)

Thus the solution for X is foynd by minimizing the quadratic form

(3.16). This condition is gfiite general in that it is valid for both a
full and a diagonal weight fnatrix. In the special case that P is the i-
dentity matrix it is seen fthat (3.16) requires the minimization of the

sum of the squares of thg residuals. It is from this particular case that
the name "least squares' was derived. We also observe that the principle
of least squares only yequires a weight matrix and not necessarily the
knowledge of the a-pripori variance of unity weight 002 or the variance-
covariance matrix. can, therefore, perform a least squares adjustment
without invoking thef concept of a variance-covariance matrix at all.

We only have to assfign weights to the observations in some manner. How-
ever, this type offinterpretation does not allow a statistical evaluation
of the results and it therefore, is not persued any further. The estimates

of the parameters themselves are independent of such interpretation.
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From equations (3.11) and (3.13) we ob

T T,T T,T

VPV = X'A'PAX + X A'PL + T

PAX + L PL (3.17)
The 3rd and 4th term are just nupbers (matrices of size 1), so that

xTATPL = LTpax

Using the notation

A'PA

=
n

(3.18)

[ o
[[1]

=g
s
—

(3.19)

equation (3.17) become

XTNX + 2xTu + LTPL (3.20)

enoted by i, is found by minimizing the quadratic
point of the function ¢ = ¢(X) is obtained by setting
ons with respect to the parameters equal to zero.

Using the rules forfmatrix differentiation we obtain

The solution for X,
form ¢ A stationa
the partial derivat]

as(X) .
;—f?x—=XTr\4+UT=0 (3.21)

The estimate i of the parameters follows from the solution of (3.21).
Statistically, the|estimate of X is itself a random variable i since

it is a function of the random variables [. Thus, if the symbol "~*"

is used for L it sfould also be used for i and vice versa depending

on whether one int¢nds to emphasize the random nature of the variable
or the sample valu¢

Re-writing equation (3.21) in the form

nNnX HiU =20 (3.22)

gives the n norma]ﬂeouations for the n parameters. N is called the
normal matrix. It is a positive definite matrix assuming that A has a

full column rank. The solution of equation (3.22) is University of Maine, Orono
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Ny (3.23)

><
]

1,T

-N"T'APL

The adjusted parameters are, of course,

and the adjusted observations are

La=Lb+V=L0+AX

ined for VIPV is very important
equation (3.23) in (3.20) gives

The actual computation of the minimum ob
for later use in analysis. Substituti

T,-1 T

U+ L PL

VPV = -U'N”

(3.24)

E(d) (3.252)
The symbol 6 denotesf/ the random variable of the adjusted residuals,

6 = (3.25b)
which must be dfstinguished from

VE AX + L (3.25¢)

Making use the properties of a trace of a matrix and of equation (3.24)

we find
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(XTNK)}

= E {TA\{LL'P) - Tr (X X'N)}

Tr {E (

T

From equation (3.15) and (2.

E(LLT) = ¢, + E(L\E
b

Substitution of equation (3.14)

E(CLT)

]
o1

= o %071 4 ax

0]
Inserting this expression into (
E (VTPV)

1

Tr {002 nIn + AXX

2 ¢ 1r(axxTAT

n P
%

002 (n-u)

Tr (E(LLTP)I\- TrE(N'A

woT

)}- Tr{E (XX'N)}

Torr 1

PLL PAN™ (3.25)

N)}

) we know that

(LT

for the expected value of L gives

(TAT

B.25) gives

T

T 2 T
AP} - Tr{oo qu + XX A PA}

-UGOZ-TY'( TT)

AXX'A'P

(3.26)

This derivation could have be
mitting a rank defect on the
that case the result would b

~

E(VTPY) = o2

0 R(

This is an important resul
s, VR
% ~ n-R(A)
Adjustment Computations
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esign matrix, e.g. R(A) = R(N) =

carried out somewhat more generally per-

r<u. In

A)} (3.27)

If we choose

(3.28)
University of Maine, Orono
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then
% 0
1

i.e., the expression (3.28) is an unbiased fstimate of the unknown a
priori variance of unit weight 002. Evaluaking (3.28) for the specific
sample L gives

vipy
= (3.29)
0 n-R(A)

~

002 is also called the a-posteriori variancg of unit weight. It plays an
important role in the statistical analysis ip later sections. It reflects
the overall behavior of the adjustment since]all observations, and the
stochastic and functional model, enter into [its computation.

Using the law for propagating variances it is now possible to compute
the variance-covariance matrix for a number Jof quantities. We had earlier
2,-1

I, =L =o. P
L Lb 0

From equation (3.23) it follows that the vgriance-covariance of i is

1

~ _ A2 -
Ly = 9, N (3.30)

If one is interested in the variance of g linear function of the adjusted
parameter one can use again the law of gropagating the variances. In
the case of a large system (many paramgters u) one might compute only
the variances and covariances of thosg parameters which are included in
the function in question. In such

Cholesky algorithm can be fully utj

ses the possibilities given by the
ized.

For the residuals one ob

~

V=A+1L

#

T

AnTATPL + L

_ -1.T University of Maine, Orono
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= (1 - M ATR) 6 271 (1 - paNTTAT)
0

™~
<l
I

002 -1 1aT)

The estimated variance-covariance matrix for the residuals is

St 2pel 1T
I, = 0,0 (P71 - ANTIAT) (3.31)

For the adjusted observations we get

- T:
V-l T -L L = ALA

™
]
™~
n
™~

(3.32)

(3.33)

difference is exactly the amount of impro%esent achieved 8y the adjustment.

Finally, we would 1ike to compute the covariance rix for the vector

~N
n
<< ><

Using the law of propagation of variances:

N 0 N AT
Iy | = 002 0 p'l—AN']AT 0 (3.34)
v AN 0 anTaT
I'a
University of Maine, Orono
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In the following some remarks are made as to the correct use of the ad-

justment model

Note: 1)

2)

Adjustment Computations
www.gnss.umaine.edu/lectures

with observation equations, and some of the properties involved:

1 T

The expression -UTN' PV is obtained
immediately from Cholesky's algorithm (See Section 1.5.3).

U needed in computing V

TA

Comparing U'X = 1

TN
error, etc.), Compute the left side with the result of
eq.(3.23) and take the right side from Cholesky's algorithm.

U is a useful check (programming

Compute the residuals from eq. (3.11), form VTPV and compare
with (3.24).
etc.

This is another check for programming errors,

(3.6)
Comparigg this result with the corresponding
jves a chetk on the sufficiency of the lineari-

Compute the resigfals frgm the non-linear aguation
and form V'PV
value of 3)

R

zation.

linear fukction (3.11) approximates sufficiently well the
non-1inear One should at least carry out

one iteration.

Iteration (method of observation equation)

For the i-th adjusfment we have the following algorithm:

i = X
_ i
3 F(X)
Ay = =% X
;
L. = F(X.)

60 University of Maine, Orono
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Adjustment gives: X?

Step 2: X

=X +%%, L, =
0 1

1

Step 3: 1f |vq'PV

A satisfactory conversion might require
several itgrations. Repeat Step 2 and Step 3.

Note:

University of Maine, Orono
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One frequently uses this technique of scalif§ all the weights in

mbers in the normal matrix

the computer or might even make
the inversion of N impossible uyfng standard inversion routines.

order to avoid extreme large or small
which might cause rounding errors

the condition of the normal matrix
of individual parameters. The

6) Another method for improvi
N is to change the units

observation equations aye:

s a parameter for an angle given in radians.

We can change ghe units to arcsec (") by
X
lel)
V= (A IR WA I
X
u

=2 x 10°. This causes the 2nd diagonal element of N
to be dfvided by (p")2:

University of Maine, Orono
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----- A.] PAu
1.7
..... FAZPAU
T
..... Au PAu
There is a corresponding change in ATPL:
T
A] PL
1.7
— A, 'PL
AlpL = | p 72
%
Au‘PL
7) Finally, one can change the units of the observations in order

to improve the condition of the normal matrix. Remember that
the units in the weight matrix (inverse of variance-covariance
matrix) and those of the observations L have to correspond
respectively. Take the simplified case where P is a diagonal
matrix:

University of Maine, Orono
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2
a1
1
-2
)
P = 002
0
The unit of 95 has to the same as that of the observation

1;, e.g., meters (m). Thefveight p; has then the dimension (m'z),

e.g.,

Usually a good pumerical inversion on the computer can be assured
if the diagonaf elements of the normal matrix are nearly of the
same order offmagnitude. Please note that any numerical insta-
bility caused by nearly dependent columns of the A-matrix cannot

be avoided fhrough the procedures 5 through 7.

8) The structfire of the variance covariance matrix Ly of the

adjusted parameters does not depend on the observations themselves

but it dgpends only on the design matrix A and the weight matrix

P. Thusf the analysis of the covariance matrix &, .., pe done

prior tp any actual field work by simply assuming the geometry

(mathenfatical model or, equivalently, the design matrix A) and
University of Maine, Orono
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10)

1980 Lecture Notes in Surveying Engineering For personal use only

the weights, which, of course, should reflect the anticipated
measurement accuracy. Such a procedure is called a simulation

study. One can also study soltution before starting

the field work. Firstlfone can change the geometry as to

reduce the magnitudg’of the variances of the Wdjusted parameters.

to each other. fSecondly,one can plan the observa\ion scheme in
advance. Cer

ATPY = 0

Prove by pubstitution:

ATp (A% 4 L)

anATeL + ATpL

0]
3
p =3
o)

Aledd s ATeL = 0

Alternati method for deriving the least squares equation: Use
AX - V + LY as a condition, and use the method of the Lagrange
multiplier

Tpy -2k" (AX -V +L)

$ = (VK X} =V
Minimize
3
aV

no|—
i
]
o

nNa|—
1]

0 (3.35)

—
1€
)

From the first two equations we get the condition
University of Maine, Orono
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If follows that,
X = -N"TATpL

11) In deriving the leastgquares solution we have placed the first
derivative to zero as i\ seen from equation (3.21) and (3.35).
But such a procedure assuNes only that a stationary point of the
function ¢ = ¢(X) will be oNtained. That indeed a minimum was
found is seen as follows: Coypute VTPV for any value X being
different from i by aX:

%=X+ ax
(vVTev)z = (LT + RTAT) P(AR + L
= LTPAX + LTpL + TTaTPax\e RTaTeL
= XTAToAX + 2XTATpL + LTpL
= 3THX + XTnax + ax"NK + ax|Nax + 2KTATeL + 2axTaTpL + LThL
TN 4 2aT T T,T T

=X'NX + 2XA'PL + L'PL + 22 'NX + 2aX'A'PL + ax'NaX

=(VTPV)“ + aXTNax + 2aX7

X

>0 because N is positive definite.

6 University of Maine, Orono
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12) uares estimate X is an unbiased estimate. Since

the expected value 1

1

E(X) = -N"TATPE(L)

N TaTpax = X

where use was made of equatdon (3.14).

13) Variance-covariance matrix of\the adjusted parameters:

- A ~

V(X) = E(X - E(X)} {X - E(X)}

1,7

“ef-n""ATeL - N TATPaX) \-nTATRL - W TaTRax)Ty

epon AT (L + ANy 2L\ AT panT

TATPE [(L + AX) (L +AX)

N

1,7

ATPE[IL - E(L)}L - E(LY3jpan!

N

=nTaTe o 2 p pan! = g

14) The least squares solution is also a finimum variance solution.
Change the least squares estimate X by a AX and compute the

variance of the linear function

67X = 6T (X +aX)

with X = -N"'ATpL

and  aX = S L University of Maine, Orono
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-1
. ~paN-lg
2 T-1,T.: T
o2 = (6WaTp 6Ty x0T
002 a'N"1aTpp-TpanTg + GOZGTSP“STG
T 2 T. -1.T
= 65,6 + g % (6’ P71 sTe

Since the second term is a
follows that

sitive definite quadratic form it

Iex 2 G ZXG
Taking various valpges for G we see that the parameters X have
minimum variance,
15) The variance-=coyariance matrix of Vis ZL . Since E(V) =0
we have b
E(Wh = gax + [) (Ax + )T

T T

E(AXLT + AxxTAT + LLT + LxTAT)

SAXXTA + AXXTAT + 5, +E(L) E(LT) - AxxTAT
b .

= 7
Ly

In thiys derivation we have used the relations (2.31) and

Note that ZL is not the variance-covariance
matryx of the linear bfunction

wherp the parameter X has been replaced by its estimate,

whigh is a random variable jtself.

University of Maine, Orono
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3.2 Method of Condition Equations

From the n observation equations of the equation system (3.11)

we can eliminate the u parameters, having le
in which the residuals are the only unk
formed the n observation equations j

the residuals.

Equation (3.11) is

V=A+1L

=n - u eqiations

ns. Thusywe have trans-
0 r condition equations for

Multiply this system ffom the left by a matrix T. such that epch

additional multiplic

parameter. After ufmultiplicati

in which all parfmeters X are eliminated.

and

the conditi

anv/w=o

equations become

T ....T,T
u

2 ]AX + Tu oo T,THL (3.36)

Denoting

W is callefl the vector of discrepancies or the misclosure. Equa-

tion (3.34) implies the following important relation

] o

Provided the same criterion of minimization (as in the use of ob-

servatign equation) is used when solving

the pure algebraic point of view that both adjustment methods have

to yield the same results.

Adjustment Carerdstiass described above.
www.gnss.umaine.edu/lectures

In practical app]icaE}on OR$O?EYEV q504

In fact, the
69

(3.37)
(3.38)
(3.39)
(3.38) it is clear from
nivers aine, OJrono

probiem “which is
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to be adjusted dictates most of the time the adjustment method to
be used. It is,therefore,desireable to derive separately a set of

solution equations for the method of condition equations.

The non-linear mathemati (functional) model for condition

equations is

F (La) =0 (3
or
F(Lb +V¥) =0 (3
del around the point Lb gives
(3
(3
(3

University of Maine, Orono
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Equation (3.42) is the linearized condition equation. W is the vector
igclosures, B is the coefficient matrix evaluated at the expansion

point Lb'

The least squares™\Rrinciple requires that VTPV be minimized subject
to the condition of &quation (3.42). This is a standard minimiza-
tion problem in the caldylus of variations. It is solved by intro-
ducing a new variable, calNed the LAGRANGE multiplier, and minimizing
s(V,K) = vIpy - 2]|<rT (D, + W) (3.47)

The stationary point of Q (V,K) is\obtained from
1756 |
> S yTo T
2(3V ) =V'P-K'B
lr3¢

-Z(BK)=V%T+NT

Transposing both expressions and equating them to zero gives:

T

Py ~B'K=0 (3.48)

BV + W =20 (3.49)
This system can be solved for the residuals V and t\g Lagrange
multiplijer K. From equation (3.48) it follows that \

-1.T

V=2"P ]B K. (3.50)
Inserting this expression in (3.49) gives

B 18Tk + W = 0
Using the notation

M =8P B (3.51)
we get

University of Maine, Orono
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MK+W=20 (3.52)

and

K= -M W (3.53)
Equations (3.52) are called the normal equdtions. Using
equations (3.50), (3.51), and (3.53) the quadratic form becomes

vipy = KMk = -kTw

= WM (3.54)

Finally, the a-posteriori variance of unit weigh§ is computed by

., VIRy

OO = r (3.55)

where r is the degree of freedom of the adjustmgnt. It is equal
to the number of condition equations. The exprgssion (3.55) is,
of course, an unbiased estimate of the a priorijvariance of unit
weight 002. A special proof is not needed.

" The variance-covariance matrix for the Lagranggd multiplier can be

derived from equation (3.53):

Ig =g, M MM (3.57)

For the variance-covariance matrix of the residuals we obtain from
eq. (3.50) and (3.57)

= 2 p=1pTu~1pp-1
Iy = 9, P 'B'M 'BP (3.58)

The estimated variance-covariance matriy based on the sample Lb,

of course, is

University of Maine, Orono
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- 1.7
Zy

Tap=1

B'M 'BP” (3.59)

22,
_oop

Finally, the variance covariance matrix of the adjusted observations
is derived from equations (3.50)

Ly =Ly *V
= L, - p-laTn
=L p=1aTMTaL

- P"BTM‘]BLb + P‘lBTM']BLO

- p-lgTu-Tgp-1) (3.60)
Comparing (3.58) and/(3.60) we obtain
I = z}/ Iy (3.61)
a
K
For thg#vector Z ={ V
Ly
one obtains the variance-covariance matrix
y! ol 0
2, 1= o2 PiBM p=1gTM"Tgp~] 0 (3.62)
K1 o RIS P S P
) 0 0 p '-P B'M 'BP
La
In the following a few of the properties of the method of
conditions equations are listed:
University of Maine, Orono -
Adjustment Computations 73

www.gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick

Adjustment Computations
www.gnss.umaine.edu/lectures

1980 Lecture Notes in Surveying Engineering For personal use only

1w which is needed to compute VTPV

is obtained immediately from Cholesky's algorithm.

The expression -NTM'

Comparing the result of 1) with KTW as computed from
equation (3.53) provides a useful check for programming
errors.

3.40) is usually non-linear,
Note that the non-
the adjusted
of expansion

Since the functional

the adjustmenihas to be iterateds
linear relafion is exactly zero only %
observatiorfs (true values) L,- The poind
in (3.43) i
be sufficient\{f the residuals V = La - Ly are large. For
the i-th adjustmewg Tet us choose as expansion point H
which is equal to the adlu

adjustment:

Lb. Therefore, the linearizdtion might not

ervation of the previous

with
V =0and L =1L
0 b
then
B1 Vi + w1 =0
aF (L)
Bi = aL L
.i
wi = F(Li)
V. =L - L,

Vi is not identical to the conventional residuals V. It
is clear that, as the number of iterations increases, V}
tends toward zero since the point of expansion Li moves
toward La' Introducing V in the algorithm above we write

University of Maine, Orono
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The Tinearized fung{tional model becomes:

Bivi + Wi + Bi(Lb Li) =0
or
(.
Bivi + Wi =0

The discrepancy vector W lconsists now of two terms. The
second term results from Yhe fact that we have preferred
to replace V} by Vi' Thq latter quantity has the advan-
tage that it converges towkrd V as i increases. In the
the first adjustment, i=1, \the second term in W' is zero
since L] = Lb.
Step 1: Ly= Lb; compute B],
adjustment gives V], 1 9%

Step 2: L, = Vy*Ly; compute : P =F(L2) + Bz(Lb-Lz);
adjustment gives V2, IZTPVZ

Step 3: If Vy'PV, - V;TPVy < |c|, where ¢ is sufficiently

small then the adjustient has converged. Repeat

the iterations if necqssary.
Note: Vi -V = La-Lb
as i gets larger.

University of Maine, Orono
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As for scaling the weight matrix
of the observat
observation equati

s, the same ru

If one adjustment is caried out
adjusted observations in\poth ca
From equations (3.32) and \3.60)
obtained:

1,T

avIAT = pT 1

1 5-1,T

-P™'B M-.|

BP™

For proving this relation one\s
left and then from the right b
relation BA = 0.

For personal use only

and changing the ynits
Tes apply as in the case of

by both methods then the
ses have to be the same.
the following equality is

(3.63)

hould multiply from the
the matrix B and use the

Multiplying (3.63) by the non-singular symmetric matrix P

either from the left or right gi

1,T 1T

av1aTe = 1 - plgTH !

B

Using the symbols

AN ATP

=
1]

= p 1T s

then HH’ HB’ I - HA and I - H

B
cause the product of each of t

1

the same matrix again.

Using the relation (3.63) it c%n be easily shown that V PV

is the same for both adjustmen

es

(3.64)

re idempotent matrices be-
matrices with itself is

T

methods.

76
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3.3. Mixed Models

In this case the observations and the parameters have an implicit

functional relatiopgshrp~ rring again to the system of observation
equations (3. we now eliminate OQly a subset of p unknowns. There are
left n-p = equations in which the ™gsiduals and the remaining para-

meters arg related implicitly. In analoly to (3.36) we write

B'V=A'X+8B'L (3.65)
with

A' = B'A
These are n'=n-p equations containing u'=u-p unkpowns. Note that the
degree of freedom is DF = n-u=n'-u'. Applying tHe same criterion of
minimization as in the case of observation equatiqns,we must obtain an
identical solution for the remaining parameters. [The above technique

can be used to eliminate so-called nuisance paramelers.

For those cases where the relationship between the observations

and the parameters is implicit by nature it is bengdficial to derive
hile to know that in

ne might create

the complete algorithm separately. It may be wort
cases in which the B' matrix is of a simple form,
artificial observations for which the B' matrix be
matrix so that the algorithm for observation equat

mes the identity
ons is applicable.

In the subsequent development the symbols
r will be used. Please note that identical symbol
two models have only "formally" the same meaning.

» By W, N, u and
in the previous
The number of
equations is denoted by‘r. This includes all typgs of equations,
i.e., those in which the observations and the pargmeters occur implicitly
or explicitly, and those containing only parametg¢rs. It follows from
the observation equation model that n + u > r sipce it is principally
possible to add u-1 conditions about the paramef§ers to the n observation
equations. On the other side, r > u since the possible elimination
of the u parameters must result in at least ong condition equation;
this ensures a degree of freedom of at least ohe. Thus

n+u>r>u (3.66)

University of Maine, Orono
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whereby aF
By = 5
F
rAu - aX/
Xo’Lb
rw1 3 F(Lb, Xo)
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(3.67)

(3.68)

(3.69)

(3.70)

/ (3.71)

r: Number of dquations of the type indicated in (3;67), in

which observatiogs and parameters may appear implicitly or explicitly,

or which may confain only parameters or observations

u: Number of parameters

n: Number of observations

V,ﬁ: Random varidbles

A least squares solution is found by minimizing VTPV subject to the

condition (3.68).

$(V K,

) = VTPV - 2KT(BV + AX + W)

This leads to the minimizing of the function

(3.71)

where K is the vecto} of the Lagrange multipliers. The partial

derivatives are

%(%) vip - k'8
TORE
78
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130 = yTgly §TaTs T
2 K

Transposing the above expressjefis and equating them zero gives

(3.72)
r (3.73)
u (3.74)
These three eqgations can be written in a matrix as foliowg
'
rBn (3.75)
0
un
Equation (3.472) yields
v 4 pleTk (3.76)
Using this pxpression we can eliminate the residuals V from equation
(3.73) givipg
-BF'1BT A K W
= (3.77)
AT 0 X 0
Using the nptation
- -1 T
My = an Pn B, (3.78)
the solutiorn for the Lagrange multiplier is
KoM (Ax + W) (3.79)
University of Maine, Orono
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The adjusted parameters are

AT Tax -AT
or -

X = - T8y AT Ty (3.80)

MW =0

An estimate of the a posteriori variance of unit weight is computed
in the usual waj. Equation (3.76) provides an expression for the
quadratic form

Tpp=1 1T T

= K'BPT'PP 'BK=KM

KMl (ax + W) = -kTAX - KT

Substituting eq. (3.74) gives

T

VPV = (3.81)
= W+ WA
The estimate of the adposteriori variance of unit weight is
~ 2 VTP
) r—u (3.82)

B = M (3.83)

Note that the approximate coordinates
constants. Applying the law of error proPegation to equation

University of Maine, Orono
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0y = AW AT T (AT Ty (3.84)

. ST

0y = (ATHTA)
and the varijance-covariance matrix is

2. = 2 Q (3.85)

X 0 X :

The estimated variance-covariance matyix is

2

Iy = 9, QX (3.86)

We can also invert the matrfx of equation (3.77) and compare
the corresponding submatrix with/Qy in equation (3.84). Using the
expression of equation (1.33) fpr inverting a partitioned matrix
gives

Q22 = (ATMA) !

which is identical to the cqfactor matrix (3.84).

The expression (3.82) for the a posteriori-variance of unit
weight can easily be derivgd using the expectation operator:

vy = k"W
= (AX W)

Ty s Wt

=A™ AT AT T W T

=Wt o Ta aT )t ATy W
E(VPY) = E(fr V'PV)
= gete? - w7 taaT Ay AT T
. University of Maine, Orono
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= TreM M TAGATMETA) 1AM Ty o 002

) 2

since E(WW ) = o, M+ TaT

XA .

T/ 1. - W AT TA) AT

m
—
-z
0
-l
~—
]

}

Al T
Tr (I - (A7'A) (AT A))

Tr {rIr T uu

Therefgre % is an unbiased estimate of 002

Final}ys we need the variance-covariance of the residuals and

the adjustefd observations. From equation (3.76)

-2 1eTM T (AR + W)

]

7Tt e at AT AT W + Wy

= e el AT Ty ATt e teTu Ty
With D UOZM the law of variance propagation gives:
z, 40,2 P i - AATMTA) ATy e

For the adfjusted observations we obtain

(3.87)

University of Maine, Orono

Ly =l + ¥
-, + (e 1g T Tam TaTu! _p= 1M1,
Ly S U B O S 1Ty
A +p g aw a8 - g IM B
oL,
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T
z sy ( oL,
La aLb 0 aLb
- -1
= q, P’ - Iy
Thus,
z =z -z
La Lb )
Remarks:

1) The mixed model includes A£he previously discussed models.

Adjustment Computations

www.gnss.umaine.edu/lectures

With A=0 we obtain forplally the usual condition equations.
Taking B=-I and L=W ads formally to the observation equa-
tion model.

Equation (3.54) frovides two methods for computing V'PV.
They are a usef@#l check for programming errors.

The mixed modg! requires also iterations. Recall that the
nonlinear mogel is only fulfilled for (La.Xa). Let's take

L1 = * Vi-]
Vo = L0 = Lb

~ i=1
X,i" +X
x° =fo

The qugntity V} tends toward zero as the expansion point

moves ftoward L. Introducing the residuals V = La - Ly
gives
University of Maine, Orono
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Vi = Ling

and

<
1
=
+
—
—
o
)
—

move toward (La’xa)' Notg that a second term is added to
the discrepancy vector. / This term results from the intro-

duction of the residual Vi instead of the quantity V}.

Step 1: L1 =L1,, X

b* ™ 0"
Compute Ay, By, Wy = F(XqLy)
Adjustment fives X , V

Step 2: L2 = V1 + b?

Compute AJ, B

],
g+

W, + B,(L.-L

T

v, Py

2° 72 2( b 2)

. . 2
Adjustmenf gives X7, V2, V2 PV2

Step 3: I V, PV - v, PV < ||

then thefadjustment has converged;

otherwisp repeat the iteration.

4) The iteration profedure for the models of condition or observa—

tion equations.ig readily derived from the above procedure.

For jcondition equations
aF(La)

F(L]) = 0 set A = X

BLi!i + wLi + BLi(Lb-Li)

[H1}
(e}

=0

The B patrix is only a function of the observations

in thip particular case.

For|observation equations

(£ (1) - Ly)

F(Xl) - La = 0 set Bi =

Adjustment Computations 84
www.gnss.umaine.edu/lectures
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and w.i = F(x-i) - L-i - I(Lb'L.i) = F(X.i)'Lb = L_i

i -
X +Li—0

-V, +A
1 i

X

The A matrix is only a fu of the parameters in

this particular case

University of Maine, Orono
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3.4 Conditions between Parameters
In order to obtain more flexibility in our adjustment procedures, we would
1ike to include additional conditions between some or all parameters. The condi-

tions which the adjusted parameters should fulfill are s equations of the type

(3.89)

s < u. The linearization giv

36 [y + g(x) (3.89)
oX
Xo
or
C x+ NC 7/0 (3.90)
where ’
¢ = —|fand We = G(xo) (3.91)

= O .
(3.92)
= (
The linear fofm is
V+AX+W=0 : (3.93)
CX + wC =0 (3.94)

Note that c is no réndom variable!

The leastfsquares solution of (3.93) and (3.94) follows immediately from the

solution pf the mixed model in Section (3.3) using submatrices. We can

write

University of Maine, Orono
Adjustment Computations 87

www.gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only

with 8

0

b
"

B =

However, in order to gain more experience with the principle of least squares

we can derive the solution fram the beginning by minimi

the conditions (3.93) and (3.94)

-yl T
L KC) = VPV - 2KL

where K_ and K. are vectors of Lagrap@e multipliers.

T

derivatives and equating them to
l(ﬂ)T
2 \3v
l(m)T
Z\yx

;_(%L)T =BV + AX + W

"
o

1]
o

n
52
+
=
u
o

be written in matrix form as

n-u nos nv1
ru ros }KL1
uou uc-sl: u;(1
s'u sos SKC1

Thefdimensions must fulfill the unequality

ntu>r+s>u
n + (u-s) > r > (u-s)

Adjustment Computations 88
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(cx + wc)

Taking the partial

(3.95)
no1
i
= (3.96)

uo1
W
S C]

(3.97)
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The first equation of (3.96) gives for the residuals

V= P-1BTKL (3.98)
The equations for the remaining three p
S L
AT 0 (3.99)
0 C
The first equation of (3/99) gives
k= -e78)" A - (ep7l8) T Ak
Denoting
M= 8P '8T | (3.100)
then
K, = -M‘1y/- M 1Ak (3.101)
Substituting this expression in the 2nd equation of (3.99) gives
AT - AT AR + ¢k, =0
or
AT ax + CTKC = AT Ty (3.102)
We are left with the following system:
M A ¢ X AT W
0 KC -WC
or
A cr X AT Ty
= (3.103)
0 KC -NC

This equation system shows how the normal equations can be augmented to in-

. . |
corporate a constraint (condition)! University of Maine, Orono
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The first equation of (3.103) gives an expression for the parameters

aTM A X -k, = ATy

having the solution

X = (ATw~tay-t (CTK(//A(M_]N)

(3.104)
Inserting this expressfon into the second equation of (3.103}) gives
A Ak - eI AT = g
The solution fof the Lagrange multiplier becomes
Ke = EZ{%TM']A)']CT}'] (W + CAT )Tt ATl (3.105)

The equatigns (3.98), (3.101), (3.104), and (3.105) constftute the least

is sometimes of inferest th solve the above Jeast squares problem in
such that we fir
and thgn compute the effgct of the cdpditions on
stituting the

e solution separately (se-

quentil algorithm). S (3.105) for K; into (3.104)

gives

1 )-1 CTK T ATy=1

X = (ATM = (T 1a)7" ATy (3.106)

C

Thef second term is exactly the solution of (3.92) without the conditions.
Dedjoting this solution by the symbol "*" we get

X = X* + &X (3.107)
Wtn e = oA AT N | (3.108)
sx = (A )7 Tk, (3.109)
University of Maine, Orono
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From the equations (3.108) and (3.105) it follows that

1,,=1.T.-1

A) C} {WC + CX*} (3.110)

T -

and thus

&X = -(ATM']A)']CT{C(ATM']A)']SIJ/f,{wC + CX%) (3.111)

Finallyy,we can compute the

adratic form VTPV. From equation (3.98)

we have
WPy =k, T B e~ leegT
-k el g (3.112)
Transposing the equatiofis (3.99), multiplying as indicated below
T -
KL BP 0 KL
-XT =0
=0 KC
and addingygives
T T STAT JTAT Tt Ty _
KL BP W KL - X'A KL - X'C KC + X'C KC + WC KC =0
Comparing thid expression with (3.112) gives
vy (3.113)

Substitutin
expression

the respective expressions for K and K

L c yields an alternative

7Ty T

=W Tw + AX) - wcT cealmtay! ¢y (W -CX*) (3.114)

University of Maine, Orono
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Alred letpiression can bele¥hgedrslietere Sovedes B@neipdrate 1y Faiderseift #éB@oly
tion resulting from the constraints. Remember that for the first system only,
j.e. the mixed model without constraints, we had according to equation (3.81)

vipvx = W'k

with K # KL' The analogous expression for
constraints 1is included in (3.113)
T T T

VPV = -NKL - NC KC

quadratic form in the case of

The Lagrange multiplier KL cap/ be written according to (3.701)

AX* - M AsK
o F'_’
AK

Comparing this expression with (3.79) we see that

+ AK

-M']

orm (3.113) can now be given in

with AK AsX.

The quadratic

T

PV = VTPV* + aV'PY
= WK - WTaK - UK
with aVTPV = -WTaK - W.'K,
= W lasx - Tk

the form

(3.115)

17,

=t T ey g+ o

+ W7 et tay-1cTy - H + CX%)

c

T = T T ’.1 -] T
Adjustmerft CoitptRMtions (CA™ ¥ Wc! (c(a'm'A)Tic’y

(CX* + wcrgivers ty of Maine, OrbBo116)

RS il 'y
WWW NSS! deiRe-eatretires

92

Do not remove PDF watermark



No further explanatory service will be provided.

These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only
We can observe the following properties:
1) AVPV can be computed without having computed X (we need only
X*).

T,-1

1.7

2) Since {C(A'M 'A)"'C'} is a positive definite matriy]

term is a positive definite guadratic form,

the additive

N

Thus, any additional constraint increases

The degree of freedom for the combined soldtion is r + s - u. Thus,

22 vy
(0] r+s-u

(3.117)

The variance-covariance matrix of/ the parameters can be derived as
usual by applying the law of propagatfon of variances. The parameters X
are,according to equations (3.105) ghd (3.106),

~

X = (a1 [cT (AT 181 31 -1

1w+ c(a™ 18y AT T -ATM'1N] (3.118)

C

The only random variable is W
matrix of W is again Qw = M,

ince NC is a constant vector., The cofactor
Thus
)-1 [CT{C(ATM']A)']CT}'] C(ATM'1 )-1 ATM-1_ATM-1]

Using the notation

Nz ATM A
s = g a1l = enrleTy!
We obtain
Qy =
= Iy m N TcTsc-m1a) N
93 University of Maine, Orono
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Thus

0y = (A7 -@aT )7 Ty Tel T el lar! | (3ang)

Note that the first term in (3.119) is the cofactor matrix of X*. We can,
therefore, write

QX = Qx* ‘.AQX (3]20)

fice (¢ (AT 1A) 1Ty s a

* , which confirms the general

Each term in the djagonal of AQX is positive

positive definite matrix. Therefore Gy <
i
statement that the introduction of condi

X3
ons on the parameters reduces their

variances.

The expressions for i, KC a
using matrix partitioning techny

Qx derived above can also be obtained
ues on equation (3.103). Using equation
(1.33) we find, e.g. for the/ipper left submatrix

Qyy = (AT (AT Ta)~T cTee(aT™Ta) 1Ty T c(aTua)!

We find that 011 = QX' he parameters X can be derived in a similar manner

by matrix partitioning

The varjance-cgvariance matrix of the residuals follows from equations
(3.98), (3.108), angd (3.111)

V= -pT8TM (W + Ax* + AsX)

T

W - ANTATM VW + ANETsen TATM W) + constant term

where

and
1

The partial derivative is

Y 1Tl (1 - anTaTMY & At cTson AT
oW
University of Maine, Orono
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With Qw = M it follows that

;
3V 3V

o =|=1 ¢ (—

ol sl

aN-TcTsenTaTy w1 o1

|
)
[
——
w©
—-‘
=
}
—
-
=
ho
=

Comparing this expression with eduation (3.87), which gives the cofactdr matrix

without the condition, denoteg/here by QV*’ we can write
Q= Qus * 40y
with

1Teen1aT

cTsen-1aTy u!

1

Ml (AN B P

Substituting AQX frgm equations (3.119) and (3.120) this expression becomes

80, = /L]BTM'] (A 8, ATy m-1g p-1

Note that tie non-linear combined system (3.92) must be iterated. If
we first find th¢ solution of F(La’xa) = 0, including the iterations, then for com-
puting the effgcts of the condition G(Xa) = 0 we have to evaluate the
matrices C and C at the last expansion point Xil In the final solution
the expansion goint must be the same for all matrices.

Alternatfive derivation: It seems instructive to repeat part of the

previous deriyation in a slightly different manner. Consider the models
(3.93) and (3194)

V+AX+W=0
X+WC=0

The solution of the first system only, is

x* = -(ATMTA)"T ATM Tw
= 2 (aTu-1ay-1
ZX*— % (A'M™'A)
Adjustment Computations 95
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In a second step we find the solution of the condition equation (3.94) consider-
ing only X* as observations. Thus

C(X* + aX) + W. =0 Y

c
or
CAX + W = 0
i >
with (3.121)
We = Wt CX*
and
2 To-lpy-
Lyx = 0, (A'M ).| ]

The "parameter correction" takes on the role of “residual" with a weighd matrix

Poo = (ATM'1

X* A)

The least squares solution o
of Section 3.2

-1CT}-1 T

771 cTc(a™ 1a) .

which is identical tofthe solution (3.111). We can now compute the

Ty Tay=1-T, -1 =

MA)T'CT} We (3.123)

>
]
=]

C {C(A

1]
>
<<
o
<<

T T )~ TeT3= caTv1ay-!

A'MTA) C {(C(AM'A)"'C'} C(AM
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We may also compute the change in the residuals which is caused by the
condition (3.94). Let V* denote the residual as computed from the first

system only. The final residuals V a

with
(ay,

Furthermore, psing this expression for the change in resifuals, we can
verify the fgllowing relation:

T

AX'Pyy BX = (AV)T

T

97 University of Maine, Orono
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3.5 Sequential Solutions

Assume the observations are done in two groupswith the second group
consisting of one or several observations.

For a more general exposition the mixed model is considered:

X)) =0 (3.125)

Fo(Ly7sXy) = 0 (3.126)

p =<f1 0 ) - (3.127)
0 P2
Both groups of weig 0"
The linear adjus
10 (3.128a)
= 3.128b)
2 =0 (
with
afF
A = 571]/1
Lb,Xo
]
2 23 2
L
b,Xo

]

b’ o)

=
[

= F (L

2

The function to be minimized is

6= V. TP V. + VP v -2k T

T
T 11 222 1

B,V, + AX + W

B.V, + AX + w1) -2K ) 2 2)

1 1 2
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T
'I_(aL) - T
T
1739 - X
7 - L
(av2 PV - By Ky =0
T
173¢,
5 - T T
zcx = Ak - A
1/3¢ )T : R
2\;x1/ = BV 1
T
1736 . .

From equations

T X -
1 K.| + A1X + W.| =0

T
B.Py By

The Lagrange multiplier becomes

IS R
Ky = M0 ALK =My,

For personal use only

{3.129)

(3.130)

(3.131)

(3.132)

{3.133)

(3.134)

(3.135)

(3.136)

(3.137)

The equations (3.131) and (3.133) become, after combination with equations

(3.135) and (3.137)

=17 T _
BZPZ BZKZ + AZX + Wz =0

100
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Using
- -1, T
M2 = 82P2 32 (3.138)
both equations can be written in matrix form
Ty =1 T " Ty =1
= (3.139)
A2 "Mz ‘Kz ’w2

This equation shows how the normal matrix of the first system must be augmented
in order to find the solution of both groups. It is, of course, possible
to invert the whole matrix in (3.139). But this matrix might become quite
big. Also, assume we add on\y one observation to the first system. Then
we would have to invert the whpole system once again. It isytherefore,more
convenient to compute the confiribution of the 2nd set of observations to
the solution of the 1st set.

Applying matrix partitionfing techniques as expressed in equation (1.33)
to equation (3.139) gives

(3.140)
Ko = Q,,A vl + QoW (3.141)
2 A 1 2272 :
with
- Ty=14 y-1 Ty=14 =1, T )-1
Qpq = (AP MANTT - (AMTA)) Ay UMy ]
(3.142)
Qgp = +A; AN AT Dy (3.143)
Oy = Q' (3.144)
21 12 ‘
Q. = ~{M, + A (A; M. "TA )T A (3.145)
22 2 2'"1 1 M )
Substituting the 011 and 012 into equation (3.140) gives the solution for
the parameters in sequential form:
101 University of Maine, Orono
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X = X* + aX (3.146)
with
_ Ty - -1, T, -1
1, -1, T Ty =1, =N, T,-1

where  X* is the fé]ution of the first group only. Similqrly,

Ty =14 +-1 , T,-1
2+A2 (A] M] A]) A2 } (A2X* + wz) (3.149)
Using K2 the .parameter correction aX can.be written as
Tyl a1 T '
aXf= (A] M] ]) A2 K2 (3.150)
There i§ a third way of givin solution for X. frite the
equations (3.}28a,b) as '
B; 0 V] A]
+ (3.151)
0 B, V2 A2
which is the pprtitioned form of
B +AX +W =0
The least squarks solution of the latter system is known to be
X =\-(aT Ayt ATy
In terms of submdtrices we have:
T (B] 0><P]'] 0 (B]T 0 )
M=BA"B = -J) T
0 B, 0 Py 0 82
15T
=<B1P] B, 0 > _ <M] 0 >
“1g T
0 BZPZ 82 0 M2
102 University of Maine, Orono
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ATM1A = |¥

ATM Ty =

The solution for the parameteys becomes

v = Ty =1 Ty =14 -1 Ty =1 Ty -1
X = (A.I M-I A]/A2 M2 AZ) (A.| M.| N.I + A2 M2 wz) (3.152)

Equation (3.152) shows #nother method of how the solution of the first group can
be altered so as to giye the solution of the complete system. The method
is sometimes called thg method of adding the normal equations. Note that this

form of the solution qould have been obtained immediately from equation

(3.139) upon applying/ the alternative form of expression (1.33). The cofactor

matrix is

Ty =1

Ty oAy © (3.153)

- _ T, -1
QX = (AJM A = (A1 M1 A1 + A2 M

Using again the algernative expressions of (1.33) it is seen that QX of (3.153)

and Qqy of (3.142) are identical. We can, therefore,write the cofactor matrix
QX of (3.153) in Ehe following form:

Q¢ = Qex *[%%
R
1, =1, To- Ty =Ta -1
<y AT - T Aoy, (8 Ty Ay T, T Aoy A

- Qx*AZT("’2“”‘20x*"2T)—1 A2y

1
O
>

(3.154)

where Qy, is the cofactor matrix of the first group of observations only,

University of Maine, Orono
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and

T

-
8Qx = ~Qyx Ay (My*AsQyxA,

)™ AyQya (3.155)

is the contribution of the additional observations (2nd group) to the cofactor
matrix of the first group.

It is interesting to see that GQX can be computed without having the
actual observations of the second group. This can be of great help in
practical application. Assume that a complex network has _been observed. In the
subsequent adjustment it is found that certain pa rmined

with sufficient accuracy. It is then possib

eters are not
to find through simulati
study those additional observations which Ancrease the accuracy of the pa
meters in question most (optimization tfchniques).

Equation (3.155) shows that ea
diagonal elements of the cofactor

are positive definite quadratic

additional observation reduces the
trix. The diagonal terms of (-5QX)

Substituting equatiohs (3.134) and (3.135) gives

ey Ty of -1 -1, T T

-1 1T
Ky Byffy PPy By Ky + Ky BoPy

PaPo By Ky

AT T -1 T
1 By Ky * Ky By, By K

2

T T v -
K, | By’ Ky AX+ W, =0
T -1, T ¥ =
K, | B, Ko+ AKX+ W, =0
T T, _ v
1" A2 K2 =0 [X
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to which we have added equation (3.131

).

Carrying out the multiplications

as indicated and adding all three equations gives

Tou - T T
VPV = -K1 N1 - K

(3.156)

Substituting the expression (3.137) for K.,

K] = 'M] A] (X* + A
gives
Vey = (%) Ta 0w, + axTA

1

il

The final form for

1

T

-1 T. -
My Wy M

(3.157)

PV is reached by substituting (3.148) and (3.149) for

AX and KZ:
vipy = vTpy* + avTey
T T T =1a =1 , T.-1
= V PV* + (AZX* + wz) [M2 + AZ(A1 M] A]) A2 } (AZX*+w2) (3.1588)
with TPV > 0 because it is a positive definite quadratic form.

Generalizatffion of sequential solutions:

observatiogs:

1 _
Fy(L,'s X)) =0
2 -
Fp (L% X)) = 0
3 -
Fy (Ly°s %) = 0
K )
F (Lg s X)) =0
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Let the stochastic model be

Py (3.160)

i.e., there is no correlation bejfleen the various groups of ob¥ervations.
A1l the weights refer to the t ooz.
The point of expansion for

me a-priori variance of unit wei

ch subgroup is (Lb1, Xo)' The least\ squares

solution of the first systgm is

T
Xy = QA
with
Q = Qﬁ (3.161)
and
~ T ~ _
Equation (3.154) shgws how the cofactor matrix changes as another group
of observations is gdded:
T T,-1
Qp = Qf-Q1Ay (My+Ay00A ) Ay
T -
03 = Qf-0pA3" (M5+A30A3T)"" AgQy
' ATy
Q; = &4 -0y _gAyT (M A0 AT A (3.162)
The change in parapeters as a result of a new group of observations is,
according to equatfon (3.146), '
106 University of Maine, Orono

Adjustment Computations

www.gnss.umaine.edu/lectures Do not remove PDF watermark



No further explanatory service will be provided.

These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

57 K

8Ky = =05

Alfred Leick o S 1980+L%c£ure Notes in Surveying Engineering For personal use only
i

T Ty-1
Ap (M + AQL (AT)T (ALK, o+ W) (3.163)

For the quadratic form we obtain fro

VPV, = VPV, , +
! 1-1 (3.164)
T _ T T,-1 :
avV'PV, = (A + wi) My + A;0;_4A; '} (A1-X1-_1+w
This is the general formylation of the sequential algorithm, presses the

ment containing all prdvious observations. There is no restrictiop on the

number of equations irf the new group.

from an
existing adjustment.| Consider again the uncorrelated case, i.e., fthe set
of observations to bk removed is uncorrelated to the other observgtions.

Occasionallys it/ is desirable to remove a set of observation

case observations aye removed the corresponding part of the nogmal matrix
and the right-hand4 ase equation
(3.152) becomes

X = -(

T. -1 -1
W A A

-1
o}

T T
( 1

T
1 (

-1 -1
-M, )A {A;'M W]+ A2 -M, )Nz} (3.165)

It is seen from (3}165) that one only has to assign a negative sign to the

weight matrix of the group of observations which is being removed, since

A T

The same sign changg should be made in the expressions (3.163) and (3.164)
for the sequential 4olution. It is noted that in this case the matrix

.
Mg+ AQ5 A3

is still symmetric bdt not positive definite anymore. The inversion can-

not be done by Cho]eﬁty's algorithm. A more general inversion procedure

must be used.
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Finally, we would 1ike to derive the contribution to the fesiduals due

to the additional group.

T, -1

From equations (3.134), (3.137),

d (3.146) we obtain

V] = -P1 81 M1 {A](X* + AX) + N]}
M e Ty Tr-an 1A T A N T T Ta. v 7Ty
aw1 T "1 ™1 11 1 2 11
3V
1 _ -1, T, -1 1, T
E S B L TR L
. M 0
Since Q Y
w],wz <:O Mz :) (3.166)
we obtain from the law of variance propfggation, after some algebraic re-
arrangements,
Q =Qy » *t2Q
b T R
with
Qy % = (p -l T T T\T 5 =15 T, -1 Vg =1g T, =1, 1T
Vi (P By ) My (P By ) =P By My AN T (P By M A
_ -1, T -1, T -1, T, -1 -1,.0.\T
The matrix T is
T = (3.168)
Note that Ev =
. 1
‘where o," is computed fyom all The

- T
5 = =Py E2 T (AZX* + Wz)

-1

v
2 _p-1gT

a4, T
Ny A M
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aV
2 _ -l T
SWE- = -P2 82 T
Using again the law of variance propagation and the relation (3.166) the
cofactor for V2 becomes

QV = P2 B2 T BZPZ (3.169)

The variance-covariance matrix of the adjusted observations issas usual,

zL; = EL; -zvi (3.170)
As for iterations one has to make sure that all groups are evaluated

for the same approximate parameters. If the first system is iterated, the

approximate coordinates for the last iteration have to be used as expansion

points for the other groups. Since there are no common observations

between groups, the iteration wi

the observations can be done
individually for each group. ved, the same expansion
point must be used as was uped in the first place)

The sequential algorithm@escribed in this section\includes the special

case of direct observations on tNe parameters. If all parameters are observed

we have P2=Px, Bz= -1, and A2=I. the observed value gf the parameter
is also the point of expansion then we 9 = g, or L2=0.

If only a subset of parameters is observed en 82 is still an
identity matrix but A, is a rectangular matrix with "ones" at the appropriate
positions. The expansion point for the parameters does not have to coincide
with the observed value of the parameter. This situation arises if the first
system has been iterated. If it is decided that the first system is not
going to be iterated at a]B one probably will select the observed coordinates
as the coordinates of the expansion point.
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F(La.a' ’( >
z(L '0

8,V +A1X+N =0

azz a p ,(Pl 0 )

= 0 P

L, ";(xa) /
1

1 1 R L
ByVy + AX + Uy = 0 Vy = AX 4L
e ',}’";:Lv P70y, My Ly M
el T
M.=8.P. B,
Ty -1
Ag M A
ap Tw =}
TRTILALTS
T -
TR B O I ||y
Ay M *2 ¥, ] B )
- -1 - -1
L= -(N1+N2) (U1+Uz) / % -(N1+N2) (u1+uz)
X = X* + aX X = X* + aX
-1 -1
X* = =N, u} 1 X* = N7 ]
A, Ty- T, Ty-
Ta (M, +A N, A, ) T= (M, + ANy A

- <1, T
ax -N1 ;‘\2 (AZX*+NZ)

- “, T
ax -N1 A2 T(AZX' + LZ)

V= VT E Y

*
v =V1 + aVv

1 1

1, Ty - _
vyr = -Py e T T () Yyt = AT e L
2, T, -l .
avy= -p, 78, T T adhx aVy= Aex
VIRV = §Tpyr+ of Py VIPY = Vpyr + avTpV

7Py = T T) -1
VipV* 'J1 M w1 ~Ur'my U

Toy = T
avV'PY = (A *+N2) T (Azx* + Hz)

T Ty-1
Tois = Ly 'Poly = U TNy
T

_ T
av Py = (AZX* + LZ) T (AZX* + LZ)

QX = QX' ; aQ
qu = N]

21,7 -1
20 = Ny Ay TASNy
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ey

o = r]+rz-u

Q. = Qy  + AQ
i T T,
1

A Ty =1, 1y -1
=(P 7By T AN T
1

. “1n T -1
Qv * (7B WP

My, = (P1-131T“1- AN
ATy -1

P

( 1 B]MI A

“1g T
QV2 =P, Bz TBZP

Sl TyT

p -1
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3.6 MWeighted Parameters

This section is an extension of the remarks made at the end of the pre-

vious section redarding direciObservationg
is possible to obtain informé

on the parameters. Sometimes it
tion directlyjon the parameters through some

differ frop
far. Since these new measureme

additional measurements whid the type of measurements used thus

; known only to a certain accuracy they
must be introduced into the adjustment in such a way that their contri-
butions to the final result are in accordance with their accuracy expressed
by their covariance matrix. We aresthus,led to the method of weighted para-
metersy or to the case with special weighted constraints. We will have to
handle the parameters as "observations" having a variance-covariance matrix
associated with them. The following extreme cases can arise regarding the
weight of an observation:

weight = = the observation becomes a constant
(fixed variable); the associated
residual 1s zero.

weight = 0 unknown in the classical meaning.

It is understood that the weights of both groups of observations refer to
the same variance of unit weight.

Let
LL be the adjusted observations of the
a first group-
an be the adjusted observations of the

second group. (One may think of them as
being the group of "observed parameters".)

Generally, both groups of observations differ significantly in their respective
weights:

PL =0, I (3.171)
PX =0 ZX (3.172)

We assume that there is no correlation between bofh groups of observations.
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The matrix PX may be full, diagonal, diagonal with some zeros on the diagonal,

or even completely zero.

The mathematical model for the general case discussed above is the method

of condition equations

F(LL s Ly ) =0

a a

(3.173)

The stochastic model is expressed by equations (3.171) and (3.172). Let

there be

n observations in L

u observations in
r equations in (

BLVL =0
with
B =
L L
bk
B -—
X
,L
%
W= F

where L, and L
A T
minimization of
oV, VoKl = v TPV +VTPVX—2KT(BL

L>'x’ L LL X X

The partial derfivatives are

a6 AT
1 - T, _
—B_VL) =P, -8 k=0
;
3¢
1 N T, -
'a_vx) “[Px¥x - By k=0

Adjustment Computations 13
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are the obsgrvations. The least squares principle requires

vV, + BV, + W

XX L)

(3.175)

(3.176)

University of Maine, Orono

Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick 1

3 T 1980 Lecture.Notes in Surveying Engineering

7(3g) =BV, *+BV, +U =0

L'L

which can be written in matrix form as follows:

The residual

where

The solution
partitioning

Adjustment Computations
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S

J

M

v

|

U

!

* -

T A
X By Yy 0
_ -1, 7T

s easily found by computing the inverse using matrix
echniques (1.33):

QoM

F -QpoW

|
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(3.177)

(3.178)

(3.180)

(3.181)
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with

Q0 = (3.182)

Qs = (3.183)
Thus

Vx = -(Pfa (3.184)
and

PR B I Ty =15 y-1p Ty -1
K= { ™M BX(PX+BX M BX) Bx MU (3.185)

The expression (3J184) shows how the weight of the second set of observations
enters into the gorrections (résiduals) for the second group of observations
(parameters). I Py= 0 there is no contribution at allyand the result is
identical to thejone of the mixed model of Section 3.3 in which Vx is con-
sidered to be thk vector of parameters.

The computation of VTPV proceeds as usual. Using equation (3.179)
the quadratic fTrm becomes
“Torl T

V' PVY= VL PLVL + VX XVX

T i Tp @
K'm K+ T, e 0

Note the contriby

tion of Vx to the quadratic form VTPV. Substituting the
Lagrange multipliier

expression for th

_ -1 =1, 5
K= - W -ML BXVX
gives N
“Tor T 0 Ty .07
VPV =K ByVy-K'W Wy PXVx

Tw =Yy T -1 Tw =1a y-1 Ty -1
W ML W - ML BX(PXA"BX ML BX) BXMUni\yersityofMaine, Orog%'wG)
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An estimate of the a-posteriori variance of unit weight is

;2= Lo (3.187)

where r' equals the number of equations minus the number of observations
with zero weight (parameters).

The variance-covariance matrix of jgfie residuals of the second\group

can be found from the law of variance/propagation. Since both groups\are

uncorrelated the cofactor for W is

Qu = BLPL

i
=

+
=

(3.188)

Q, =Q,,Q
v, T e
} -1 - R INA
(Py+Ey M. MU (MMM By (PytBy M ™ By )
) T =10 =1 o T =1 o Telg o -1
= (PyBy MU By) T By M T (MM ) (M ByPy T TBy ) BYPy
L. ~ /)
I
) Tu =To \=1 o Ty ~1g o -1
(pfes, T 1871 B, T T8 P
b T Ao 11 g o -1
= o8, (m 480 18,07 BeP,

Above use has been gade twice of the two identical expressions for le as
given in (3.182). |The expressions for QV can further be simplified by
using the relation X

M 48P,

T
L XX X

T -1 _ 5 -1 -1
(Py*By M By) =Py Py By
which can be verifled by the identities in (1.33). The final expression

for the cofactor mdtrix is

116 University of Maine, Orono

Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only

P T, -1 -1

The second term indicates the improvement due to the adjustment.

The variance-covariance matri he adjusted observations isjas usualsg
2
5, =9,(Q/ -q )
L 0 L
Xy ) Vx
- -1 -1 T, -1 -1
= of" (Py" -PyT + (Py*By M T'By)
N T, =1, -1
I % (PX +BX ML BX) (3.190)
X
a
and the esfimate is
2 .2 T, =15 =1
ZLX. =0, (PX+BX ML BX) (3.191)
F
The cofacgor matrix for the observations of the first}group can

be derived accofding to the same scheme, applying the law of variance

propagation and Jusing repeatedly the matrix identities (1.3i). After

-1 T, =Ty y=1o Toy =1 5 =1
(M B, (Py*By, M ~'By) By 34 7B P (3.192)

L
L b
i
L
i
VX
iy, i
BVt
with ) )
i_ i i i i
W =W +8B + By (be Ly)
University of Maine, Orono
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Note that the discrepancy vector W consists of three terms in this case.

It follows that

as 1 increases. This iteration procedure is valid regardless of whether
Ly or only a subset (i.e., the adjustment contains some parameters in the

classical sense) is observed. If we consider the approximate coordinate of the

parameters as observations with zero weight then the above algorithm can
be implemented withou

e. The respective subset of VX which de-
notes the parametgfs, will not tend\{gward zero as it does in Sections 3.1
and 3.3, yet thefpoint of expansion movdg toward the adjusted value. In

Rr1ly to the observations. The
corrections to the\ approximate values of the\parameters, of course, must

not contribute to VNV. But this is accomplikhed automatically since the
weight matrix has zerod\at the respective plg
update the parameters in tl

this case the panameters are updated simi

es. If it is desirable to
£, i.e., the corrections tend
toward zero, the above algorithm has to be modified only slightly.

In Table 4.3 a summary of equations for the case of weighted parameters
is given. From the first and the third columns we see that the equations
are readily applicable even for the case in which only a partial set of Ly is
observed. The inverse of PX is nowhere computed directly, thus avoiding
any numerical difficulties on the computer.

The second column of Table 3.4 contains the expression of the mixed
model in order to demonstrate the formal correspondence between the mixed
model and the more general model with weighted parameters. We only have
to specify that PX =0 and LX = Xo'

Another important corresBondence exists with respect to the adjustment
in groups as explained in the previous section. Emphasis was placed in
Section 3.4 on the sequential algorithm. But considering equation (3.152),
which shows how the normal equations of two groups are combined, the rela-
tionship with the model of weighted parameters becomes obvious. Specifying

the second group by Bz=-I, A2=I, and w2=L2=L°2-Lb2 = xo-be and setting X°=be,

118 University of Maine, Orono
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the equation (3.152) is identical to the expression QX and X in the columns
1 and 3 of Table 3.4. The necessity to equate X0=Lx in order to obtain the
identical expressions stems from the different approthes in both cases. 1In
the model with weighted parameters, the parameters are observations by assump-
tion, and, consequentlys there is no conceptual need to introduce an approximate
value Xo. The identity of the least squares expression also holds if only a

subset of parameters is observed. In case A has as many rows as there

are observed parameters. There is a "one"\at the column which corresponds
to the observed parameter. All other eldmends are zero.

permit a convenient way to constrain thg parameterg to their approximate
values. One only has to add a large numbée? in the corresponding
diagonal element of the normal matrix. This is one

constraint so that the normal matrix is not singular’s

to impose minimum
ymore.

In Table 3.5 the expressions are given for direct observations on
parameters in the case of the observation equation model. These equations
follow immediately from those of Table 3.3 and include the -special case of
column 3 of Table 3.4. Note that the number of rows of Ay and the size of
Py is equal to the number of observed parameters. Ay has “ones" at the

appropriate positions.
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Table 3.5 Direct Obsarvations on Parameters (Observation Equation Model)
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L, = Fx) <p 0 ) L, = F(x) ( 0 )
Ly = A, 0 Py Ly =X, Py
a a
Vo o= AX+L Vo osAX+L
VT AL EE S
et Ao be K V_\
N o= ATPA % = ATPA
U= AT u =ATRL
T

U = Ay Pyly Uy = Pyl

E ] = v = *
xa o + X*+ aX xa x°+x X, + XM+ AX
X* = xx = Ny

1 Ty R R
T = » AN A Tos el o)
o= —N‘]AXTT(AXX* + Ly) s = NTIT(r 4 L)
" Ty-1 T X = -
X/ =N+ AP AL )T (UHAL TPYLy) X S(N + Py )THU * Pyl
Vyom gt av U om v eay
\7]*-Ax*+|_ Vi* s AX* o+ L
AV = AaX AV = AaX
iTov = VTpy* + avTpy iTey = ¥Teux + avTpy
o - . ) -1
VTovr = LTeL - Uy vTpg* = LTPL - uTN 'y
VTPV = (Agxr + LOTT(AX + Ly) VTRV = (x% + L) TT(Xe + Ly)
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Table 3.5 Continued

Q =" -4 O = Q" - 4Q
QX* a N_] QX' 3 N_]

aq = N“AXTTAXN" 80 = NIty
sz, ey -2 vlpy

o~ n-utn % n

[

O
-

—

1

>

-4

]
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us mathemathgal models can be linked to
the general model. The diagramfis neither uniqua\or complete. It is im-
portant to note that each model| can be derived indeNendently, i.e., for

each model one can find a quadrytic form from which tQe solution can be de-
rived through minimization.

The diagram shows how varj

University of Maine, Orono
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The least squares estimationyas discussed in the previous sections,
does not require any specific distribution for t . s or the obser-

vations. It js only necessary that the v ¥ance covariance matrix of the
observations exists. The model for oh#frvation equations is

)

? (4.1)

or

Note that X itself if a fixed parameter and not a stochastic variable, whereas
the estimate of X/ X, is a stochastic variable. However, if we do want
to compute intervyl estimates for the least squares estimates and test

hypotheses the s

cific form of the population distribution must be known.

4.1 Moment-Geperating Function
The spgcial expectation

fet) = T et f(x)de (4.2)

is called Jthe moment generating function (mgf) of the random variable ;.
The follojing notation is used:

M(t) = E(e¥) (4.3)
For t § 0 we have
MO) = E() = T f(x)ax = 1 (4.4)

since f(x) is a density function.

125 University of Maine, Orono
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The importance of the mgf stems from the fact that it is unique and completely
determines the distribution of the random variable. Thus, if two random vari-
ables have the same mgf, they also have the same distribution.

The mean aRd the variances are special cases of the mgf:

dM(t
t

M*(0) (4.5)
Mn (t) =

M"(0)

Therefore the variance can expressed as

o2 = E(x%) - % m(0) \ tM'(0)32 (4.5)

4.2 Stochastic Independence

The concept of stochastic independence is needed for deriving some of
the distributions which are functions of several random variables.

Two random variables Xy and Xo having a joint pdf f(xsz) are indepen-
dent if

f(x],xz) = f.l(x]) ‘fz(xz) (4.7)

where f](x1) and fz(xz) are the marginal prpbability density functions. In
this case

Pla<xy<b » c<xy<d) = P(a<xq<b) | P(c<x,<d) (4.8)

since
d

f1(x]) fz(xz) dx1 dx2

[Chated

P(a<;.|<b, C<;<2<d) =

126 University of Maine, Orono
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=[z’ f1(x]) dx]] [ Z’ fz(xz) dx2]

= P(a<x,<b) - P (c<§2<d)

]

Furthermore, the expected value of the product of linear functions
u(x1) and v(xz) is equal to the product of their expected values :

E (ulx) * vlxp)} = EQulx;NE(v(xp))
Since

Efu(x;) ¥(xy)}

= F {u(x])} E{v(xz)}

(4.9)

fi u(x]) v(xz) f (x]) fz(xz) dx, dx,

{_i u(x;) f](x])dx H i v(xz) fz(xz)dxz}

This theorem can be used to demonstrate an i mportant result about the cor-

relation coefficients:
Let X1 and 2 be independent having the mea

2 2); then

(O’-l , 0'2

EC(x-1 ) (y= 1) }=E(R-uy) + E (F-uy) = 0
0 0

(“]’“2) and the variances

That is, the stochastic independence of x and } implies that the correlation

coefficient of x and y is zero. (The converse is not necessarily true).

For the stochastically independent random variables Xy and 2 the
moment generating function of the joint pdf is equal to the product of the

mgf of the marginal distributions.

since z >
t]x]+t2x2

E(e )

tixs tox
L7 ke

M(t-l ,t2)
= E(

E(e ) E(e

M(t,0IM(0,t5)
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4.3 Special One-Dimensional Distributions

4,.3.1 Gamma and Chi-Square Distribution

The function

r) = 7 ¥ eV gy (4.11)
0
is called a gamma function. It is proven in . calculus that the
integral exists for o>0 and that its value is a positive number. For
a=1:
r(1)= TeYdy=1 (4.12)
0
If o«>1 we obtain through i by parts:

@2 oY 4y = (a=1)+r (a-1) (4.13)

(3) (2) (1) (4.13)

then,

T(a) = (a=1)! : (4.14)

Let us change the variables as

™|x

y = with 8>0
with
1

dy = 5 dx

128 University of Maine, Orono
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Substituting the new varjable into equation (4.11) gives

@ a-1
I(a) =f0 (—;—) o~X/8 (]?) dx

Dividing both sides by T'(a) gives

xa'] e-x/8 dx

Since «>0, 8>0, and r(4)>0

f(x) ! @1 o=*/8 O<x<w (4.15)
FZaSB“

0 elsewhere

is a positive function whose integration over the domain is one.
f(x), therefore, can serve as a probability dendjty function. It
is said to be a distribution of the gamma type.
The mean and the variance of this distribution\are obtained by
evaluating the mgf:

M(t) = fetx S B L
0 F(G)Ba
e 1
_ a=1 _-x(1-Bt)/8
= fo mﬂ' X e dx
1
Change of variables: y = x(1-8t)/B with t< =
-~ x = yg/(1-gt)
dy = 17E% dx
[ 8/ (1- Bt) ( ) -
M(t) = 0 r{a)8 1-8t dy
T N % 1
o —  ya-1 o=y
(1—Bt> Of r(a) J @7 dy
A — .,
1
129 University of Maine, Orono

Adjustment Computations
www.gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick

since the integral

Thus,

1980 Lecture Notes in Surveying Engineering

1\ '
- 1
((1-et5) tg

nteger and will be called the degree of freedom.

is one according to equation (4.11)
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1

The mgf is

-1 -x/2
f(x]= — xr/2 e dx O<x<e
r(r/2)2"72 '
= 0 elsewhere
Md) = (1-2¢)7"/2 t<k

giving a fmean and variance of

The distributio

of freedom.

The X2 distribut

H=lr

We fu

v 4
X ~X

Adjustment Computations
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(4.

(4.19) is called the Chi-Square distribution of r degrees

se the symbol:

r

on is, for small degrees of freedom,very unsymmetric.
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Figure 4.1 x2 Distribution for Various Degreeq of Freedom

The area under the curve expresses the probability.
statistics, tables are given for the integral

most text books on

X
- 1 r/s =1 -w
Pix<x) = [ ——— 2 2d4 (4.23)
0 r(r/2)2
The degree of freedom is sufficient to completely descrfibe the x2

distribution.

4.3.2. Normal‘Distribution

The normal distribution is of great importance t

Survey Engineering.

It has been observed that the values of variables desc
occurring phenomena do indeed follow a normal distribu
are repeated measurement of angles, distances, etc.

Consider the integral

¥/,
_mfe dy =-\/;

Adjustment Computations
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whose evaluation can be found in advanced books on calculus. Thus,

T Y
‘[ 7€ dy = 1 (4.25)

function and the integration over the domain is unity./ Change the variables

x-a
y=p b0
dx
dy = T
Thus,
= -(x-a
1 2b
e
-= b¥2n
Since b>0 2
-(x-a)
22
f(X) = e =< X< (4.26)

satisfies the cgmditions for a pdf. This is the normal distribution. It
is readily seep that f(x) in (4.26) is symmetric since

= f(-x)
The pgf is 2
= -{x-a
op
2b
M(t) = ]Etx b_)/;TT e dx

After clfanging the variables by
X = by + bt + a
dx = bdy

132 University of Maine, Orono
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and subsequent integration the mgf becomes

2.2
at + 2% |
M(t) = e (4.27)

f(f) = = e ~ag X< (4.28)

x ~n(i,0%) (4.29)

is used.fThe two parameters u and 02

distribfition.

completely describe the normal

Figure 4. . . University of Maine, Orono
Amuﬂnmntg&“%&agonﬁorma1 Density Function
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The following characteristics of the normal distribution can be observed:

a)

b)

The distribution is symmetric about the mean.
The maximum value of the density function is at x = u:
f(x=u) = f = ]

H max  o/2nu
For small cz(variances) fmax larger and the slope is
steeper for values around e mean than in the case of
large variances. Values/close to the mean have higher
density than others.
The density functior/is assymptotically zero at + =,
The inflection poipitis at x = pt o
Set y = x-u
then f(y)
f'(y) =
f' (y) =

2,, 2
- -y /20

e [T () e

ofV2r 20

\ : 2 e

f (y) = =5 (1- 2) e

J o V27 g
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For the inflection point the second derivative must be zero
f(y) =0
It follows that
2

1 -4 =0

(o

must be zero. Thus,

(4.30)
has a normal djstribution with zero mean and unit variance (= stan-
dardized norm The probability that the random variable
w is smaller /than a certain value w is
Change fthe variables of integration

= (x-u)/o
= dx/o
135 University of Maine, Orono
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then w 2
P(wew) = 7 75%—- oY /2 dy
But
g(w) = e'-WZ/2 - < W< ® (4 3])
2m *

in n(0,1). This fact considerably simplifies calculations of
probabilities concerning normally distributed values.

Suppose X -n(u,cz)

and ¢, < ¢

1 2

then

P(c] <x < CZ) = P(; < °2) - P(; <C

o

is tabulated.

N(-x) = 1 -N(x) (4.33)

holds
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one

Thus, if
x~n (1,0
P(C|<;<C2
Example 1 ;
P

Example 2
X
p

Example 3
X
p

It is important

2)
Co=u . Cq-
) = P( , 2—0—“<w< ]Gu> (4.34)
= N(Z
-n (2,25 :
osici0)f- W(1%5E) n(%52)

N(1.6) - N(-0.4)
0.945 - (1-0.655) = 0.600

from the mean?

() - (22)

= N(1) - N(-1)

= 0.841 - (1 - 0.841) = 0.682

(nfo<x<yto)

Fn (u,0%)

u—30<;<u+30) N(3) - N(-3)

0.9973

to note that in the case of normal distribution the

observations fall in{about 68% of all cases within one standard deviation

from the meanyand only every 370th observation will deviate from the mean

by more than 3c. Thé

refore, 3¢ is sometimes taken as the 1imit to what can

be regarded as randof error. Any larger deviation from the mean is usually

considered a blunder
but their occurence

Principally speaking, large errors cannot be avoided,
s unlikely.
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The values in the following tables are quite often used:

X ‘ 1g l 20 I 3g
N(x) - N(-x) l 0.6827 I 0.9544 | 0.9

dg
0.99994

1.9600 | 2.3260 | 2.5760 | 3.2910
| 0.95 | 0.98 | 0.99 ‘ 0.999

x | 0.6740 | 1.6450
N(x) - N(-x) | 0.5 | 0.90

Map Accuracy Standard {MAS): The limit of 1.645 ¢ 1is sometimes referred to
as the Map Accuracy Standard({AS). It is the limit which contains 90% of
the probability:

P(-xMAS = P(-wMAS< W < wMAS) 0.90
"MAS .
2 ﬁé? dw = 0.9
0 r
From integration we
Wuas T 1.645
giving
Xwaf = v * 1.645 ¢ (4.35)

Probable Erro¢ (PE): Another measure of precision is the probable error
(P.E.). It ik defined such that its range contains 50% probability. Thus,

P(—XPE <X < XPE) = P(-WPE < W< WPE) =1/2

“pE

2
1 -w /2 -
| 5 e dw = 1/4
0
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From numerical integration we obtain

Wo g™ 0.674
=y +0.674 o (4.36)

Average Error (AE): The average or is defined as

n
L IXT"U’
AE = ———

We can combine the errorg of the same magnitude (but with opposite sign):

where mi is the nupber of occurence of the error i. If we associatfe

probabilities to fthe m; then we obtain

AES= Py Ixpmul * Py xpmul + oon = 3 py [xmu

The definitign of the AE can be extended to the continuous gase. Denote

Thus

- 1
AE 2][ e s @ de
0 <
® 258
2 d
T o¥2n e€ €
0 139 University of Maine, Orono
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Changing the variables of integration:

where use is made of equation (4.12))

Thus XAE = p + 0.7986 ¢ (4.37)
The three measures of precision are related follows:
PE < AE < ST. Dev. (o) (4.38)

In case of the normal distribution it is eas¥ to identify location
parameters other than the mean.

The mode of a distribution of one random variabl x is that value of
x that maximizes the pdf f(x). In case of the normal di\tribution the
mode coincides with the mean.

The median of a distribution of one random variable x\s a value of
X such that P (;<x)< % and P (;>x )>%. In case of the normal\distribution

the median and the mean coincide.
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4.4 Distribution of Functions
4.4,1 Square of the Standardized Normal Distribution

As a simple example of a function of a random variable we compute the
distribution of the square of a random variable which is normally distributed.

Given that

then

(4.40)
Change the variahle of integration: w = y
then
V<m
The probability densyty function is
0 <V <o
141 v University of Maine, Orono
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Since this is a pdf it must be that

; f(v) dv =1
)

Comparing the density function with the x2 distribution we see that

vl (4.41)
1
with one degree of freedom and that
r (%) =/

Therefore, the square of the stan 1zed normal distribution i

square distribution with”bne degree of freedom.

4.4.2 Transformafion by a One-to-One Mapping

densi@y function ¢ (xlfz). The region in the (x., x2) plane in which the

1

sity function is non-zero is denoted by A.

A: region of non-zero pdf ¢ B: region of non-zero pdf g

Figure 4.3 Transformation of Random Variables
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What is the density function of a function of the two random variables
¥y = up (X %) (4.42)
If we have two functions
yi = Uy (x95 x5)
1 1 '71° 72 (4.43)
Y = Uy (x %)

which define a one-to-one transformation which maps the region A onto

the region B then we can find the joint pdf of

Yy =y (xl, X5)

- - - (4.44)
yp = U (x5 %)
Let A1 and B1 be subsets of d B such that A1 is mapped onto Bl; then
the events
(>~<1, >~<2) £

P L(YyfY,) €BIf = P [(x}s X,) Al

if ¢ (xl, x2) dx1 dx2

In order to carr§ out thif integration we change the variables of integration.
The inverse function of (4.43) is

Xy = Wy (¥15 ¥5)
From analysis it is known that

ﬁf 8(x5%,)dx dx, = éf SIWfy 5Y5) Wy (y 5y,) ] [aldy dy,  (4.45)

ax1 ax1
ay oy

- 1 2

laf =
3 X2 ax2
Byl ay2
University of Maine, Orono
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is the Jacobian determinant. Thus
P [(y¥,) €B] = i 01wy (yp¥o) sWoywo)l O] dyg dyy,  (4.46)

which implies that the joint pdf of (yryz) is
G(ypayp) = ¢ My (ywo)s wolysuy)] 131 (¥phy,) <8 (4.47)

zero elsewhere

The marginal pdf of }1 can be obtaingd from the joint pdf of g(yl,yz)
in the usual manner by integratigg on Yy
This method of transforMing random variables can, of course, be

extended to more than two yandom variables.

4,4.3 The t - Distri

Assume that w And v are two stochastically independent random
variables with unif normal and xzr distribution respectively:
(0,1)

(4.48)

functions:

-~ <YW ™
0 <Y< =

We are interested in the density function of the new random variable

(4.49)

University of Maine, Orono
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Consider the transformation

{(t, u) :-ectcw is

The second trgansformation equation (u = v) is arbitrary

transformatyon is one-to-one.

Thus, a¢cording to

Yu~

f(tou) = o(t 22, u) |j|
2
r u t
. -1 (- §'(1+;')]
= u e
T (5 2 r/2
-co<t<oo
O<U<e=

For personal use only

<o, O<v<=} to

long as the

The Jacobian determinant yhich is needed

equation (4.47) the joint density function is:

Since we are only interested in the parameter t we compute the marginal

probability density function

University of Maine, Orono
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5 f(t,u)du

-Q0

ct
S
1]

«©

1 u e du
L v r/2
Y2rr T (202

0

Changing the variables of integration by

2
_u t
= > (1+ T )
gives
- 1
f(t) 'f L (
d v2nr T (E)Z
= I[(r+1)/2]
/e T ()

where use has been made of equatjfn (4.11),f1(t) is the probability density

function of the t - distributifon. It is completely determined by the

the degree of freedom, r.
The probability related to the t - distribution is usually given

in tables:

where (4.51)

From gquation (4.50) it is seen that the density function is
symmetric yith respect to zero. Furthermore if r = «,the t distribution
is identicdl to the standardized normal distribution n (0,1).
t.—en (0,1)
when r g

e University of Maine, Orono
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Based on the definition of exponential functions one has

£
2
Tim (4.52)
r>w
Using the relation two gamma functions in (4.50)
can be written as:
r+l,
rEN (4.53)
rd VT @)
Denoting
T (3)
v —
o
then (4.53) becomes
r-1 r-1
o =2 . Vr-1
r+l v r
r (2 = 1)
or, equivalently,
, =r.1
Yr Vel T 27 2
= _
vpVpp T 77 L
These expressions yield for a sufficiently large r:
2_r_ 68
Ve T3 7g (4.54)
The expression needed in the density function (4.50) is
vy = —— =V L (4.55)
r ('2') University of Maine, Orono -
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which is approximately equal to the square root of one half of the degree

of freedom in the case of & large r.

Substituting equations (4.55) and

(4.52) in equation (4.50) yie\ds a density distribution

tZ
/F - T2
_ 7 1
f(t) = e e
r=large mr /2n

which is identical to the standardiged

Yt =
§ f/<DF<m

normal distribution.

n{0,1)

&M

Figure 4.4 The Probability Density Fu

The density in the vicinity of the me
normal distribution whereas the revers
distribution.

distribution.
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1iction of the t-Distribution

(zero) is smaller than for the unit

is true at the extremities of the

The t distribution convgrges rapidly toward the normal
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4.4,4 The F - distribution.

Consider two stochastically independent random variables having a xZ

distribution with ry and ry degrees of freedom respectively

u-x r (4.56)

The joint pdf is

$=uU,v) =

We are interested in fhe distribution of the random variable

(4.57)

The equations

A= {(u,v):[Jo<u<w, 0<v<=} onto the set B = {(f,z): o<f<», 0<z<=}. The

. University of Maine, Orono
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"
u-r—zf
2
v=2z

has the Jacocbian determinant

r
2
1y = 7,

After substitution, the joint p.d.f. becomes

(i +

Integration over the variable z gives the marginal p.d.f. g(f)

©

g(f) = fda(f,Z) dz

-0

ritr,

s /@)D T
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Charging the variable of integration by

y=£<'”_1f ”)
2 rs

r r-|+r'2
provides the final expression for the p.d.f. ( 2 )
L R S/ Nt
g 2 2 . 2 o
;—> f 2y S y 2
2 N
](f) = r1+r2 ‘e \dy s
f r.f
0 N2 2 " 1
I(5)T{5—) 2 —+ ] —+ ]
(2) (2 ) ry rs
r r
1 1
7 7 "
r,+r r
1 2 1
o2 ) (g) f
r]+r2
@@ ()7
2. 2 r
with 0 f <= (4.58)
where use has been made of equation (4.11). 7 e F-distribution.
It is completely determined by the two parame gnd r,. The area
under the F density function is usually given N bAes, e.qg.:
P(F > F ) = [ g, (f)df (4.59)
ST r'1,r'2,a f 1
Mereoe
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gt

where Fr is that point on the absiss® to the right of which lies

172
the area a.

Sometimes tables are given in a sifghtly different form. Care should
always be taken ‘to identify the degrees of freedom properly since the
density function is not symmetfic in these variables. It can also be
shown that the following reldtion holds

1

ry,r,,0
] 2 rzr] ,.(-Cl.

Figure 4.5 shows yhe density function for various degrees of freedom.

af) ) .
<o 172 122
) 2 f

Figure §.5 The F-Distribution
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In case both degrees of freedom are the same

for any rs-

4.4 .5 Moment Generating Functiol Techniques

Previously the technique of gne-to-one transformations was used in order
to derive the distribution of non-1Wnear functions. In case of linear
functions the moment generating functYon technique is more convenient.

Assume:

¢(x],x2, ...xn)

is the joint p.d.f. of n random variables (x

y = u(x],xz...xn)

function g(y ). The moment generating function is'

M(t) = E(ets’) =fety g(y)dy

=' E(etu(;];z,...;n))

=ff-}etu (x]...xn) .

tu(’il...in)
) based on ¢(x]...xn).

This gives us the mgf E(ety) without having to compute fthe density

function g(y) first. If the mgf is seen to be that offa certain kind of

that 9 has that

..dxn

The procedure is that we compute E(e

distribution, the uniqueness property makes it certai
kind of distribution.
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4.4.6 Distribution of Some Linear Functions

The following linear functions of random variables are of special im-
portance in statistical analysis.

Case 1: Assume that (;],22...§n) are n stochasti

each having a normal distribution:

11y independent variables,

X] b n(U]s 012)

- 2
X2 - n(uz, 02 )

n n
7~ n(z kiu/ z kq.2) (4.61)

where the ki are constantsf The proof is based on the mgf. Since the
random variables are stoghastically ~independent we can write

M(t) =

(4.62)

This expression is valid for all real t's. Therefore, it is also valid for

t'=tk;: University of Maine, Orono
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tkixi
) =e

y

- X
Lry
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.
i
ui(kit) + —

(4.63)
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Since the random variables are stochastically independent the mgf is

t(x]+x2+...xn)

M(t) = E(e

(4.20)

'(r]+r2+-..rn)/2
Mee) f (1-2t) o

But this is the mgf of Xzzr.
j

Case 3: Asgume (;1’;2"";n) are n stochastically independent
random varialjles each having a normal distribution:

. 2
X ")

x4 "(“2922)
;1- n(un: an)
- ;1 = ui 2 2
Then | - z(T) - (4.64)

2
¥ ) x$
%
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4.4.7 Distribution of Sample Mean and Variance

Assume (x1,x2...xn) are n stochastically independent random variables
each having the same normal distribution:

x™ nlus0°)

The distributi
vious section

of the mean is readily derived from Case 1 of the pre-

n(u, ;‘1_) (4.65)
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Before the distribution of the sample variance can be derived the
stochastic independence of the mean and var1ance has to be established. First
the stochastic independence of X and (xl- X, x2 -X,. ..xn - _7 is shown.
Let M(t, t1. ) be the mgf of (X, x1-x , xz-x,...xn-i), then

{tx + t.I(x -

M(t, .. t) =ff---je

(4.66)

Note that x is a functi of the random variables ;1...xn. We, thegefore,

only need the joint defisity function f(x1...xn) which can be writtep as

since the ;i are Stochastically independent. Consider in (4.66) the integral

on X; only

>

) - ' B R Plala
; (et (t1+...+tn)} - 5t

072—"1 e (4.67)

-0

This expre

ion is valid for any t, ty, ...
set

- _ ]
t={t+nt, - (t1+...+tn)} =

" the expression (4.67) is seen to be the mgf of the normal distribution

n(u,a), i.e.,
® L (xew)? .
B 25 L otP
1 Bt * 72
— e dx;, = e (4.68)
aven
158 University of Maine, Orono

Adjustment Computations

www. gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick

The expressio

with t

The first fag
does not deps
are stochasti

1980 Lecture Notes in Surveying Engineering For personal use only

n for t can be modified as

t= 1 (t+ nt, - tt.} = 1 {t+n(t.-T)

n
It

pe (4.58) as follows:

» _2
[%x +u(t-t) + o2 t +'";ti't)} ]
2n

this expression simplifies as

qztz' ozz(ti-?)z
e * 5n T 2

e

M(t,0) "~ M(0,t,...

tor is the moment generating function of X. The second factor
nd on t. According to (4.10), x and (x]-§} x2-§}...xn—§)
cally independent. It follows that x and

-~ ~

(n-1)52 = 3 (><1.-§)2 (4.69)

are also stoc

We can
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hastically independent.

now compute the distribution of the sample variance.

~ -~ = = 2

z (Xj'“) = Z(X
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since 2(§1u) . z(§14§) =0
—" ———rt
0

Thus,

(4.70)

where

we have

and

2 2

g g

are also stochastically independeht. The mgf
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(4.70) is

tZ(;(_i—u)z
(¢ )
Since E| e o =
tn(x;—ugz
2
and E(e i >= (1-2t)" 2
the mgf -
t{n-1)s
2
E(e o )= (1-2¢)"(n=1)72

which is the mgf of x° . Thus,

.2
(n-1)s" . 2 (4.71)

2 2

Note that s” is an unbiased estimate of o~ andJnot the variance of the mean

which is o2/n.

The derivation of the distribution of the sample mean and variance is
typically treated in a first course in statigtics. The derivation was repeated
here in order to gain expertise in handling farious statistical concepts in
preparation for Section 5 where multivariatef concepts will be discussed.
There we will treat the case of several random variables having a sample size

of "one" for each variable.
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4,5 Hypothesis Tests and Confidence Intervals

4.5.1 Hypothesis Tests

A test of a statistical hypothesis is a rule which, when the experimental
sample values have been obtained, leads to a decision to accept or to reject
the hypothesis under consideration. A hypothesis is simply a statement about
the population (parameters). If the statistical hypothesis completely specifies
the distribution, it is called.a.l
specifies less than necesg?

imple statistical hypothesis"; if it

ry to descridR _the distribution it is called a

"composite statistical Hypothesis". Examplé

a) H: The populakion is normal and has megn u and variance o.

b) H: The populatidp is normal with mean u

¢) H: The population M normal.

d) H: The population is no larger than a specified

constant.

Case a) is a simple statistical hypothesis and cases b) to d) are
composite statistical hypotheses. Each hypothesis has an alternative hypo-
thesis, e.qg.,

1]
(0]

Null hypothesis HO: population parameter ©

Alternative Hypothesis H]: 0 =29

For testing a hypothesis we first have to draw a sample of the population
and compute the values for one or more sample statistics. on the basis of the

sample values and the specifications of the hypothesis. If the sample statis-

tics falls within a "critical regjon", the null hypothesis under consideration

is rejected.
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B(t|Hy) B(tH,)

f - : t
- _critical region ————
Figure 4.6 Example for Critical Region of a Statistical Test.

Figure 4.6 displays the probability density functions for the case when the
null hypothesis Ho is true and for

Wen the alternative hypothesis

(4.72)

1

The power function of a Xest of a statistical hypothesis Ho against
an alternative hypothesis Hy 1s\that function, defined for all distributions

under consideration, which yields\the probability that the sample falls in
the critical region, 1i.e., a func\ion which yields the probability of re-
jecting the null hypothesis. The vdlue of the power function of a certain
parameter point is called the power of the test at that point.

The area under the probability density function ¢(tlHo) to the right of
t,is a. Thus,

University of Maine, Orono
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P(H0 is true, but the test has rejected it)

-]

= f¢(t|H0)dt = g (4.73)

tQ

a is the power of ‘the test with respect to the null hypothesis. This

value is usually called the "significance level". The error com-
mitted in

(i.e., the null hypothesis was rejected although it is

(4.74)

1- 8
area to the left of t, under the pdf ¢(t|H]) is equal to the probability that

H0 is accepted although H] is true:

is equal pe_pefier of the test under the alternative hypothesis. The

P(H] is true, test has accepted Ho) = g,
The latter statement is equivalent to:

P(H0 is false, but test has accepted it) = 8 (4.75)

This is, of course, an erroneous conclusion. The acceptance of the null
hypothesis when it is actually false is called a Type II error.

Usually we would like to minimize the probabilities of the Type I and
Type II errors. However, during this course we will not compute the probabili-
ties of the Type Il erron since such a computation requires the knowledge of
the distribution under the alternative hypothesis, which isyin genera],a
non-central distribution, i.e., a type of distributionwe have not discussed.

In our case the null hypothesis will be a simple hypothesissand the alterna-
tive hypothesis will be a composite. By not computing the distribution under
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the alternative hyRothesis,we do not have to deal
resulting from compodte hypotheses. In actual
posal to choose the significance level. We sh
select a decreasing siani

th the additional complications
sting it will be at our dis-
1d bear in mind that, as we

\cant level, i.e.,/the probability of committing
Type I error, the probabilityN\gf the Typ

do not compute the latter probabi

I error is increasing. Since we

in this course we have no way of minimizing
the probability of both types of errors. As a compromising working rule we
simply adopt a significancé level of 0.05 most of the time.

The following table gives a summary of possible decisions with respect
to the null-hypothesis:

Hypothesis HO Test Result Remark
True Accept H0 0.K.
True : Reject HO Type I Error
False Reject H0 0.K.
False Accept HO Type II Error

The rule (4.72) for testing the hypothesis is referred to as a "one
tail test” in the upper end of the distribution. Frequentlysa "two tail
test" is employed. In such cases the null hypothesis under consideration
is rejected if

[t] >ty

i.e. (4.76)
P( |t] > ta) = a

Note that no subscript has been attached to t. Since we do not compute t
under the alternative hypothesis in this course we will be concerned only
with tHO. As a matter of simplification the subscript H0 can be neglected.
If we reject the hypothesis HO in case (4.76) holds, we subject ourselves
to the possibility of rejectingthe hypothesis HO when it is true 100a% of
the cases (Type I error). The rule (4.76) applies to the case when the
probability distribution under the null-hypothesis is symmetric.
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p.d.]
(i H,)
a2 2 -
critical _'f,a fa critical ¢
region " region

Figure 4.7 Two Tail Test {Symmetric Distribution)

The critical region is split into two\parts. They are Jocated at the tails
of the distribution, each covering an
curve. In the case th

symmetric the rule (

ea of a/2 undef the probability
11-hypothesis is not

(4.77)

i.e., we would like to have the probability a/2 at each end of the tail.

&f. ez,
t t
. 1-Qf2 a2 .
. critical | ; 1 cr/f/;al _
region ' region

i UFRrt Smdiaidai 1 Test (General Distribution) University of Maine, Orono
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Occasionally we would 1ike to perform a statistical test at the lower
end of the distribution. The rule for rejecting the null hypothesis under
consideration is

t <ty (4.78)

P(t|Hp)

. t
critical =<
region '

Figure 4.9 0One Tail Test

the value of t to the r\ght of which

y density curve.

Note, that the symbol t, defi
is the area a under the probabilj
4.5.2 Confidence Interv

Let @ be an upknown parameter of a population and t1 and t2 two statis-
tics (functions of the sample only) and

P(t1<e<t2) = l-a (4.79)

} is a 100(1-a)% confidence interval for the population parameter

then {t] >

nsider the case of the random variable x having a normal distribution
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n(u,cz). Assume that the variance 02 is known. We would like to find a

confidence interval for the mean u. Since x ~ n(chZ) the random varijable
W= (x-u)/ofn(OJ1) has a standardized normal distribution. Thus,

P(-a<;<b) = 1-a

or P(-w]<w<w2) = J-q

P(-wy < i(§E-<w2) = 1-a

P(-w-lc -)~(<-u<-;+ wzc) = l-a

P(x-wzc<u<>~< +w0) = 1-a (4.80)

The values W, and W, can be found from the tables of the normal distribution,
given the probability 1-a«. Since o is assumed to be known the interval

{x-W,0, xtwjo) (4.81)

is a function of the random variable ;. It is, therefore, called a random
interval. The probability statement (4.80) can be read as follows: Prior
to the performance of the random experimen \lity is 1-a that

wn fixed parameter u. Suppose

the random interval (4.81) includes
the experiment yieldg X = X.
end points. Obviously we capffot say that 1-o is the probability that the
particular interval {x-w.¢, x+w]c} includes the parameter u, since u,
although unknown, is e constant, and this particular interval either
does or does not i ude u. Ho aver, the fact that we had a 1-a (a is

rior to #Zhe performance of the experiment, that the

small) probability,
random interval { x - WO x+w]c} includes the fixed mean u, leads us
to have some reliance on the particular interval (x-wzo, x+w]c). The
reliance is reflected by calling the known interval (x-wzc, x+w]o) a
100(1-a)% confidence interval. Thus, replacing x by the measured value x

in expression (4.80) gives for the two statistics
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ct
]

X=W,a
2

t2 x+w.l o

Generallys the Timits W, and W, are selected such that the probability to

the Teft of Wy is equal to the probability to the right of Wos i.e.,

P(wewy) = P(wow,) = La (4.82)
] 2 >
A
p.d.
) &2 _
" w,
If the distribution under consideration is symmetric,then
Wy = =W,
4.5.3 Standard Cases
4.,5.3.1 Case 1: Popfilation Mean (Variance Known)
. ~ /. 2
Given: X n(u,o”)
2
o " n{u0 ) (4.83)

X~ nlu,0?)

The distribution of the sample mean X is

X - n(u,cz/n)
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uO
H]: U f Uo
v;=(?;”)m -n(0,1)

Replace the random variable of the statistics by its sample value,
substitute the population parameters as specified under H,, and compute

(7-110) /n

[o

w:

Reject H, at a 100a% significance level if |w| > Wo/

Wal2
wheref n(0,1)dw =1 - a/2

Confidence interval: Since n(0,1) is symp€tric we have

Replacing £he random variable X by the sample value X gives a
100(1-a £ confidence interval for the population mean

X - Was2°
n b

W [o
;‘_'_ a 2 ]
n
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4.5.3.2 Case 2: Population Mean (Variance Unknown)

Given: Sequence (4.83); u and ¢ unknown

Then x = n(u, cz/n)

replace the random variables of th
and substitute the population paramgters of Hy:
(X-u,)

t= S n

'

Reject H0 at 100a% significance level

tn-],a/z
where . tn_]dt = 1-a/2

-0

Confidence interval: Since t , is symmetrjic we

(x=u)
P(-tn_1.0/2 ° oo«
.t s -
- n-1,a/2 -
or P(X- —+— < u < X
YN

7
Adjustment Computations 171

www.gnss.umaine.edu/lectures

flt] >t

statistics by the sample values

n-1,a/2
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4.5.3.

Replacing the random variables i'and ; by the sample values X and s
gives a 100(1-a)% confidence interval for the population mean.

t S t S
[ - n-1,a/2 — . "n-1,a/2
X - ——————, x + — T
/—n n ]

3 Case 3: Population Variance

Given: Sequence (4.83)

. n-] ~‘2 ~ X2
Then: 5 8 n-1
g
2 2
Hypothesis: Ho: o =0,
2 2
H] o # %

Replace the random variable by th
population parameters of Hj:

2 _ (n-1)s?
2

sample values and substitute the

X

%

Reject Ho at 100a% sighificance level if

where

2 =

X n-1 dx = a/2

2 =1-

I X no1 dx = 1-a/2
0
2 University of Maine, Orono
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Confidence interval: Since thex.zn_1 distribution is not symmetric we
have:

p( 2 (n-1) s 2

p < (r-l-H;

X n-1,1-a/2 X n-1,a/2
(n-1)52 (n-1)s
P 2 < g 2 = 1-a
X n-1,a/2 X n-1,1- a/2

Replacing the random variable s by the sample value s gives a

100(1-a)% confidence interval for the\population variance.

[ n-1)s? (n—])s2 ']
2

2 b}
X n-1,a/2 X n-1, 1- ak2

4.5.3.4 Case 4: Means of Two Populations

Case 4.1: Given: Two sequences of stdchastically independent random
variables, each havihg a normal distribution which
has the same but unkfjown variance.
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Yo ©

;'l - n(u,oz) .;"
;2 - n(u,oz) y
X, n{u,0°) Y
We have
- 2
Y S n(u’ L)
n
- 2
y ~n(u, 2
m
(n—])sx o y
2 X n—] /r’
[o] '/
/

/S
y .2/
X Mo
02 /m/1
/i

For personal use only

- n(uz,oz)

n(ips0°) (4.84)

= n{upso’)

A1l four variables (g[;,gx and ;y) are stochastically independent since

the mean and the v

are stochastically independent. Thus,
~ / 2 2
X - - g+ 9
X }ﬁf n(u, P )
j\/
and
(x-¥) = (ny-u,)
i 2 - n(0,1)
2 2
g 4+ S_
n m
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Also,

Hypothesis:

Confidence injerval: Since the t distribution is symmetric we have

n+m-2
;'y‘(u]’llz)
n+m+2,2 < é tn+m_2 2 ) 1-a
or
Vtmz,z RS MR S XV e R 2 T0e
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e random variables i; and j} and ﬁ by the sample values
\ves a 100(1-a)% confidence interval for the difference

Replacing
X, y and R
of the popula®jon mean:

Case 4.2: Usually it
populations a

i1l not be known that the variances of the two
equal, and yet we would like to test the

hypothesis concArning the means, having available only the
sample variances\ This is the so-called Fisher-Behrens

problems see HamilXony p.92. It can be shown that

(x-¥) - (u=up)
t=—3 2

has an approximate t distNibution with

(- #)
_(FTT‘(LTS—

degrees of freedom. Testing the statistical hypothesis and

-2

finding the confidence interval is {one as explained in case

4.1.
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4.5.3.5 Case 5: Variance of Two Populations

Given: Sequence (4.84)

We have

independent.

(n-1)s.2 / [o72(n-1)1

F - - -
=2 2 n-1,m-1
(m-])sy / [02 (m=1)]
Hypothgsis:
eject H0 at a 100(«)% significance level if
Fo<Fo,m-1.1- s
F>F
-1,m-1, &
" 2
177 University of Maine, Orono
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It is important to identify the degrees of freedom in the numerator
and denominator since

P-I ,Pl,a ? FPZ,P] ' a

The probability in the tails J qual, i.e. %

Confidence interval: nce the F distributlon is not symmetric we
have:

4.5.3.

6/ Case 6: A Goodness-of-Fit Test

Assume that we have a series 0 observations and we wish to

test whether the observations come from a

g tain population with a
specified distribution. ™

e 3

We subdivide the observation series into n classes. n, is
the number of observations in class i. The subdivision should be such
that n, > 5. Compute for each class the expected number d; of obser-
vations based on the hypothetical distribution. It can be shown that,
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2
(ni-di)

2

is distn\ibuted approximately as ¥ n-1" If the population parameters
are esti :ted from the sample then the degree of freedom should be
reduced foy each parameter estimated.

4.5.3.7 Sign Tests

In deriving the statigtic x in the previous section use
was made of the hypothetical dis\ribution Ho' A test of a hypothesis
H, which is based upon a statisti%f whose distribution, under Ho’
does not depend upon the specific &jstribution nor any parameter of that
distribution is called a distributiig-free or a non-parametric test.

One application of such te s is to analyze the signs of an obser-
vation sequence. Assume that you have\an observation sequence X; and form the
differences X=X where x is the sample Wean. Define a new random variable to
be +1 if the difference is positive and \1 if the difference is negative. If
the observations are drawn from a normal pbpulationsthen the sum is
expected to be zero. It is possible to derive a distribution for the

179 University of Maine, Orono
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sum and to t significance in case the sum deviates from zero.

This methgd can also be lied for investigating the sequence of signs,
which might in turn lead tohe discovery of a systematic effect in the

observation sequence.

180 : University of Maine, Orono
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5. Statistical Inference in Least Squares Adjustments

5.1 Multivariate Normal Distribution

In Section 4 we dealt briefly with random variables from two different
normal distributions. At this time we would like to introduce the multivariate

normal distribution, This is a multi-dimensional distribution where each
variable has a normal distribution and where the variables might or might not
be stochastically independent. Let X be a random

181 University of Maine, Orono
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The similarity of the multivariate normal density (5.3) and the univariate

normal density (4.28) is clear. We observe that f(x]52...xn) is a positive
function. Since ™ is positive definite,

(-7 27 (o) > 0

and the density is bounded, tha

It can also be v

normal wijth mean p and variance £. We use the following nbtation

nx1 i Nn(nul’ nzn)

Note
matryx completely describe the multivariate normal distributipn.

hat p is an n dimensional vector. The mean and the vamriance-covariance

In the following we state some useful theorems on multivqriate normal
ributions. Proofs, many of which are not given here, can found in

standard literature.

Theorem: If i is multivariate normal

X - N (1
) ) n(uZ)
and Z = mDnX is a linear function of the random variable where D is a
m X n matrix of rank m < n then
B

Z- Nm (Du, DzD (5.5)
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Thus, the mean and the variance of the new distribution are

E[Z-DE(X)] [Z-XE(X)]' = E[DX-DE(X)] [DX-DE(X)]"

DE[X-E(X)] [X-E(X)]TDT

= DzD!

pf variance propagation (2.30). Since
R(D) = m the variance covariance matrﬂ

The same result follows from the law

DEDT is non-singular. The same law

. !
However, we do not pursue this aspect a
or "degenerate" normal distributions. |

Theorem: If i is multivariate no
X N(wE)

the marginal distribution of any set}of components of X is multivariate

proper component of pand T respectively. For example:

- &)- [(”D(zn ‘12)]
X = N , 5.6
<X2 M L1 Ho2 (5.6)

then the marginal distribution of X

normal with means, variances, and co*:riances obtained by taking the

2 '}

Xy ™~ Ny Z,,) (5.7)

The same law holds, of course, if the 1et contains only one

component, say xi. The marginal distrybution of ;1 is then

x; = (e 0;%)

5 ; (5.8)
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Theorem: If X is multivariate normal, a necessary and sufficient
condition that a subset of the random variab and the subset of
the remaining variables be stochastically independent,is that each
covariance of a variable from one sg& and a variable from the other

set be zero. For example,

RN

then XI and XZ are gtochastically independent. Since Gij = °1'°j

and .70, the condition %5 = 0 is equivalent to Py = 0. Thus,if

Pij,

one set of normadly distributed random variables is uncorrelated with
the remaining yariables, the two sets are independent. The proof of
the above thegrem follows from the fact that the multidimensional

density funcfion of the normal distribution can be written in case (5.9)
as

]’XZ) = f](x]) fz(xz)
or, in Lhe case that all covariances are zero,

f(x1x2...xn) = f](x])fz(xz)...fn(xn),

as dan be verified easily.

5.2 Diptribution of some Quadratic Forms

tatistical tests in least squares adjustments. require the distribution
of sofie quadratic forms. One of them is VTPV. In order to emphasize the
statystical nature of this derivation the symbol "~" will consistently be used
to dknote random variables. The adjustment model of observation equations is

wriften as
E(-L) = AX
and (5.10)
E[L-E(D)][L-ED)] = . 27
University of Maine, Orono
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Note that X itself is a fixed parameter_although the estimate X is a
random variable and will be denoted by X. We now assume that the obser-

vations have a multivariate normal distribution,

L - Nn (-AX, z, ) (5.11)

Ly

The model (5.70) can also be written as

Vo= AX +L

with

E(V) = 0 and E(W') =5 (5.11)
Thus,

~

3 Nn(O,c P™) (5.12)

1y (5.12)

In the ca3be that ZL js non-diagonal we can always transform the
b

adjustplent model such that the transformed residuals are stochastically

indegendent and have a unit variate normal distribution. In Section
it was shown that for a positive definite matrix, say P'],
ere exists a non-singular matrix D such that

p'p1p = 1

-1
with D = EA 2. The columns of the orthogonal matrix E consist of the

eigenvectors of p~]

of P'] at the diagonal. We perform the transformation,

, and A is a diagonal matrix having the eigenvalues
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T o=l
giving
TV =plax + 0’0

o
<<
it

or

el f-ek

since

A and A havg the same rank since mul
matrix doed not change the rank.
The least squares principl
Therefoye, we have to find the distr

min

This minimization is solved somewhat
We simply perform an appropriate ort
be the rank of the design matrix A,
be an (n x r) matrix whose columns ¢

1980 Lecture Notes in Surveying Engineering
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(5.13)

planatory. The transformed

(5.14)

D 2

=0

To-1n_ 2
P =9, 0

riant under this transformation:

(5.15)

tiplication by a non-singular

==
@ requires the minimization of VTV.

ibution of
(5.16)

Hifferently than in Section 3.
hpgonal transformation. Let r
jle. r=R(A). Let the matrix F
ofistitute an orthonormal basis

for the column space of A (one such
be to take the normalized eigenvecto
matrix such that (F!G) is orthogonal
the orthogonal compiement to the col
G spans the null space of AT, then

Adjustment Computations 186
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chpice for the columns of F may
rs\of KKJ). Let G be an (n x n-r)
$ that isythe columns of G span
umn\ space of A or, equivalently,
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(5.17)

(5.18)
and
(5.19)
Now we perform an orfhogonal transformation
or
(5.20)

Introducing new varfiables

Z,F FT L and Z, =

equation (5.20) can|be written as

= ~ = + g .
z T\7, 0 Z,

The quadratic form remains again invariant under the orthogonal transformation:

upon using equation (5118). The actual quadratic form is obtained from
equation (5.21):

~T ~

T (FTAX +2) + 2, I, (5.22)

(F AX + il)T
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This expression must be minimized through variation of the parameter X.
If we choose X such that

T-

—FA =21

>

(5.23)

then

=
i
<N
~N
<<
n

L}
~t
N
-—
~R
N

(5.24)

There always exists a solution for X in equation (5.23). If A has no rank defect
then FTA is a non-singular (u x uf matrix. In the case of a rank defect on A, a
solution can be found by imposi

constraints, inner constraints/.

u-r conditions on the parameters (minimal
It is interesting to realize that the random

variable R does not depend oyf the particular solution of X since it is only a
function of 22. This provef the fact that R is
selection of the minimal

¥nvariant with respect to the
nstraint. Moreover/the residuals themselves are
constraint. Subs#ituting the solution (5.23) into

independent of the minim
(5.20) gives

Since (FG) is an ovthogonal matrix the residuals become

0 T~
= (FG) <GT[ = GG L (5.25)

<<i> ¢

This expression i independent of the solution on i as far as the selection of
-T
the minimal constfaint is concerned. The matrix G only has to span A'.

The distribugion of the random variable Z is
. T
NG ), (¢ )
s O 0 I
n-r n-r

. A

since E(Z) = University of Maine, Orono
Adjustment Computations 0
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L/F L/FF Flg
and 2,700 (T )T (F8) = oy (Te oTe ) =

a% is seen from equation (5.20). The random variabl Z, and iz are

stgchastically independent, giving

Z "N, (0404 I) (5.27)
The components of iz are also stochasfically independent, i.e.
oy
It follows that
221 n(0,1)
and
(5.28)

it follows tha

(5.29)
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Fundamental Test in |east Squares Adjustments: Based on the statistics (5.29) an

important test can be performed to find out whether the adjustment is dis-
torted. Given the variance-covariance matrix of the observations we have to
decide at the beginning of ghe adjustment on the value of the a-priori

variance of unit weight, o _, since

0

Hi1: % # oT (zadogled a-priori variance of unit weight). Adjustment

a2 - 2
Replace the random/variable 9 by the sample value % and compute
~2

DF, l‘ C‘/Z

.2
7 X pF, a2

The causes which lead to a distorted adjustment will be discussed later. The two
tail test isfrequently replaced by a one tail test at the upper end of the
distribution. Note that the degree of freedom does not change when we add
minimal constraints. The degree of freedom always is n-R(A) = n-r. If there
are u parameters it was stated earlier also that the degree of freedom is n-u.
However, in case of rank deficiency we have to add s = u-r (minimal) constraint
in order to solve the system. This gives a degree of freedeon of n-ut+s =
n-u+(u-r) = n-r,

University of Maine, Orono
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The previous test can also be applied when testing additional observations

-~

in the sequential mode. In those cases we use the latest sample oy i.e.
the one which includes the additional observations, for testing the hypothesis

PR = 2
> Tpy + a§7pf = 99(2) OF, - %
Z z 2 X pf, (5.30)
O'O 0'0

where DF , is the degrge of freedom after adding the new observations. It is
important that in this\case we cannot perform a variance ratio test (Case 5
of section 4.5.3.5 since\the numerator and denominator in

(VP + aV'RV)/ DF,

VIPY/ OF,

are not stachastically independe
However, the statistics

aVIPU DF,
F= s \ FDF,-DF ;, DF; (5.31)
VPV (DF,-DFy)

-~ -~

has a F-distribution. AGTP9/302 has a X2 dist™\bution of a degree of freedom
equal to the number of new observations. This fo\ows from the previous
derivation of the distribution of QTPQ. It is understood that the new
observations are uncorrelated with the first grgup an

hat both groups refer

to the same a-priori variance of unit weight oy - The std\ghastic independence

of AQTPG and GTPG can be shown as follows:

Let the solution of the first set

ViE A+ Ly
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-1
be X* = N,

P]il
-1 T

: -1
with Qe = N = (AL PAY)

Then the final solution for X is obtained by solving the least squares problem

~

Vz = Az(i* + AX) + |:2,

or Vy = AgaX + L,',

~ i =
Wi th L2 = A?_X'* +

-1 .
and P AN"1A,

es of least shuares. The solution

T -1
(AP A )T R, P

is in agreement wiyh the result given im Section 3.4. Since AVTPV =

VZTPL V,it is necgssary to show the stocfastic independence of V, and Vl.

~

E{(AaX + L})

E(-A (AT A, TP
2

2 "2
.
[-A,(A,"P s Ap) R,
4

U2E2+ L1V, +

» Ap X + Ax*]T, T
2

~

Substifuting 91 = Ali* + ﬂl it is seen that thq first term is zero, since

-~ -

E(LoL/}) = 0. Since the second term is zero, the stochastic independence

has peen established.
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There is another quadratic form important in the analpsis of least
squares. The least squares solution vector for the paramefer is

~ _1 -
X = -(ATPA)" ATPL (5.32)
Note that the solution for the parameters is a random fariable. Since
E(X) = X
~ = T
and E(X = X) (X-X) =0
z 2
we have X ~ N (Xsq (5.33)
u ou
We are interested
A T ~
X - X)) N(X - X) (5.34)

In order to fingd the distribution we perform again an orthogonal transformation.
First,we see

(5.36)

University of Maine, Orono
Adjustment Computations 193
www.gnss.umaine.edu/lectures Do not remove PDF watermark



No further explanatory service will be provided.

These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only

With the transformation

Y=0" ¥ (5.37)
we obtain

TN = 7 (5.38)
The new random variable 7 is multi-variate normal with

Y - N0 (5.39)
since

E(Y) = I

-1 2 T -1 2 2

and ZY—= D = (D 'ND) 9, = 9, I
The components of the rando dependent and

2

each is distributed 1ike n(0,. . The varjable Q of equyftion (5.34) becomes,

based on equations (5.35) and (5
2

=T= u..
7 - Y LYy (5.40)
g2 g2
0 0
Since §i/°o ~ n(0,1) we finally obtain
-2
Q ~x u
= ~ 2
or -0 (X - x) - . (5.41)
a
0

In the preceeding derivation the implied assumption was that the normal matrix

. University of Maine, Orono
Adjustment Computations 194
www.gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Adjustrhent Computations 195
www.gnss.umaine.edu/lectures

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only

N in nonsingular, or, equivalently, that there is no rank defect on the desj

matrix A. In the case that there is a rank defect on A, say R(A) =r <
~ 2

then it is easy to show that @ - x,. The expression (5.41) could b

to test the parameters if the a-priori variance of unit weight w

used
known.

PN

But we only have an estimate of Tg» which is g order to

perform any testing we have to find a new random variable j

Therefore, j
which 002 cancels.
Consider the two random variables:

>
0 - .
5.7 0F " Xopr
0
x T Py
and X = X) NX - X) -
09" X

It has previously been shown thay/o,or, equivalently VTPV, is stochastically
independent of X. Consequent]

1 * 1
sz (X r
0 ~ F
- r,DF
02 1
5z OF - pF
(o]
- (%= )TN = x)
or, F = - ~ F DF
92 T rs (5.42)

at X. defines a random region of constant probability
~ < F
P(F = Fgl= EFopp =17 (5.43)

In the case of F = 1 the region is called the "random r-dimensional ellipsoid

of Jtandard deviation." The principle axes of this ellipsoid are inversely

University of Maine, Orono
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proportignal to the eigenvalues of N. This is seen immediately if we replace

such that

where A is the diagonal madcix of eigenvalues and E is the eigenvector matrix
of N. Thus, we obtain

r 1
==z = (5.44)

But this is the principle axes form of the\equation of the r-dimensional

ellipsoid. From (5.44) it is seen that the
larger the eigenvalues ' of the normal matrix.

11ipsoid becomes smaller the

Since the probability is 1-a
that the ellipsoid contains the true parameter we naturally would like the
ellipsoid to be as small as possible. It is exactN\y this relationship which

makes us choose a design such that the eigenvalues \@f N are large, provided

we have a choice at all.

With (5.42) we can test hypotheses of the parameteXs.

Hypothesis: H: X=X

o T (some numerical value)

H1: X # XT

Compute the statistics F under the null hypothesis and replacq the random
variable by its sample value

~

(X - X)TN(X - X

G )

T2
o r
0

Reject H0 at a 100a % significance level if
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F>F

r,DF,a
Note that the critical region is taken at the upper trail of the Mistribution.

A small value for F indicates acceptance of Ho (knowing that o/ already has
been tested and accepted).

5.3 General Linear Hypothesis

Consider the model

V=AX+L,
CX+W =0 (5.45)
E[L -E(L)]IL - E(L
which is recognized as the mod Pion equations with conditions
on the parameters. The solutj
X = X* + &
: : -1 T -1 Tor
with X* = -(A/PA)” A'PL =-N" A'PL
K 1 ISR ! ~
ax = N CTIoN ¢T]™ [-W-Cx*], (5.46)
and ﬁTPG = QTPQ* + AQTPQ

T

= = = ! 21 <
with AV PV = [CX*+ N]T[CN C'17 [CX* + W]

We observe that th{s is a sequential solution. The whole procedure can also

be interpreted in quch a way that we are given the least squares solution of

University of Maine, Orono
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the first system and would like to test the linear hypothesis

Ho® CX+W=0 (5.47)

Hir CX+W#0

H0 consists of s linear equations which thg parameters have to fu1fi]1. The
test is going tu be based on a random vafiable F which relates VTPV and AVTPV.
First we confirm the independence of bfth quadratic forms.

Consider the observation equatfons only:

v (5.48)
with E( AX
The least squares solutionfof (5.48) is
having a distributio

X (5.49)

i.e. the expected value of the estimate is an unbiased estimate for X. Next
we consider the fcondition equation

CX+W=0 (5.50)

The parametgrs in (5.50) take on the role_of "observation". The adjusted
parameters fof the observation equations, X*, are the "observed values". Thus

C(X* +aX) +W = 0 (5.51)

i
>

where #X are the "residuals" with the expected value of zero. Since E(i)
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it must be that

E(A;)

It follows that aX is
N

Also, the least squar
identical expressions
to the conditions (5.

~

V*

!

v

|

Differencing bpth exp

AV =

with

and

The covariance b

Both random variables

Adjustment Computations
www.gnss.umaine.edu/lectures
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=0

multivariate normal with

2 _1
N(O,o0 N ) (5.52)
es solution of the condition equatfon (5.51) results in
as given in (5.46). The change in\the residuals due

51) can be computed as follows:

AX* + [
AGRE +aX) + L (5.53)
ressions gives

V- U = Ak (5.54)
= AE(aX) = 0

SE[AX* +0] =AX-AX =0 (5.55)

I
CT

-1 - I .=
[-AN" cT(CN (W + CX*)V*T)

<1 3 _1 P x X
AN CTeNTe )T MY + CE(X*V*T)}

are stochastically independent if the covariance is zero.
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We have

E(WW*') = 0 since E(V*) = 0

For the second term it follows that

E(X*V*T) = EQR*(X*TAT + [1)]

Eperke TAT] + E el ]

-1 ~ =1 -1 ~
eov TP Tean ATy £ (-n"aTerlT)

2 .1
og N AT+ xx! T o xxa

2 _1
A/~ % N A

This completes the proof that E(aWW*) = 0 and, therefore, both types of residuals
are stochastically independent.

related to AV. From equation

It is only necessary to show that AV PV is

(5.56)
and equation (5.54) y
= aX'ATPALK
g (5.57)
Comparing (£.56) and (5.56) gives
A\iTP\j = (V) TP(aV) (5.58)

i (A9)~ang 9* are stochastically independent, the same must be true for
aVIAY and VTpvx.
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The distribution of AVTPV can be obtained in the usual manner,

av'P

with y

Since E(Y) X5 = W+Cx = o.
ZY teT

the distribution of the random varjable Y is
~ 2 =17
Y NS[O,ao (CN CH)IN\.
If the s conditions are linearly indepeng§ent then the variance-covariance

matrix has full rank, R(ZY) = S, Through
can find a random variable ¥ such that

non-singular transformation we

P T
AVIPY = YI(eN ¢V = §7
. ,
and Y = Ng(0,0 1)
Since ?1
— ~ n(0,1)
%

the distribution for the quadratic form becomes

r 3 s 3?2
avey o YioL 2
02 92 s (5.59)

~ T =
= X

VTpy And V* PV* we can find the new

Because of the stochastic independence of AV PV
random variable
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(5.60)

DF is the degree of freedom for the first system only. Note that the unknown
ag cancels. A smal AVrPV implies that the null hypothesis (5.47) is
acceptable, i.e. thp conditions are in "agreement with the information"
expressed in the olfservations of the first model. The conditions do not
cause any "distortjons" of the first model. We,therefore, usually apply
only a one tail tept at the upper end of the distribution. Thus}reject Ho

at a 100a% signififance level if

Fp FS,DF, o

Examples for generr]ized hypothesis testing:

Case 1: Test on a}l parameters:

HulX # X;

The test id to find out whether the parameters can have a certain

numerical vhlue XT‘ We compute the statistics with the numerical

values of Hland replace the random variables by the sample values.
With
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Case 2:
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(- x) TN - x
F =

Vipyx

which is to be compared with /A

Test on a single parametefﬁ

Since C

and

DF

u,DF,a

appepr at the lower end of the parameter vector.
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vith equation (5.46),

2
toF,2/2

fle the normal matrix such that the parameters to be tested

T
X = [X1s Xa]
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Hypothesis:
Ho: qul = X271

Hy: X, # XoT

with q < u. The constraint reads:

(0 I)(x1>- Xor=0
XZ

Compute the statistics

F = (X - XZT)T(sz - N2 El-lle)(iz - Xop) _DF

G/;ﬂ{? q

and compare it with F(¥Dr,;. The matrices N, Nyjs Njjand Ny,

are the submatrices of phe normal matrix corresponding to the subset

of parameters X, and /é. "We observe that the test can, of course,
be carried out with;/t the particular arrangement of the parameters.

But in certain in‘/énces, e.g. when the inverse of the normal matrix

is computed usi//lpartitioning techniques, computational efforts can
be reduced siqgé the computation of the statistics does not require
any further gatrix inversions if the parameters to be tested are

arranged ay/ indicated.
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The linear condition equation becomes in this case

(]
1]

(0...010-10...0)

5.4 Ellipse of Standard Deviation

E1lipses of standard deviation can be computed for any pair of parameters.
They are a graphical representation of the margingl standard deviation of the
parameters and the covariance between them. In suyveying, ellipses of standard
deviation are usually computed in adjustments of hodyizontal networks since
they allow a convenient interpretation of the direct§jonal station position
accuracy. This concept can be extended to more dimengions. In the case that
three parameters are involved we speak of "ellipsoids pf standard deviation”,
or "hyperellipsoids of standard deviation', if more than\three parameters are
involved.

Recall that the random variable i is distributed mNtivariate normal as

0 X) (5.6])

where Qxis the cofactor matrix of X.
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According to theorems of Section 5.1 the marginal distribution of a subset
of X is multivari the mean, variance and covariance taken

(5.62)

or
(5.63)

Since Qxis a positive definite matrix, any submatrix , which is created as
explained above, is also positive definite. Just imagipie that the parameters
are renumbered and that xiand xj become X, and X,. In fhat case Qi is the
upper principal submatrix which has to be positive according to the definition
of positive definite matrices.

Recognizing the fact that a marginal distribution Tike (5.63) can be
given for any two parameters we interpret X and xj, in view of the application
in Surveying, as the two dimensional Cartesian station coogdinates of points.

In an attempt to simplify notation let us write

x . = X,
o _ (v 1 1
J J

where Xi is a two dimensional vector containing the Cartesiar coordinates of

station i. Also, if there is no reason for confusion the subfscript i will be

omitted and we call x = X and x; = X3+ (Y) denotes a cooranate system

parallel to the system (X) and with its origin at X.
Consider the quadratic form

>t X

T -l = T - 1 - -
University of Maine, Orono
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From the discussion of previous sections it is known that S has a Chi-squared

egrees reedom. Since 01 is positive definite the
quadratic fopfi (5.65) is the equathqn of an ellipse with its center at ii'

X 1 ~
o[ Gy - x0Ty
0

Strictly speaking the area defined by

0

is a random region (analogous to the random interval \in unit variate
distributions) since its center is given by a random Vector. Applying an
orthogonal transformation (rotation) the equation for}the ellipse can be trans-
formed to the (Z) coordinate system whose axes are pa
axis of the ellipse. Let Ri be the orthogonal matrix
eigenvectors of Qs then the transformation

11el to the principal
hose columns are the

or Y. =R

leads to the "principal axes" form

~ 2
RS P JUS IS, SO CORL | R

Since Ri is the eigenvector- matrix of Qi we have RiTQ Ri = Ai and

_1 21 .
R11b1 Ri = Ai , where Ai is a diagonal matrix with the eigenvalues of Qi

University of Maine, Orono

Adjustment Computations 207
www.gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only

at the diagonmal. Both -eigenvalues are positive. Combining equations
(5.66) and (5.67) gives

earlier that the size of the rafidom hyper el igen-
values of the normal matrix j . i matrix

and those of the full sized/ cofactor mgfrix are reciprocal. vy serveg as a

Figurd 5.1 Random Ellipse of Standard Deviation.

Spefific values for the integral (5.68) can be found in the following tables:

1/ ¥ 1 2 3
1w 39.35 86.47 98.89
1/? 2.146 2.448 3.035
1-a 90 95 a9
University of Maine, Orono
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It is seen that in only 39% of all cases the random ellipse of the standard

deviation contains the parameters x, and x,.
necessary to ensure a probability of 99%.

The size of t

but unknown a-priorilvariance of unit we1ght

A magnification by three is

ellipse in Fig. (5.1) is a function of the constant

In order to overcome this

dependency we recall\that the residuals V and the parameters X are

stechastically indepehdent.

I

We can, therefore, form a new random variable

2,DF, (5.69)

which has an Fdistributioh of 2 and DF degrees of freedom. Since

We find

or

F
- Qa
=7 Fa0F=1-a|(5.70)

Although the unknown variance of unit weight was elimina

the region

defined in equation (5.70) is an ellipse whose size is itself a random variable.
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The special case for wh1ch1/_' 1 is again called the random ellipse of
standard deviation. The probability that the population parameters x
x, fall within this particular ellipse is-a function of the degree
freedom of the adjustment. In the table below some magnificatigw factors

for the random ellipse of standard deviation are given as a ction of
degree of freedom and probability. It is seen that in the/range of small
degrees of freedom an increase in the degree of freedop/rapidly decreases

the magnification factors whereas,in the case of a Xarge degree of freedom,
any additional observations cause only a minor reduction of the magnification
factor. A degree of freedom of ten appears degirable.

Table 5.1 Magnification factorsy/2 2.0F, o for the random ellipse
of standard deviation in order to gain/ probability 1-o that the magnified

ellipse contains the population parpfeters x; and x,.

n-u Probability 1-e
95% 98% 99%
20.0 50.0 100

6.16 9.90 14.1

4.37 6.14 7.85
3.73 4.93 6.00
3.40 4.35 5.15
3.21 4.401 4.67
2.99 3.64 4.16
2.86 3.44 3.89
2.79 3.32 3.72
2.7 3.20 3.57
2.64 3.09 3.42
2.58 2.99 3.28
2.52 2.91 3.18
2.49 2.85 3.17
2.45 2.80 3.03

In analogy to the case of random intervals of Section 4.5.2, we can
repijce the random variables x and % by the sample values x and co and
thus| fix the center and the s1ze of the ellipse. This act1on is accompanied
by p1aC1ng the adjective "random" by the noun “"confidence”. For reasons
of s1mn11f1cat1on the term "confidence ellipse of standard deviation” is
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further simplified to "ellipse of standard deviation".

Z/‘

Fig. 5.2 Ellipse Standard Deviation. (The center is at the adjusted
point X, and the size is a Xunction of the a-posteriori variance of unit
weight.)

The eigenvalues are found Xrom the characteristic equation

- = | X1 = - - - 2
Q; -l X (g - N(a =N -9
X2
The solution is
%, T
XL,ZQ1=—1—2 t W (5.71)
2
= - 2 2 (5.72)
where W qv/kqxl qxz) + 4qXlx2

Since qx and qx are both positive the length of the semi-major and minor axes
- 1 2
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will be obtained depending on the sign of W.
Although the size of the ellipse of standard deviation is known now,
the orientation of the ellipse with respect to the (X) system has to be
found and a criterion has to be established to decide which of the Zi-a
coincides with the minor or major axis of the ellipse. Both probl
are most easily solved by comparing the equation for the ellipse i
coordinate systems. The (Z);and the (Y )1. systems are both rel
rotation -

(:)’ RiTG:)

(5.73)

where Riis the eigenvector matrix of Qi' Let the/rotation angle be 4; then

Figure 5.3 Rotation of oordinate System.

the following relations cap be seen from Figure 5.3.-

ing + ycos¢

Z; = yaJcoseé - yising (5.74)

In equation (5.67) we s3w that
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This expression can be rewritten as

T =7 1 - 2. Q 2 qQ
Y QY =24 M2 5 R t2g (5.75)
, T _ .
since R, QiRi = A From (5.74) we obtain
2 2 2
z lliQ + ZZZJ&Q = yp 1951n2¢ + fC05 ¢)
2 2 2
+y( Alqcos + Azqsin )
- bq)251n¢cos¢ (5.76)
This expression is equivalent to
T = qxlxz Y1
Yi QY5 =
qx2 Y2
+ .
Y)Y, %y X, (5.77)

Comparison of some of the/coefficients of (5.76) and (5.77) gives

Qs -
2(9 X, )singcos¢ 2qx1x2

or X X X X (5.78)
sinZe ——QJ—Z——— =__1 2 .78
A - )2Q W
o2 qxl ) qxz
and cop2¢ 1 - sin 2¢ =
W (5.79)

The equations (5.78) and (5.79) are sufficient to determine uniquely the angie ¢.

The angle refers to the semi-major axis or semi-minor axis depending on whether
W is taken positive or neqative.

University of Maine, Orono
Adjustment Computations 213
www.gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only

The following is a summary of relations needed to determine the shape
and orientation of the ellipse of standard deviation and some properties
related to it.

y:}-x A
I P ) /%
a
Prw) o
b I=X5%
25

Figure 5.4 Def::::;\ﬁlsments of the fllipse of Standard Deviation

e iy, S

) qxl ) 2 bq X1X2

a =;q/qx1+ qu 1 C;OVA]_'
- 2z 2

=
1]

b =¢
f (5.80]
5in2¢
cos2¢ = _W—-
/
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In order to study the properties of the ellipse of standard deviation let us
compute the positional error with respect to a general directiony.

Figure 5.5 Positional Error p

m variable Z is multivariate normal with

(Y0 N )]

i.e. both variables are stochastically indepeMNent. Consider the random
variable r which is the projection of the randomM\point (z;,z,) onto a line
whose azimuth is y:

The di ibution of the r

= glposw + £zsinw, (5.82)
The estimated variance of this random variable is

~2 2 2 2 2

o. =acosy * b siny (5.83)
as can be verified by using the law of variance propagation. This\variance
has a geometrical interpretation. Let the ellipse be projected ontd the
line r. . The directions of r and of the tangent on the ellipse d\ffer by
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90°. Since the equation of the ellipse is given by

2 2
z, z
+ 2 = 1
—_ —
a b

the total differential becomes

2z dz 2z,dz,
1 1 +

2
or dz, z, a
— oy — T

de Z) b

Since the slope of the tangfnt is (-y), this equation becomes

or
cosy = 0 (5.84)

This equation reflates the coordinates of an elliptical point P, to the slope
of the tangent pon the ellipse at that point. The length p of the projection
of the ellipsef is according to Figure 5.5.

P = Zg£O0SY + z4,sinY (5.85)

;mg]ement the condition (5.84) we square it and multiply the
results bf a b , giving '
2

2 _

Zo1 b 2 ) zgp%a?

sin y - 2z4,25,c08¢siny + —5— cos ¢ = 0
b

a

216 University of Maine, Orono
Adjustment Computations
www.gnss.umaine.edu/lectures Do not remove PDF watermark



These notes are made available for personal use “as is”.
The author assumes no responsibility for errors or misinterpretations.

No further explanatory service will be provided.

Alfred Leick 1980 Lecture Notes in Surveying Engineering For personal use only

Adding this expression to the équare of pin (5.85),

z 7. 25 2

o
)

0 Zg2C0Sysiny + 24, NN v,

gives

2 | 2 C 2022 2 2
(b siny + a cosy) + —5— (a cos y +

b

2 2 2
—— + —) (b'sin y + a cos y)

01° 2022) ( 2 .
b

2 2 2 2 /
=acos ¢y +bh sing (5.86)

standard devigtion in a certain direction is equal to the projection of

the ellipse ih that particular direction. Therefore, the ellipse of standard
deviation isfnot a "standard deviation curve". Figure (5.6) exhibits the
standard devyiations for several directions. It is seen that for narrow

ellipse of standard deviation

—standard deviation curve

Figure 5.6 Standard Deviation Curve

ellipses there is only a small segment for which the standard deviations
are close to the length of the semi-minor axis. The standard deviation
increases rapidly as the direction y moves away from the minor principal
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axis. Therefore, an extremely narrow ellipse is not very desirahle if the
ASRHLEFK accuracy for 'HRE SRANPNCESL BOYYe FRgeedng,  Forpersonaluseonty
A§ a by-product of the property discussed above it is seen that the
marginal standard deviations g ;
onto the directions of thes%, a#d X2 aies,
maximum and minimum stpfidard deviations of the

re the projections of the ellipse
that a and b must be the
int. The rectangle formed
by the semi-sides ¢/ and ;x

encloses the ellips In many cases this

- 11

2 X%

Figure 5.7

shape of the ellipye of standard deviations. The semi-major axis must always
be smaller than the\ diagonal of the rectanglie. The diagonal itself is some-

= GOW’ Tr'Q‘i = ca/qx . + Ux, (5.87)

This error has an interesting property in that it is invariant with respect to the

specific orientation of the coordinate system (X)! From equation (5.71)
we see that

= A1Q + hQ- (5.88)
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But the eigenvalues ak\e independent of the choise of the coordinate system.
They are related to the\lengths of the principal axes which are a characteristic
of the distribution;and Yot of the particular coordinate system chosen to
describe the distribution\ From equations (5.87) and (5.88) it follows that

Q ~2 ~2

*Vo max ¥ 9 min (5.89)

coefficients. For the points
horizontal or vertical. The equation of the ellipse in the (Y)-system is:

—
1}
—_

(y va)

Y1 _ 2
qxquz "4 XXy
Y2

Evaluating the left side and dividing}both sides by qxqu gives
2

2
y 2 LY 2 Y1Y¥2q X2 ] ,
- =0T Pxx (5.90)
1%2
%, %, % Ik,

from which it follows that

2y, 2y X Xo

dy, %, '\[[X 1%

d_yZ Zysz% ) 2-y1 (5.91)

q 1 X2 qxl
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Case 1: Slope ==; y; = é

OU qu

It follows from the denominator of (5.91):

or

Case 2: Slope =

It foYlows from the numerator of (5.91):
Y2 7 99 %, Pxixp Tx2°x 1%z

observe that the ellipse becomes narrower the larger the
orrelation coefficient. If the correlation is one (linear
dependence of the two parameters), the ellipse of standard deviation
degenerates into the diagonal of the rectangle. The ellipse

becomes a circle ifa=boro. =90 2 and p = 0.
X1 X2 X1X2
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APPENDIX A

General Matrix Inverses (Minimal and Inner Constraint)

1.) Generalized Inverses

Consider the g¥stem of n equations with™N parameters

nAux (A1)
The rank of tife A matrix is R(A) = r with r < min (d,n); i.e. A has
less than fulfl column rank. The general solution of\(A1) can be
written as

x|= Gg + (I -~ GA)z (A2)
where z is §n arbitrary ux]l vector. The matrix G is falled the
generalized{inverse of A. It has the property

nﬁuuennAu = A (A3)
The matrix § is not unique; there are several G/s which fulfill (A2)
and (A3). is the particular solution of (A1) whereas (I - GA)z
is the soluton of the homogeneous system AY = 0 since A(I - GA) =
A - AGA = 0.

The\number of independent solytions in (A2) is equal to the

rank defect u¥ r. The matrices I - &A and GA are idempotent, as can
easily be verified with the help of (A3). Thus

A) = Tr(I - GA) = u - Tr(GA) = u - R(GA) = u - r

This follows from\R(GA) = R(A) and R(GA) 2 R(A) because A(GA) = A. For

an arbitrary z vector there arg>thu§,u-r 1inearly independent vectors
in (I - GA)z.
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A special generalized inverse of A is the pseudo inverse A+.

This inverse is unique. It fulfills the conditions (defining conditions):

AR = A \

_——

) (A5)

Let the u x u matrix G now be the generalized inverse of the
symmetricimatrix ATA. Instead of (A3) we then have

A'AGA'A=AA (A6)

T

Transposing (A6) we see that GTis also a generalized inverse of A'A. We

further fin

T Tancal T

A=A and A'AGA" = A (A7)

In order to verifyXhese relations let's write:

T

ETE = [AGA'A - A} NGA A - A]
= [ATAG - I]AT[AGA A
- [ATAG - I][ATAGATA - A
= [ATAG - I][ATA - ATA]
=0
University of Maine, Orono
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If EVE = 0 then E = 0 and thus AGA'A - A = 0 which proves the first
N -

relation in (A7). The second relation is proven
Let G and F be two different
according to expression (A7) we ha

ralized inverses of ATA; Then

AGATA = AFATA

Multiplying this relatjbon from the right by GAT then

T T

AGATAGAT # AFATaGAT

becomes

because of (A7).\ Thus, the matrix

AGAT

(A8)
js invariant with respec®\to the choice of the inverse G. Recall that

of ATA and not of A in this context.

The matrix G, = GA GTis also a generalized inverse of ATA,

since together with (A7) we

G is the generalized invers

ATa(eATagT)ATA = AT

+
Let N be the pseudo invers

ATANTAT A \
+,T
N'A
} (A10)
(ATAN
(N"ala) /
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Transposing these relations we observe that (N+)Tis a pseudo inverse

of ATA; therefore, since the pseudo inverse is unique,
(VO T = N (A11)
i.e. the matrix is symmetric.

2.) Estimable Functions of the Parameters.
Consider the singular system of normal e+uations

ATAX = -ATL (A12)

which follows from the adjustment model

E(L) = -AX

(A13)

Let the rank of the design matrix be = r <u<n. The fact that

we have assumed a diagonal variance-govariance matrix for the observations
does not impair the generality of phis discussion since the case above
can always be achieved by linear £ransformation. Let the u x u matrix G be
a generalized inverse of ATA sfch that (A6) holds. With (A2) the

particular solution becomes

(A14)

E(X ) (A15)

I in general. Thus X is a biased estimate of X. However,
biased estimate of the Tinear function Xq = GATAX of the

since GATA

~

Xg is an
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parameters since

E(R,) = E(GATAX ) = GATAX = g (A16)
In general; a linear function ¢'X of the ppfameters is
unbiasedly estimable if a vector d exists such thft cTX = E(-dTL).
With equation (A13) we obtain for the vector ¢
¢ =da (A17)

A necessary and sufficient condition for the function cTX to be unbiasedly
estimable is

cTGATA = ¢! (A18)
If cTX is estimable then ¢ A and
cTGA™A = d"A = !
The estimable functfon xg = cTX js determined uniquely; since with
expressions (A14)/and (A17)
£ a'axg ==a"acA'L
is invariant/with respect to the selection of G according to (A8).
Furthery theg unbiased estimate is
TA
= A
c'Xg (A19)
since
E(xg) = cTE<ig) = cTeaTax = d"AGATAX = dTAX = c'X (A20)

For the\variance we obtain:
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V(x ) =E{[(c'GATL - E(c'6ATL)I[cT6ATL - E(cTGAL)] )

(A21)

H
Q

With (A8) it follows thAit V(ig) is also independent of the choice of G.
It can, furthermore, be ghown that the variance of the estimable function
is minimal. Example
ratios in the case of a horizontal network in which the parameters X
are the Cartesian cgordinates. See Grafarend and Schaffrin (1974).
It can edsily be seen ) that the particular vector

- of estimable functions are angles and distance

(A22)

is an unbiasedly estimable function of X since each of its components is
unbiasedly estjmable. The necessary and sufficient condition (A18)
is fulfilled:

T T

GAJAGA'A = GA'A

The unbiasefl estimate Xg.js (A14),

ut of the many possibilities for finding unbiasedly estimable
functionsf/ by the transformation (A22) we pick the one in which the
covariange matrix has a minimal trace. This is accomplished by the
pseudo jnverse N+. The proof follows later. The unbiasedly estimable
functiop of the parameter X is
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(A23)

e pseudo inverse of N =

ip NATaN'ATL = -nfaTL (Az4)
And the varianpce-covariance matrix is
X (A25)
XD

Thus, the use of the pseudo inverse in solving
equations (A12) leads directly to an unbiased
function Xp. It will be necessary to investigal
Tinear function Xp for each application.

e singular normal
timate of the linear
ke the meaning of the

The estimate Xp is distributed as

& 2
Xp = Np(-NATAX, o " Ny T)

according to (A24) and (A25). The rank of Nt fis equal to r. Analagous
to the transformations performed in Section 5fwe can find a linear
transformation

such that the r components of Y are stocflastically independent and
distributed as n{0,1), and that the quagratic form
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~
-~

(X - N+ATAX)TN(Xp - N*ATAX) = VIV

P

remains invariant. It follows that

(X - N*ATAO) TN N*ATAX) 2
—= -~ Xy (A26)

Using the relations (AM0) for the pseudo inverse the expression (A26)
can be readily simpiffied as to

z z 2
.‘;lz.(xp - )TN, = X) <y ] (A27)
Q

This expressjyon is, of course, identical to (5.41) as appligd to the
case of a rghk deficiency.

3.) Minimal

onstraint and Inner Constraint.
Generalized inverses,including the pseudo inversg, can be

necessarw\ to avoid the singularity Qf the normal equations.

(A28)

V(L) = oyl
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with R( Y=r<u<n

nAu
The augmented normal matrix
-1

ATA BT
(A29)

is non-singular for eveyy (u - r) x u matrix B which has full row rank
rly independent of A. In that case the rows of

Ta. The matrix (A'A) has, thus, ful
B

and whose rows are lin
B are also linearly infependent of A

row rank and the normgl matrix (A29) has a full rank since the columns
of BT are linearly independent of ATA.

From the thebrem of Section 1 we know that there exists a
non-singular matrix M,

(A30)

such that

MT(A
0 (A31)
where the non-zero submatrix F| (ATA)F is of size and rank r. The relation

(A31) implies

E(ATA)E! = o (A32)
which, in turn, implies /
AET = 0 (A33)

The matrix ET spagAs the Null space of the design or the normal matrix

since
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ATAeT=

0 (A34)

Having a particular solution Xb of

general solutions of the singul
as

28) the (u - r) linearly independent
normal equation system can be written

X=X +Ef

b (A35)

where f is an (u - r) xJ1 arbitrary vector. With the help of the matrix E
all possible solutions
and the same set of obsérvations.

If the rows of
the matrix BET has a full

n the parameters can be expressed based on one

in (A29) are linearly independent of A then
nk, i.e.

T
R(BE') =u-r (A36)

With the help of (A36) the inverse \n (A29) can now be computed. From

ATA 8T\ /1 I 0
B 0 p 0 I
we obtain
a) AA =
AtapT +8TR =0
(A37)
c) Bz, =0
d) BPT =1
Multiplying a E from the left and using EAT = 0 we get
_1
P = (8"
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The latter expression fulfills equation d). Using the above expression
it follows from b):

T T

-1
T T( ) +BR

A'AE " (BE
or

B'R

T -1 .
A'A B i Ly
B 0 (EB (A38)
Substituting the expression/for P in relation a) of (A37) gives
_1
Alazp =1 - BAEB) E =T, (A39)

or

T

1 1
B) {z, + EVBE'T (EBT)” E} = I

The validity offthis expression follows from (A39) and (A37). It can

.1 -1
zb/ (ATA +878)” - E'(EB'BE)E (A40)

Thus, the least squares solution of i

subject to the condition BXb =0 is

- T

The variance-co\yariance matrix of the parameters follows from the law

b
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of propagating variances:

. 2 -
I, = 9 s ATAZ,

2 (A42)

]

Q
o

[ ]

The latter part of (A42) follows from (A 9)Tupon multiplying from the

Jeft by I,,. We also find that ATA}:bAT = A'A. Thus Iy is a symmetric
’ T Tazy, and ZxATA

reflexive inverse of A'A. Note that #he products A Azj and Iy are

not symmetric. Hence I, is not a psgudo inverse. Tb is called

T

Tb X.

itions on the parameters in order

the transformation matrix since Xb
We have imposed u - r co

to solve the least squares problemd i.e. the minimal number of cgmditions
is equal to the rank defect of the ¥esign (or normal) ma

solution derived in this manner is ca

Any
constraint solution,

There are obviously several different sets of minimal constraints
possible for one and the same adjustment. Th
B matrix is that 1

rerequisite on the

full row rank ap#”that its rows are linearly

independent of A.
The estimate ig from (AJA), which is a function of the reflexive
generalized inverse and the estifiate Xb of (A41), which depends on the
conditions, agree. Therefpre, the transformation (A22) of the non-
estimable parameters X in§o th¢ estimable functions X_ corresponds
to the introduction of thg conditions BXb = 0 in (A28).
The transformatfion to other minimal constraints is straight—
forward. From (A14) andf (A40) we conclude that for conditions CXc = 0
in (A28), provided C isfa (u - r) x u matrix of full rank whose rows
are linearly independent of A , and provided TC and anre defined
analogously to (A39) and (A40),

_ T
XC = TC X
Y = .5 AT A43
Xe LA'L (A43)
z = g °C
XC o "¢
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Thus, we have found two linear functions of the parameters

and

which are estimabie. From the definition (A39) of the transformation
matrices Tb and Tc’ and the relations

ATAZbATA

the following solutions cam\be rea\{ily verified:

and

2. =T

(A44)

™~
0]
-

Using these expressions we find the following direct transformation
between the estimable functions
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T
X, =T X
b "¢
b (A45a)
T
Xe = Te Xb
The same relationship holds for
(A45b)
with
The equations (A44) and {A45) show how the parameters and their
variance-covariance matfices transform under minimal constraint.
Instead of using the general condition BXb = 0 one can
make use of the spfcific condition
X 4
E 9 (A46)
The rows of E fire Tinearly independent of A because AET = Q. Thus,
we can substifute in (A38) to (A40) the matrix B = E. Using the
notation zg jhstead of zb we obtain:
234 University of Maine, Orono
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Tl
(A47)
(A48)
= /al T4 -1 -1 '
Ig= (A'A+ E}A - £'(eeTEE)" E (A49)
Since Ezg = 0 according to (A37) the equation (A48) gives ZgATAzg = I
and ATAngT = ATA. We also find that the matrices ATA):g and ZgATA

are symmetric. Thgse four conditions are necessary and sufficient for
Zq to be the pseudo inverse of N, i.e.

rse N* can be computed from (A47), (A49) or (Ad44)

according to

+
N

TrgT (A50)

The unbiasg¢d estimates of the Tinear parametric function

T

X =-N"a'Ax
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become
X = -N"ATL (A51)
)
with the variance-covariance matrix being
_— (A52)
Z.Xp- 9, N

This special solution is called the inner gonstraint solution. It.js
obtained by computing either the pseudo Anverse of the normal matrix
based on available algorithms or, equj alently, by applying the condition
EX = O to the parameters. Exampley/of the latter case are given in Leick

and Tyler (1980).

4) Properties of Inner Constrfint Solution:

A) Consider the generfl solution (A35)

(A53)

which gives &11 Tinearly independent solutions of the singular normal
equations.

equations

The system (A53) can be considered a set of observations

' The parameters Xb are the "observations" having a_ﬂﬂif
matrix af a weight matrix;f are the parameters which are to be
determiged by least squares. X denotes the residuals to the
coordinptes. The Teast squares solution with

~(EEN) EX, (A54)

and
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T
(

Ty %]fb (A55)

>
i

(I - £ (EE

1]
[}
]

|

1
=
b
-

T =\zpa N aT= 72,AT which follows from the

earlier. The solution (A55) is
identical to the pseudo invekse solution. Thus, if the pseudo
inverse is chosen the resultij

Note that N'A'= TzpTA
respective expressions giv

parameters have a minimum norm

&1
X X"_”.n = Xp

compared to any minimal constraint sol\tion Xb.

We realize that in the case of a ngn-linear adjustment the
adjusted parameters are a function of the\approximate parameter
values used in forming the normal equation
Therefore, the actual minimum of XTX is als
approximate parameter values.

since X = Xa - XO.
a function of the

In many problems in Surveying Engineering it is relatively

easy to find the matrix E and to give a geometri
07 the estimable parameter function Xp. Examples
Leick and Tyler (1980).

interpretation
re given in

+ . . !
B) TrN" = minimum compared to any other minimal const
From equation (A50) we get

int solution.

TrN® = Tr(TZpT)

TrTTZh

TrTZh
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-1
Here we have used the fzct that TT = T. The matrix (EET) can

) Te _ o Ti-1
be factorized as S'S = §EE') . Thus

TN - E's'SEzp

- TrSEZRE'S

A

since TrSEzbET T > 0

C) The residuals are invariant with respect to the specific choice
of the miniMmal constraint. Consider again equation (A53)

soluti Multiplying this equation from the left by A gives
T
Axb + AE'f
or
AXb

Thel product of the coefficient matrix and the parameter vector
is [invariant. This implies that the residuals

V=AX+Lb

are \invariant with respect to the specific choice of X. Thus, La

is a\{so invariant.

D) Since tNe residuals are invariant,the quadratic norm VTPV is also
invariant\with respect to the choice of the minimal constraint.
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-1

.2 Ty o e : T o
E) zv = zo (P7 - Az A } is invariant since AzXA is invariant

is invarjant.

4)  The Pseudo-Inverse of the Design MaXrix

The least squares solution of

V=AX+1L
ZLb = ool (A56)
with
R(nAu) =pr<u<n
is given by equation (A51) as follows:
?(p = n'aTL (A57)
N+ is the pseudo inverse of the normal matrix N = AT . It can be
computed from the expression
-1 -1
NV = (ATA + ETE) - ET(EETEED) (A58)

The columns of the matrix ET
A or thenormal matrix ATA.

The elements of the E-matrix can usually be found readily by

span the Null spdce of the design matrix
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inspecting the general form of the elements of the A-matrix.

The identical solytion to (A57) can also be gjpven in terms of

the pseudo inverse of {he design matrix. /The sojution to be dis-

cussed in the followind, is computation#11ly more fcumbersome than

the previous one. This ix can be found

easily in most applications. rivations, therefore,
should be regarded as an exercise in the use jof pseudo inverses.

The method to be suggested will depend expljcitly on the use of
eigenvectors. To start the derivation let/fus recall the least
squares solution expressed by equation (5£23), which reads in the

present notation

The subsequent

(A59)
The matrix F is (n x r) and its cflumns constitute an orthonormal
basis for the column space of
that one choice for the colu

vectors of AAT. The syste

e design matrix A. We also note

s of F could be the normalized eigen-
(A59) has various solutions each of
which minimizes VTV. A golution can simply be found by imposing
u-r conditions on the/parameters, e.g. X; = X2 = ... X = 0,

u-r
and solving for the remaining r parameters. Alternatively we may
consider (A59)

condition

condition equation which is to be solved under the

XTX = minimum

According to the solution given in Section 3.2 for condition equation
adjustments we obtain
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T eTaa ey 1T

-A'F(FAA'F) FL (A60)

The matrix FTAATF j

It can readily bgf verified that the pseudo inverse of the design
matrix is

of size and rank r, and, therefore, non-singular.

-IT

At = ATF(FTAATR) T F (A61)
since the fouk defining conditions (A5) are fulfilled. Equation
(A61) shows hol the pseudo inverse can be computed using the eigen-
vectors of AAT.
In summary wecan say that the solution of the inconsistent
equation system (obséwyation equations)
subject to
a) (AX + L)T(AX + L) = minimum
b) X'X = minimum
is
(A62)

modified form for
1973, p. 42). L

(Rao,

then

R(nAATn) =r
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If
uvr is the ejgenvector ma TA
and
nFr isfthe orthonormal eigenvector matrix of AT
then
and (A63)
Let A -denote the\diagonal matrix whose diagonal elements consists
of the non-zero eiggnvalues of ATA or AAT (note that both matrices
have the same set of\non-zero eigenvalues) then A can be factorized
as follows
(A64)
yielding
T
T
The pseudo inverse of A is
At =y (A65)
University of Maine, Orono
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It can be readily verified that the matrices (A64) and (A65) fulfill
the four defining conditions (A5) foyp/the psjudo inverse. The
equations (A64) are the analog to gimilar exgressions given in Section
1 for positive definite matrices. Aty of (A65) and (A61)

can be established with the help of (A63) apd (A64):

ATF(FTaATR)!

We conclude that the pseudd inverse of the design matrix A can be
), (A61) or (A57). The first two cases

involve the eigenvectgtrs of the normal matrix where as the latter

computed from either (A

expressions, in copfination of (A58) makes use of the Null space.
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