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Abstract: For friction piles depending on the friction resistance, accurate prediction of unit skin
friction around the pile shaft is the dominant resistance to measure the final bearing capacity of a
bored-pile. The present study measures the stress–strain transferring in two instrumented bored-piles
(BP #1 & BP# 2) embedded within the soil layer in Kuala Lumpur by real-time monitoring global
strain extensometer (GSE) sensors. Two bored-piles (i.e., having 1.80 m and 1.0 m diameters, as well
as 36 m and 32 m lengths) have been loaded with two times to their design working loads. Extensive
data are analyzed to measure the changes in stress–strain in the bored-pile. The effect of loading and
unloading stages on the pile’s head and base settlement has been monitored, indicating that Young
modulus of elasticity in concrete bored-pile (Ec), average strain, and unit skin friction changed along
the bored-pile based on the ground site conditions and stress registered. One example of two case
studies with great real-time monitoring data has been provided to further design.

Keywords: bored-pile; global strain extensometer; pile friction resistance; real-time monitoring

1. Introduction

In recent years, calculation of pile bearing capacity data in-situ test has been broadly applied by
geotechnical engineers and building foundations, because these data are more accurate and reliable
than small-scale laboratory tests. In fact, bored-piles have been considered empirically more as an
art-work than science [1], and are formed using appropriate machines (capacity-type) to fill the holes
with applicable concrete and reinforcement. Their usual sizes are 400 mm to 3,000 mm diameter,
with a capacity that reaches up 45,000 kN based on the pile size and geological profile close to the
pile, so an excellent pile capacity has reduced the pile cap size and pile numbers in the group [2,3].
Therefore, bored-pile designing in most countries has relied on the results of the conventional standard
penetration test (SPT). According to the literature, the procedure of bored-pile design has consisted
of stages such as: (1) the calculation of the end bearing capacity ( fb) in bored-pile; (2) calculation of
the shaft bearing capacity in bored-pile ( fs), note that, the sum of both values is the ultimate bearing
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capacity of an individual pile; and (3) pile working load which has been presumed from the ultimate
bearing capacity by using a safety factor that permits the piles’ interaction within the group [4,5].

Regarding the empirical approach of fs in relation to Ks × SPT, fb has been related to Kb × SPT
widely applied in pile designing. To evaluate Ks (i.e., skin friction ratio, fs/SPT) and Kb (i.e., end
bearing ratio, fb/SPT), the value including local soil condition has required vibrating wire strain
gauges (VWSG) and a mechanical tell-tale rod installed within the pile to measure the axial stress–strain
relation and movement in different levels down to the pile’s toe and shaft. Bored-pile of length (L) and
diameter (Ds) supporting a vertical head load (Ph) by the mobilized shaft and base resistance (Ps − Pb)
is illustrated in Figure 1a. The vertical displacement of the pile’s base and head are defined as ∆b − ∆h,
followed by the pile compressing (shortening) as ep ignoring the pile weight as it is in Equation (1) [6]:

Ph = Ps + Pb (1)

According to the cross-sectional area of concrete A, the stress along with the pile σh is as
Equation (2) [6]:

σh =
Ph
A

(2)

∆h = ep + ∆b (3)

The length δz has been located at depth z below the pile head level as shown in Figure 1a–c. Shaft
resistance δPs mobilized along the segment δz equals the axial force changing in axial force δPz. The
unit shaft resistance fs(z) mobilized in δz has been related to P(z) as shown in Equation (4):

dP(z)
dz

= −πDs fs(z) (4)

The negative sign shows that Pz decreased as z increased (Figure 1c). Omer et al. [7] mention
that if the pile’s elastic feature has been denoted (Ep), ignoring all vertical soil moving and pile
displacement w(z) (e.g., pile movement at depth z below the pile head level) at depth z have been
offered as Equation (5):

dw(z)
dz

=
−4P(z)
πDs2Ep

(5)

Equation (5) is different with z and dP(z)/dz, replaced by using Equations (1)–(4) as Equation (6):

d2w(z)
dz2 =

4
DsEp

fs(z) (6)

All the mentioned equations according to force equilibrium and displacement correspondents are
valid irrespective of pile type and soil grouping [7].
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Few more studies have been performed on longitude strain, which have measured the instrumented
piles [8–13], transferring of load in rapid pile axial loading [14], static, dynamic, seismic, and cyclic
lateral load of pile classifications [15–17], rigid and flexible pile behaviors in diverse soft soils [18–20],
and skin friction resistance measurement in piles [21]. Some studies have been conducted based on
numerical simulations, however, others have been performed on field monitoring (Ng and Sritharan [22];
Hung et al. [23]; Tafreshi et al. [24]; Mascarucci et al. [25]; and Lee et al. [26]). Ochiai et al. [27] propose a
reliable designing model for bored-piles following in-situ tests by SPT. Poulos [28] has also introduced
an appropriate design for piled rafts, comprising three stages: (1) assessing the feasibility of piled raft
application accompanied by the required pile number, (2) evaluating where piles are needed and its
general features, and (3) obtaining the optimum number, location, and configuration of a pile and
computing the settlement distributions, bending moment and shear in the raft, and the pile loads
and moments.

Sego et al. [29] studied the effect of an enlarged base on the total and end bearing resistance of a
pile for use in ice-rich permafrost. Therefore, the total capacity of a bored-pile has mainly inclined
by belled-pile usage. Shariatmadari et al. [30] studied the bearing capacity of driven piles in sands
following SPT by applying 60 previous cases. Data included 43 full-scale, 17 dynamic tests, and static
pile load testing analyzed by control and provisioning of wireless access points (CAPWAP). Note
that, SPT data have been used close to the pile locations. Another model, as standard penetration test
N(SPT-N), has been conducted and proved to have less scatter with higher accuracy. Zhang et al. [31]
applied an elastic–plastic model showing the load–settlement relationship, and provided a simple
method to analyze the behavior of a pile group and/or a single pile embedded in multilayered soils
using two methods like an approach to enable a quick estimation of pile group settlement and/or
a single pile embedded in multilayered soils providing time and cost saving. Ruan and Zuo [32]
explained the relations between the ultimate vertical bearing capacity and SPT for the jacked pile.
These case studies confirm the accuracy and reliability of the formula, mainly in silent pipe pile bearing
capacity calculation. Assessing the friction capacity of driven piles in clay has been performed through
the use of multivariate adaptive regression spline (MARS) by Samui [33], which led to D (diameter), L
(length), undrained shear strength, and effective vertical stress as MARS input and friction capacity as
output compared using artificial neural network (ANN). MARS, as a robust model, has been applied
to predict the friction capacity in driven piles installed in clay.

Meanwhile, another research carrying the same approach has been conducted on cohesionless soil
by Samui [34]. Chae et al. [35] investigated the uplift capacity of belled-piles in weathered sandstones
of the Persian Gulf coast. Accordingly, few full-scale pullout load tests on belled tension piles in
Abu Dhabi have also been performed. Comparing the results from the field, 3D finite element (FE),
and theoretical methods have overestimated the ultimate pullout resistance of belled-pile without
bell shape considerations [35]. Sakr [36] compared the results of high strain dynamic and static load
tests of single helical-screw piles in cohesive soils. High strain dynamic pile load experiments have
been performed on both driven steel open-pipe and helical piles. Case Pile Wave Analysis Program
(CAPWAP) and full-scale static load test have confirmed high strain dynamic testing (HSDT) as a
reliable tool for assessing static helical pile capacity. Zhang et al. [37] stated that in a typical design,
the skin friction and the base resistance are majorly independent. Furthermore, the ultimate bearing
capacity of a single pile has been composed in ultimate end resistance and confining skin friction.

Yao and Chen [38] promoted a flexible plastic solution for the uplift belled-pile. In the comparison
of the provided solution outcome to the theoretical calculation one, the theoretical method results
revealed that the elastic–plastic analytical solutions is a good method. Aksoy et al. [39] developed
a new chart to estimate the friction angle between the pile and soil materials. Accordingly, in the
current research, soil including different internal friction angles (φ) has been initially provided, then the
skin friction angles (delta) of the mentioned soils with fiber-reinforced plastic (FRP) like a composite
material, wood (pine), and steel (st37) have been defined by undertaking the interface shear test to
provide a pile design diagram to determine skin friction angles of the soils and pile materials.
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Wang et al. [40] investigated the controlling effectiveness and settlement behavior of two types of
rigid pile structure embankments (PSE) constructed on collapsible loess soils beneath a high-speed
railway. The results have shown that this type of PSE has mainly reduced embankment settlement so
that embankments have to be maintained on collapsible loess. Meanwhile, pile spacing has significant
efficiency in settlement reduction. Therefore, the current study has focused on stress–strain transferring
throughout the instrumented bored-pile within the layered soil to measure the parameters of soil-pile
interaction comprising Young elasticity module in concrete (Ec), average strain, and unit skin friction
changed along with the pile.

2. Material and Methods

2.1. Testing

Maintained load test (MLT), is known as static loading test (i.e., the load will remain constant
until the settlement ended to small values), has been followed by ASTM Standard (D1143/D1143M-07).
An apparent distance between the reaction pile and test pile should not be less than five times to
diameter (D) of the immense pile. Considering setup, the piles are loaded by applying hydraulic jacks
toward the main beam operated by an electric pump. Then, the applied load is accurately calibrated
by vibrating wire load cells (VWLC) (Table 1). Both instrumental piles are located in Jalan Ampang
and Kuchai Lama, Kuala Lumpur, Malaysia.

Table 1. Instrumental bored pile load test summary.

Pile No Diameter
(mm)

Working
Load (kN)

Pile Length
(m)

Pile Area
(m2)

Test Load
(kN)

Type of
Instrument

BP# 1 1800 22,200 36.95 2.5447 44,400 GSE
BP# 2 1000 6750 32.56 0.7854 13,500 Conventional

2.2. Loading Procedure

Poulos [28] states that applied loading is crucial to the bending moment and differential settlements,
but less critical to load-sharing or maximum settlement between the piles and raft. In bored-piles, time
for loading test has been determined by the piles’ concrete strength (Zhang et al. [37]). In addition,
Tomlinson and Woodward [1] suggest that at the testing time, concrete should be in its seven days (at
least) with at least doubled strength of applied stress, moreover, in the current pile testing, the load
cycles have started 28 days after pile construction. A schematic view of the MLT is shown in Figure 2.
Instrumented piles are tested by MLT per two loading-cycle calculated by calibrated VWLCs in every
10 min for one hour (Figure 3).
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Figure 3. Variation of the total applied static stress on pile versus time, (a) Bored pill (BP)# 1 and
(b) BP# 2.

2.3. Instruments Monitoring System

The influence of geologically weak zones through multilayer site conditions has dramatically
changed the designing parameters when the majority of these parameters change by depth. In other
words, new global strain extensometer (GSE) sensors have recently measured the change of design
parameters through the depth, so the pile top settlement has been monitored using: (1) four linear
variation displacement transducers (LVDTs) mounted on the reference beams with their plungers
vertically placed against glass plates fixed on the pile top, and (2) vertical scale rules attached to the
pile top and sighted by a precise level instrument. Vertical scales have also been shown on the reference
beams to check any movement in the loading test. Indeed, VWLC, global strain extensometer (GSE)
sensors, VWSG, and LVDTs have been automatically logged across the use of Micro-10x data logger
and Multi logger at 5-minute spaces for precise controlling during loading/unloading stages, adding
that only accurate level readings have been taken manually. Figure 4 shows the cross section of BP# 1
(D = 1,800 mm) and BP# 2 (D = 1,000 mm) and the sensors’ placement along the main steel rods.
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Accordingly, the bored-pile has been tested using MLT through the reaction pile. All instruments
using Micro-10 data logger and multilevel software have been automatically logged. The conventional
instrumented method used VWSG and mechanical tell-tales. While by being attached to the steel cage of
bored-pile, VWSG and mechanical tell-tales have permanently been embedded in the concrete. GSE is
the second instrument applied in axial load measurement and settlement distribution in the bored-pile.

On static load testing, loaded pile deformation has produced a related moving between every
two anchored intervals changed in strain gauge wire tension, in addition to a corresponding change
in its resonant vibration-frequency measured by plucking GSE sensors/transducers through a signal
cable to readout box/data logger to measure the frequency and display of the shortening and strain
reading. Considering the installation set up, GSE has measured shortening and strains on all test
pile sections in every load step of a static pile load test, so it has integrated the strains on a larger
and more representative sample. Therefore, using a defined instrumental scheme, data derived from
instrumented load testing have provided reliable information. The results of GSE have been compared
to the conventional instrumentation bored pile results. Subsequently, regarding the test piles, including
BP# 2, the Geokon VWSG and tell-tale extensometers have been installed internally to monitor the
strain developing and shortening of pile behavior on the test. BP# 1, with the instrumentation of GSE,
has been placed with seven levels depending on the pile length and vertical varieties of sub-soil cases
in sonic logging tubes (Figure 5).

Due to calibration of the applied axial load and the measured average strain, a calibrated GSE
sensor has been installed near the pile’s head, in which there is no interaction between the soil
friction and pile shaft. The GSE sensor measured the strain of other levels to determine the axial load
transferring in all pile shaft sections, also to measure the loads contributed from the toe or/to end
bearing resistance. VW Extensometer is installed on the anchored interval at eight levels (Figure 6).
Pile deformation in loading has produced a related motion between every two anchored intervals
producing strain gauge wire tension alteration in VW transducers, in addition to a correspondent
variation in its frequent resonant vibration measured by plucking GSE sensors to the readout box/data
logger. Therefore, the process measured the frequency displayed by the shortening reading and strain
reading. VWSG for BP# 2 is also installed at five levels (A to E) in four numbers per level (Figure 6).
The connected VWSG to the steel cage and electrical lead wires from the sensors coming to the top,
have been illustrated in Figures 7 and 8.

The pile head displacement has also been analyzed using dial gauges and LVDTs, resulting
in a reading with 0.01 mm accuracy mounted on stable reference beams and protected from direct
sunlight and disturbance of personnel in the whole system. Settlement measuring through the use
of proper leveling techniques has also been implemented as a useful backup to check the reference
beams’ movement. Vibrating wire load cells, strain gauges, retrievable extensometers, and LVDTs
have been automatically logged by applying a Micro-10x Datalogger and Multilogger software at
the 3-minute spacing for precise control during load/unload stages. Only accurate level readings are
manually considered.

Briefly, the pile movement monitoring system, such as pile top and bottom settlements, has
been monitored using the vertical scale rule fixed to the pile top observed by tunnel boring machine
(TBM) for correction purposes. On the other hand, LVDTs and GSEs mounted to the reference beam
accompanied by a plunger pressed vertically against a glass plate fixed to the pile’s top. The vertical
scales have been provided to monitor any movement in the load test. Indeed, strain gauges are
manufactured in Geokon, USA. VWSG principles in strain measurement were presented due to the
frequent natural vibration of taut wire restrained at both ends and varied with the square root of wire
tension. Indeed, this change of tension in the wire has shown all the strain alterations in the structural
steel member where the gauge is mounted. Moreover, all strain gauge has been mounted to two end
blocks as arc-welded to the main reinforced bar at a proper level. The signal cables of the picked-up
sensors fixed to the strain gauges have been tightly tied in the reinforced bars to the top of the piles
terminated in a multiplexer box and observed using a Micro-10 Datalogger.
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2.4. Site Condition

In the current paper, two full-scale maintained static load experiments on bored-piles are conducted.
The first experiment (BP# 1) was performed at Cadangan Pembangunan, Lorong Stonor, Kuala Lumpur,
Malaysia. The test pile was initially loaded up to 2 times to pile structural capacity, therefore, regarding
BP# 1 with the structural capacity of 22,200 kN, the nominal diameter of 1,800 mm with a penetration
depth of 36.95 m from the current piling platform level is RL 36.25 m. The pile was initially examined
by up to 44,400 kN (2 x working load) in two loading cycles. The second test (BP# 2) was applied
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at Utama Lodge, Jalan Senangria, Kuala Lumpur, Malaysia. The summary of soil types, besides the
SPT-N values measured near the pile location, are illustrated in Table 2. Noting that the soil stratum
was classified according to the unified soil classification system.

Table 2. Soil profile for tested bored pile after the standard penetration test (SPT).

Test Pile Soil Stratum Depth (m) SPT-N Values * Average SPT-N

BP# 1 L1 Stiff Sandy Silt with little gravel 0–8 3–16 15.50
L2 Very Stiff Sandy Silt with little gravel 8–10 16–50 27.5
L3 Hard Yellowish Sandy Silt with little gravel 10–17 50–111 110
L4 Hard Yellowish Sandy Silt with little gravel 17–24 111–150 122
L5 Fractured limestone 24–36.95 143–150 150

BP# 2 L1 Sandy SILT 0–12 4–30 30
L2 Sandy CLAY 12–17 19–39 39
L3 SILT 18–23 54–125 122
L4 Weathered Sandstone 25–31.65 176–200 195

* Note: SPT-N is the number of SPT driven into the ground (e.g., at the bottom of a borehole) by blows from a slide
hammer with a mass of 63.5 kg.

The gauges were investigated prior and after installation, after cage placement in the borehole,
and after concreting. The strain gauges’ signal cables were reserved for testing approximately after
28 days, allowing for the concrete to achieve the design strength. Therefore, on test day, the strain
gauges’ cable was linked to the switch box connected to the data logger to ensure the functional
sequences. Regarding the rod extensometer, galvanized iron (GI) pipes were tied to the main reinforced
cage with steel wires at each terminating depth (Figure 9). A mild steel rod (10 mm) was inserted untill
it touched the bottom of the pipe. In addition, a steel plate was welded to the rod’s end for the plunger
to sit on along the experiment (Figure 10).Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 28 
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3. Results and Discussion

3.1. Stress–Strain Variation in the Piles

Stress distributions along the piles (BP# 1 and BP# 2) in two continuous loading/unloading cycles
have been illustrated in Figures 11–14, showing that in a specified load, normal stress used in the pile’s
surface area is reduced by depth. Therefore, the reduction rate varied along with the pile—it is low in
soft soil layers (having low SPT-N) but sharp in stiff layers (with high SPT-N). These results indicate
great skin friction capacity of soil where rapid change between two different depths.

Tosini et al. [41] have declared that the forecast of deep foundation settlements in a layered soil
profile is not always straightforward due to the problems in value defining of mechanical parameters
affecting them. Distribution of average change and their cycles, in both strains (BP# 1 & BP# 2), in
addition to the distribution of back-calculated modulus of concrete as Ec (kN/mm2) in both strains
(BP# 1 & BP# 2) are shown in Figures 15 and 16. In BP# 1, Ec for the entire length remained constant
at 25 kN/mm2 except at depths below 5 m within stiff sandy silt with little gravel when the higher
load showed slightly lower Ec (Figure 15a). Therefore, the results obtained for Ec (in BP# 2) changed
based on the depth and applied load. The lower applied stress through the first cycle provided minor
changes in Ec distribution along the pile length. However, higher applied load amounts caused a
higher change in Ec with depth (Figure 15). The highest and lowest Ec for the depth = 17.816 m (in
BP# 2) were 38.2 and 33.9 kN/mm2, resepectively, for the applied stress of 1,750 kPa and 12,904 kPa.
The reverse relation of Ec with applied stress occurred when higher applied stress on the pile cap
showed lower Ec (Figure 16a). Consequently, the highest variation in Ec was observed within the silty
and/or sandy silt layers, while the lowest change in Ec was measured at the weathered sandstone zone
at depths above 20 m (Figure 16b).
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Figure 11. Stress distribution measured along BP# 1 in (a) 1st cycle and (b) 2nd cycle.
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Figure 15. Distribution of back-calculated elastic modulus of concrete, Ec (kN/mm2) for BP# 1; (a) 1st
cycle and (b) 2nd cycle.
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Average SPT-N and unit skin friction in BP# 1 & BP# 2 presented in Figure 17, indicate the range of
ultimate skin friction with value change of SPT-N. Furthermore, in multilayer site conditions, the least
SPT-N sum for a soil layer provided the least unit skin friction and vice versa. The outcome derived
from GSE sensors was computed according to the displacement amounts recorded by the sensors.
A higher alteration for the recorded axial force within two continuous levels provided a larger unit
skin friction for a specified soil layer (Figure 17).Appl. Sci. 2019, 9, x FOR PEER REVIEW 21 of 28 
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Figure 17. Average number of standard penetration test and the unit skin friction in BP# 1 and BP# 2.

3.2. Pile Movement Monitoring

Zhang et al. [42] state that the stress load-settlement curves reflect (1) the pile–soil interaction law,
(2) the load transfer law, and (3) the pile load destruction mode. According to the previous explanations,
the pile top and base settlements have been monitored for each load increment by applying the
dial and strain gauges. Applied stress alteration versus total pile top and base settlement for two
well-instrumented field tests (BP# 1, and BP# 2) in multilayered soils are presented in Figures 18 and 19,
respectively. In the 1st cycle, the highest sighted pile top settlement at loading 22,418 kN was 9.60 mm.
During unloading to zero, the pile was rebounded to a residual settlement of 0.36 mm. On the contrary,
in the 2nd cycle, the maximum sighted pile top settlement at the peak load of 44,036 kN was 24.63 mm,
so during unloading to zero, the pile was rebounded to a residual settlement of 5.34 mm. Similarly,
residual settlements of 2.4 mm and 6.58 mm were recorded for the BP# 1 and BP# 2, respectively.
According to Omer et al. [7], the variation of fs(z) with depth (z) is affected by different parameters
including pile–soil properties, such as(1) pile–soil interface geometry and slip properties, (2) stress
performance on the pile–soil interface, (3) pile installment technique, and (4) pile load method and ratio.
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Figure 18. Different applied stresses versus total pile top settlement in (a) BP# 1 and (b) BP# 2.
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Figure 19. Different applied stress versus total pile base settlement in (a) BP# 1 and (b) BP# 2.

Different total pile settlement versus time during BP# 1 and BP# 2 is presented in Figure 20.
The settlement rate in the pile’s head is almost linear in the loading steps. However, when
unloading begins, the settlement rate of unloading steps significantly increased depending on the
loading/unloading sequences, showing that the loading time for the second cycle of BP# 1 and BP#
2 were 400 and 600 min. The measured settlement on the pile’s head was rebounded to permanent
vertical deformation of 5.34 mm and 8.55 mm for both tests (BP# 1 and BP# 2) after unloading to zero.



Appl. Sci. 2019, 9, 3060 23 of 27

Correspondingly, the highest settlements of 24.63 mm and 19.54 mm were recorded for the pile’s head
vertical deformation.
Appl. Sci. 2019, 9, x FOR PEER REVIEW 24 of 28 

 
(a) 

 
(b) 

Figure 20. Variation of the total pile settlement versus time during pile test in (a) BP# 1 and (b) BP# 2. 

Some of the critical factors that were considered to be constant during pile load tests (e.g., BP# 
1 and BP# 2.) were (i) piling technology, (ii) concrete maturity, (iii) the location of the groundwater, 
and most importantly, and (iv) the soil parameters (e.g., both mechanical and physical properties 
changes). Such a problem may affect 𝐸௖ measurement during the pile servicing period. For instance, 
it is established that piling technology will influence soil–pile interactions [43–45]. Piling techniques 
that lead to changes in soil properties can affect the axial force, load-displacement response, and tip 
resistance of each model pile. In most cases, to assess such influences, a large number of small-scale 
experimental works, or real-scale numerical and analytical studies are helpful. 

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700
To

ta
l P

ile
 S

et
tle

m
en

t (
m

m
)

Time (min)

PTP 1 - 1st Cycle PTP 1 - 2nd Cycle

0

5

10

15

20

25

30

0 200 400 600

To
ta

l P
ile

 S
et

tle
m

en
t (

m
m

)

Time (min)

PTP 2 - 1st Cycle PTP 2 - 2nd Cycle

Figure 20. Variation of the total pile settlement versus time during pile test in (a) BP# 1 and (b) BP# 2.

Some of the critical factors that were considered to be constant during pile load tests (e.g., BP#
1 and BP# 2.) were (i) piling technology, (ii) concrete maturity, (iii) the location of the groundwater,
and most importantly, and (iv) the soil parameters (e.g., both mechanical and physical properties
changes). Such a problem may affect Ec measurement during the pile servicing period. For instance, it
is established that piling technology will influence soil–pile interactions [43–45]. Piling techniques
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that lead to changes in soil properties can affect the axial force, load-displacement response, and tip
resistance of each model pile. In most cases, to assess such influences, a large number of small-scale
experimental works, or real-scale numerical and analytical studies are helpful.

On the one hand, the other factor that can influence the results of such investigations is concrete
maturity [46,47]. Concrete maturity factor reveals the amount of concrete strength gain during the
curing period, which is typically challenging to be taken into consideration as a separate variable on
the full-scale experimental programme. It is important to note that the lack of such information may
cause a significant change in the load-settlement behaviors of the pile during its working lifetime.
Factors such as soil properties (e.g., shear strength parameters such as soil internal friction angle,
cohesion, etc.) as well as groundwater levels, are primary terms that can remarkably alter the soil–pile
responses to heavy external loadings. As an example, saturating the soil can cause soil shear strength
reduction, which will influence the pile settlement as well as reducing the pile bearing capacities [48].
Another critical issue that can increase the complexity of soil–pile reactions, as well as load-settlement
responses, as highlighted by Chisari et al. [49]. In the study provided by Chisari et al. [49], the influence
of dynamic and static loading conditions (e.g., for identification of the primary material properties of
a base-isolated bridge) are investigated. Their results showed that static identification is much less
complicated compared to dynamic analysis. Although the current study covers the static load test,
future work could evaluate the effect of a dynamic loading test in real-time monitoring of Yc.

4. Conclusions

The main objective of this study was to find a reliable estimation of the Ec in the installed bored
pile. Two full-scale maintained a static loads test on instrumented bored-piles had been conducted
in Kuala Lumpur, Malaysia to obtain a reliable range for ultimate skin friction with SPT-N value
(i.e., blow counts) alteration. The effects of geologically weak zones through the layered soil ground
conditions in crucial parameter-design changing such as elastic concrete modulus and strain–stress
along the piles have also been researched. The details of the conclusion are as follows.

# Distribution of concrete modulus has been measured from the stress–strain behavior of tested
piles and using back analysis. In BP# 1, along with the pile, the Ec value is almost constant at
25 kN/mm2, however, this value is between 30 and 45 kN/mm2 in BP# 2. This has indicated that the
applied stress is the dominant factor in Ec alteration because of the various soil reaction systems
responding to the stresses released from the pile. The maximum change has been measured at
the pile’s head where the maximum stresses have been recorded, in contrast, Ec variation at the
pile’s toe is negligible since the least stresses have been applied in the pile base. The stresses of
the pile have been declined by the depth because the skin friction of the pile has carried a large
portion of applied load in the pile. Maximum permanent (plastic) deformations of 24.63 mm
and 19.54 mm have been measured in the pile head for BP# 1 & BP# 2 correspondent to applied
stresses of 17305 kPa (p = 44306 kN) and 16430 kPa (p = 12905 kN). The pile top settlement has
been rebounded to a residual value of 2.4 mm and 8.55 mm in BP# 1 & BP# 2 after unloading
to zero.

# The obtained result will be helpful for real-time assessment of bored pile during its service life.
However, this should be noted that due to the heterogeneous characteristics of the soil, the
measured Ec of the tested soil may vary. Variables such as concrete maturity, piling technology, soil
parameters, and groundwater level can have a significant influence on the soil-pile interactions as
well as concrete pile characteristics.
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List of Abbreviations

CAPWAP control and provisioning of wireless access points
Ds shaft diameter
FE finite element
FRP fiber-reinforced plastic
GI galvanized iron
GSE global strain extensometer
HSDT high strain dynamic testing
L length
LVDTs linear variation displacement transducers
MARS multivariate adaptive regression spline
MLT maintained load test
PSE pile structure embankments
SPT standard penetration test
SPT-N standard penetration test—number of blows
TBM tunnel boring machine
VWLC vibrating wire load cells
VWSG vibrating wire strain gauges
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