Overview of TLS systems, overall processing and applications

Theory and Application of Laser Scanning ISPRS Summer School 2007 Ljubljana, Solvenia

Norbert Pfeifer

Institute of Photogrammetry and Remote Sensing Vienna University of Technology, Austria

Lecture outline

- Definition: Laser Scanning
- Measurement principles
- Presentation of different instruments
- Comparison to other techniques
- Registration overview
- Modeling overview
- Application overview

N.B., material partly taken from

- Kraus, 2004. Photogrammetrie, 7th ed., Dümmler, Germany.
- Boehler, Marbs: 3D Scanning Instruments. CIPA WG6 Internat. Workshop, Scanning for Cultural Heritage Recording, Corfu, Greece, 2002.
- · Websites of device producers: Riegl, Trimble, Hexagon, Optech

ISPRS Summer School Laser Scanning 2007

© Boeing, Soenh, Leica, Riegl, Nikon, Optech, Callidus, Rollei, Trimble, Minolta

Definitions

Definition: TLS

mer Schooling 2007

- = Terrestrial Laser Scanning data point of view
- TLS systems
 - = Terrestrial Laser Scanner component point of view

Terrestrial Laser Scanning Definition

Terrestria Laser Scanning

- is a technique
- using laser light
- for measuring
- in a regular pattern
- directly
- 3D coordinates
- · of points
- on surfaces
- from a terrestrial position

measurement errors

Photogrammetry

direct: 2D coordinates

compute: 3D coordinates

no corners, no edges

Tacheometry + Photogrammetry:

corners and edges

ISPRS Summer School Laser Scanning 2007 ground, building, car, ...

synthetic Example -

- measure polar coordinates
 φ, α, r (3D coordinates)
- regular pattern

$$\phi_{i+1} - \phi_i = 1^{\circ}$$
 $\phi \text{ min ; max} = -30^{\circ} ; -14^{\circ}$

$$\alpha_{j+1} - \alpha_j = 1^{\circ}$$
 $\alpha \text{ min ; max} = -232^{\circ} ; -2/16^{\circ}$

• measure range r for all ϕ_{i} , α_{j}

 object (surfaces) measured in this example: cube and base plane

synthetic Example - I

distance color coded and written in meter

synthetic Example - III

- Varying point density
- Shadows
- Edges not measured

real Example

Field of View (FoV)

• φ min; max = -40°; 40°

 ϕ_{i+1} - ϕ_i = 0.25°

• $\alpha \min ; \max = 0^{\circ} ; 333^{\circ}$

 α_{i+1} - α_i = 0.25°

- r close; far away = pink-red-orange-yellow-green
 50cm 10m
- 422,400 measurements of φ , α , r
- Measurement frequency: 2kHz (2000 measurements per second)
- Time for measurement: < 4 minutes

ISPRS Summer School Laser Scanning 2007

real Example

Small detail from one scan

- Range image regular φ, α raster
- Point cloud in 3D
 in Cartesian coordinate system
- Additional measurement not only range to surface but also brightness of surface

improved Definition Terrestrial Laser Scanning

Terrestrial Laser Scanning

- is a technique
- using laser light
- · for measuring
- · with high speed
- in a **dense** regular pattern
- directly
- 3D coordinates
- of points
- on surfaces
- and surface brightness
- · from a terrestrial position

ISPRS Summer School Laser Scanning 2007

Terrestrial Laser Scanners System components

- So far: data description from terrestrial laser scanning
- Now: How are the measurements performed?
- Concentration on φ, α, r (not brightness)
- Range r
 pulse round trip phase comparison triangulation
- Laser beam angles φ, α
 rotating mirrors rotating instrument

Measurement principles

- Distance measurement
 - Round trip time of a pulse
 - Phase comparison of a continuous wave
- Triangulation
- & laser beam angle measurement

ISPRS Summer School Laser Scanning 2007

Distance measurement

Pulse round trip:

- measure time lapse between sent and received pulse
- 1cm = ns (nano-seconds)
- round trip time for 10m
 between scanner and object = ns
- · accuracy (almost) independent of distance
- suitable for longer ranges (using higher pulse energies)
- increase accuracy by averaging of multiple shots
- accuracy depends on strength of backscattered signal: object reflectivity + distance

Distance measurement

Phase comparison:

- Similar to electronic
 distance measurement in tacheometry
- modulate laser light with harmonic signal (image: amplitude modulation)
- measure phase difference between emitted and received modulated <u>signal</u>

Distance measurement

Phase comparison (2):

- uniqueness range = $\frac{1}{2}$ modulation wave length L reflecting surfaces in distances d and d + L/2 return the same signal
- measure distances 'continuously' ... fast
- increase accuracy by using shorter modulation wave lengths
- Use multiple modulation waves of different length longest wave length defines uniqueness range
- accuracy depending on (shortest) modulation wave length, but depending also on object reflectivity

Triangulation

Similar to photogrammetric normal case

- plane of (laser) light sweeps over object: angle $\alpha = \alpha(t)$
- light plane object intersection mapped in digital image
- light plane bundle of mapped curved points forward intersection
- for each plane (α) set of 3D points

ISPRS Summer School Laser Scanning 2007

Triangulation

- accuracy depends on intersection quality base length vs. object distance
- accuracy decreases with distance²

... Effect

on measurement: Phantom points²

2: phantom points are generated with pulse round trip time and phased based distance measurement scanners.

Example 1 Leica HDS2500

• Principle: pulse round trip, laser wavelength: 532nm

Range: up to 100m
 Range accuracy: ±4mm

· Beam deflection: 2 mirrors

• Field of view: max 40° x 40° : "window" system

Angular accuracy: 0.00006rad

(3mm@50m)

Spot size ≤6mm up to 50m

Max scanning density:
 0.25mm point-to-point spacing @50m

Speed: 1000 pts/sec

Max points: 1000col/2000row

ISPRS Summer School Laser Scanning 2007

© Leica

Example 1 Leica HDS2500

For distance 50m

- Point accuracy $(\sigma_x^2 + \sigma_y^2 + \sigma_z^2)^{0.5} = \pm \text{ mm}$
- Spot size 6mm and point-to-point spacing 0.25mm
- 1000 points over 40°: point-to-point spacing 36mm

Speed

- 2000000 points in 1/2 hour
- Other factors 10 scans for 1 panorama Moving equipment: 20kg + 7kg power supply + laptop

ISPRS Summer School Laser Scanning 2007

Example 2 Minolta Vivid 900

- Principle: triangulation with ligh
- Laser wavelength: 690nm
- Digital camera
 - CCD 640x480 pixels RGB Pixel size: ~3.5μm
 - Focal length: 25mm, 14mm, 8mn
- Range: max 2.5m
- Scan time: 2.5 seconds
- Captures color!

Example 2 Minolta Vivid 900

- For good color good lightning necessary
- How to find map of laser pland in digital image?
 - ... see images on next slide
- Map of laser plane should be as thin as possible.
- How to achieve this?

ISPRS Summer School Laser Scanning 2007

Finding the map of the laser light in the digital image

Image without laser beam

Image with

Difference image

Extracted line

Example 3,4,5

Riegl LMS Z420i

Pulse round trip, rotating mirror + instrument rotation

ISPRS Summer School Laser Scanning 2007 TUWIEN

© Riegl

LMS Z210

Example 3,4,5

Riegl LMS Z420i

Pulse round trip, rotating mirror + instrument rotation Z+F Imager 5003 LARA 53500

Phase comparison, rotating mirror + instrument rotation

ISPRS Summer School Laser Scanning 2007

© Riegl, Zoller+Fröhlich

Example 3,4,5

Riegl LMS Z420i

Pulse round trip, rotating mirror + instrument rotation

ISPRS Summer School Laser Scanning 2007

Z+F Imager 5003 **LARA 53500**

Phase comparison, rotating mirror + instrument rotation

Mensi S10

Triangulation with laser beam in plane, + instrument rotation

© Riegl, Zoller+Fröhlich, Trimble

Comparison					terrestrial	
б		Satellite Positioning	СММ	Total Stations	Laser Scanning	Photo- grammetry
suited for measuring	Points			х		
	Edges			_		
	Surfaces			_		
	Range	global				
	Precision					scale dependent
	Speed					
	Costs		very high			
	Problems with/at					
ISP	Requirements					
	ser Scanning 2007	,				WIEN

Registration

- 1. Object is visible only from one side in one scan
- 2. Multiple objects to be measured
- Different scans required to capture the entire scene
- Relative orientation (registration) required to have all points in one coordinate system
- Methods for Registration
 - Targets (like photogrammetry)
 - Iterative closest point (ICP)
 - Object based (corresponding features, e.g. planes, cylinders, ...)
 - Direct georeferencing
 - Fine vs. coarse orientation

Combining scans

- = relative orientation
- = registration
- = consolidation
- = alignment
- = co-registration

Transform each local device co-ordinate system into one superior system.

ISPRS Summer School Laser Scanning 2007

Registration methods

- +) applicable in almost all circumstances
- ICP (iterative closest point)
 - –) overlap and manual approximation necessary
 - +) uses entire point cloud
- Object based: parametric "Features"
- Direct georeferencing
 - –) low cost devices: insufficient precisior
 - +) highest degree of automation

Registration via tie points

- · Identify with sub-pixel accuracy
- · Can be observed in photos or by tacheometry
- How many tie points required to register 2 scans?

Registration with ICP

- · Given: 2 point clouds
 - on the same surface
 - in different local coord.sys.
- Simple case correspondences between points
 - exist
 - are known
- Solution

$$\sum_{i=1}^{n} \| q_i - (t + \mathbf{R} p_i) \|^2 \to \text{Minimum}$$
How to?

Registration with ICP

Problems

- Correspondences are generally not know
- Point-to-point correspondences do NOT exist

Solution

- Replace: Corresponding point → closest point
- Solve for transformation parameters
- Iterate \

ISPRS Summer School Laser Scanning 2007

Registration with ICP

Find for each p_i closest point in $Q = \{q_1, ...q_m\}$

Solve for and apply t and \boldsymbol{R} to minimize offsets

Find for each p_i closest point in $Q=\{q_1, ...q_m\}$

Registration with ICP

- num. pts. in Q ≠ num. pts. in P
- Rough alignment required (manual)
- · Needs many iterations
- · Works bad for flat surfaces
- Requires many iterations
- But! No tie points required!

Additional Notes

All points or only short distances (10% of all distances)

Alternative approaches:

- Subsample one point set
- Distance to triangulation
- Distance to estimated tangent planes

ISPRS Summer School Laser Scanning 2007

Registration via objects

- (Points)
- Planes
- Lines
- Advantages / disadvanages

Coarse registration

- Esp.: generate approx. values for ICP
- Comparable to automatic relative orientation of an image pair
- Extraction of features
- Correspondence hypothesis
- Evaluation

Current ressearch topic!

ISPRS Summer School Laser Scanning 2007

Model reconstruction

- Point cloud
 - Many points
 - Without semantic information ("meaning")
 - Quality
- Model
 - Captures relevant aspects of reality
- Types of models
 - Meshes/Tiangulation
 - Boundary representation
 - Primitive instancing

Object size	Accuracy		
1-5m	±0.2mm		
5-50m	±1mm		
50-1000m	±1-10cm		
Airborne			
100-300m	±5cm		
up to 2000m	±20cm		

Modeling

Measurement \rightarrow Registration \rightarrow Set of point clouds in one co-ordinate system

Modeling strategies

- Point cloud is final product or extract information directly from point cloud
- 2. Generate mesh (triangulation)
 - Triangulate visible parts
 - Generate water tight model
- 3. Make parametric models (primitive instancing)
- 4. B-Rep model generation
- 5. Generate free form surfaces (NURBS, ...)

ISPRS Summer School Laser Scanning 2007

Point Cloud as Final Product

- Visualization
 - Give points a size
 e.g. 2 pixel or 2cm
 - Texture from photo
- Interface checking
- Simple measurements

Yellow: point cloud,

gray: planned installation © Riegl, Leica

Products extracted from point clouds

Triangulation / Meshing

Triangulation adds surface to point cloud

- Surface area computation
- · Interpolation between points
- Computation of surface properties tangent plane, curvature, ...
- Intersection with other surfaces
 e.g. with planes for cross sections
- Triangulate in
 - ground plan
 - parameterization domain
 - -3D
- Basis for freeform surface modelling
- · Better combination with texture from images

ISPRS Summer School Laser Scanning 2007

Triangulation in scanner domain

ISPRS Summer School Laser Scanning 2007

Triangulation

Complex objects require more scans: different sides & occlusions

- Combine triangulations of individual scans
 → real 3D triangulation
- Fill holes
 no holes → water tight model

Triangulation in 3D

Problem: which points are neighbors?

Schematic 2D view

Triangulation and Noise

Random measurement errors and measurement density

Remove noise: low pass filter

Thin out point cloud

Robust methods

Triangulation?

ISPRS Summer School Laser Scanning 2007

Triangulation and Noise

Triangulation and Noise

ISPRS Summer School Laser Scanning 2007

Parametric Primitives

Man-made structures planes, cylinders, spheres, tori, cones, ...

- Select points manually/automated
- Select primitive type
- Least squares fit determines primitive parameters
 How to? derivation of plane ...

ISPRS Summer School Laser Scanning 2007

Parametric Primitives

Automation through

- Segmentation of point cloud

 e.g. region growing based on normal vector similarity
- Identification of surface type
 e.g. Gaussian image (normal vector image)

Point cloud Model

Boundary representation models Generating B-Reps

Digitizing in point cloud / mesh
 point identification
 edge = connect of 2 points

face = enclose by edges

Similar to photogrammetry,
 but !!!: digitizing in one scan is sufficient

 Example: AutoCAD plugin digitizing a point and a line

ISPRS Summer School Laser Scanning 2007

© CloudWorx

Free form surfaces

Modeling with free form surfaces

- What are free form surfaces?= splines, but bivariate
- Surfaces controlled by a (low) number of parameters, with continuity constraints (e.g. C1, tangent plane continuity) between adjacent surface patches
- NURBS = Non-uniform rational B-splines

Free Form Surfaces Example

- 1. Original point cloud (~10 scans)
- 2. Triangulation (very rough surface)
- 3. Detail of triangulation (head)
- 4. Smoothed triangulation
- 5. Irregular boundaries of surfaces
- 6. Smoothed boundaries, hole-filling
- 7. Patch layout
- 8. Detail of patch layout
- 9. NURBS fitted to patches (i.e. point sets)

Laser ocanning zou*r*

Applications

- 3D Visualization
- Archeology
- · Architecture and Façade Measurement
- Archiving: Historical, Legal
- As-built Surveying
- · City Modeling
- Digital Factory
- Forest Management
- Forensics
- Infrastructure
- Interface checking
- Medical Imaging/Medical Applications
- Mining/Open Pit Mining
- Movie Industry

- · Monitoring and Civil Engineering
- Power Line + Poles Measurement
- Preservation
- Process Automation and Robotics
- Profiles, Volumes, Area calculations
- · Quality Control/Quality Assurance
- Rapid Prototyping
- Reverse Engineering
- Rock Face Analysis
- Topography
- Tunnel Surveying
- Urban Planning
- Virtual Reality

ISPRS Summer School
Taken Tring 200 tech, Z+F, Leica

Applications

In the following slides example applications will be presented

Measurement in Models

Window height: reference = 1447mm; measured: 1444mm

Base: ref. = meas. = 518mm

ISPRS Summer School Laser Scanning 2007

Medical Application

Measurement of anthropometric landmanishin the (human) face

- Comparison pre/post operation
- Monitor change during evolution
- Guarantee identity of persons

•

ISPRS Summer School Laser Scanning 2007

Medical Application

- Which type of scanner? Why?
- Processing of data: use point cloud or simple mesh
- Degree of automation: manual selection of landmarks
- Problems:

Advantage over current method (taper)
 Scan once → Points → measure any landmark anytime
 non contact method

ISPRS Summer School Laser Scanning 2007

Heritage Application

DSOL (http://www.arch.ttu.edu/digital_liberty/)

- Preservation digital statue is "eternal"
- Simple measurements, e.g. crown diameter
- Investigation of corrugation, analysis of structural, mechanical problems
- Available everywhere, make (small scale) models

Heritage Application

- Which type of scanner? Why?
- More than one positioning needed
- · Problems:
- Modeling combine different scans make TIN model texture:
- Alternative methods:

ISPRS Summer School Laser Scanning 2007

Factory Reconstruction

Reconstruction of industrial installations

Make homogenous plan of existing factory,

built in multiple stages

 Test fit of new planned installations

 Model production process digitally (e.g. liquid flow)

Factory Reconstruction

- Which type of scanner? Why?
- Problems:
- Automation: fitting of cylinders, planes
- Alternative methods:

ISPRS Summer School Laser Scanning 2007

Forestry application

Reconstruction of single trees with precise stem cross sections

Point cloud of different scans

Cross sections along the stem

Next slide: data from one scan

Still in research state!

er School g 2007

Reconstruction

steps

- Measurement •
- Registration ✓
- Coarse models
- Smooth branch models
- Cross sections

Coarse branch models

- · Main parameters: radius, length
- Right circular cylinder

$$\|(\mathbf{Q_i} - \mathbf{P}) \times \mathbf{a}\| - r = 0$$

- parameters a, r, P
 observed points Q_i
- Random measurement errors
 Systematic deviation from model

$$\|(\mathbf{Q_i} - \mathbf{P}) \times \mathbf{a}\| - r = v_i$$

ISPRS Summer School Laser Scanning 2007

Variation in radius and

- · Real trees don't grow straight
- Real branches become thinner/thicker
- → Model only piecewise valid
- → Cylinder sequence
- Accuracy

$$\sigma_0 = \sqrt{\sum_i v_i^2 / (n-5)} \cong \pm 2cm$$

Cross sections

- · Real branches don't have circular cross sections
- → select point on axis
- → cross section plane orthogonal to axis
- ightarrow select points in cross section plane tolerance Δh e.g. 20cm
- → project points onto plane ... 2D problem

ISPRS Summer School Laser Scanning 2007

Spline curve fitting

- Choose number of segments (e.g. 4)
- Systematic deviations
- Insert vertices selectively
 - Measure systematic deviation δ_i per segment
 - Insert vertex at segment with highest δ_i

Usage

Relative measure Minimum diameter / Maximum diameter

- = wood quality
- = economic revenue

Conclusions

Terrestrial laser scanning

- Is a method for the acquisition of points on surfaces (no edges, no corners)
- Featuring different systems with different performance

Conclusions

Terrestrial laser scanning is

- fast,
- accurate,
- a combination of photogrammetry, total stations and coordinate measurement machines,
- · easy to use,
- and finally a method that is developing (commercially available since ~1990s).

It is becoming a standard method for surveying tasks, excluding:

ISPRS Summer School Laser Scanning 2007

