Requirements for Generating

A Geometrically Correct Point Cloud

Dr. Peter Friess

Optech International

AGENDA

1. Introduction

- Principle of airborne laser mapping (ALM)
- Characteristics of ALM
- Products and product quality

2. Mathematical model for laser point computation

- Functional model (basic)
- Stochastic model
- Lab calibration
- Effects of model (calibration) parameters on laser points
- Extended functional model

3. Laser point block adjustment

- Description/definition
- Mathematical model
- Parameter determinability
- Empirical results

4. Summary

Airborne Laser Mapping – Principle

Airborne Laser Mapping – Principle Scanner angles Z-ECEF Y-ECEF z_P^{ECEF} ECEF x_P^{ECEF} X-ECEF Optech

Sensor Orientation

Position by GPS

Attitudes by INS

Sensor Measurements

Laser ranges

Airborne Laser Mapping – Characteristics

- · Distance measurements to almost any type of surface
- Ability to measure several elevations along same direction (multiple returns)
- Detected signal strength of the target-reflected laser-emitted pulse (intensity)

Optech

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 5

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 6

Laser Point Information

Height

Intensity

Return

Airborne Laser Mapping – Instrument Development

1993

- 2 kHz
- 1000 m max. AGL height
- ± 20 degree scan angle
- · first or last return

The state of the s

 4 – 5 m point spacing (single overpass @ 1000 m AGL)

2007

- up to ~170 kHz
- up to 4500 m max. AGL height
- up to ± 32 degree scan angle
- multiple returns to full wave form
- 8 16 bit intensity values
- < 1 m point spacing (single overpass @ 1000 m AGL)

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 7

Airborne Laser Mapping – Products

Service

Optech

ALM survey flight

Key products

Optech

Laser point cloud

Classified laser point cloud

Derivative products

E.g. digital elevation models

Intensity images

Digital photos, ortho-photos

Airborne Laser Mapping – Product Quality

Service	General quality attributes
ALM survey flight	Schedule, completeness, point density, etc.
Key products	Accuracy
Laser point cloud	Laser point accuracy
Classified laser point cloud	Classification accuracy
Derivative products	
E.g. digital elevation models	DTM accuracy
Intensity images	
Digital photos, ortho-photos	

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 9

Laser Point Accuracy

- · Closeness of the computed laser point position to the position of the true laser footprint
- · Expressed as standard deviations of the laser point coordinates

Classification Accuracy

- · The degree of correctness of assigned attributes
- · Expressed in probability for the correctness of the assigned attribute

Geometry Attributes

Plane, line, ground, etc.

Object Attributes

Building, street, tree, etc.

Material Attributes

Asphalt, concrete, water, etc.

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 11

DTM Accuracy

Optech

- · Vertical closeness of the DTM surface to the true physical terrain surface
- Expressed as RMS of the differences between the interpolated height and the measured height of check points

Surface Roughness

ALM Product Accuracies

Key products

Laser point cloud

Classified laser point cloud

Derivative products

E.g. digital elevation models

Currently, ALM products are usually only empirically evaluated for accuracy by comparison to ground truth data.

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 13

have quite distinct accuracy characteristics

Empirical Accuracy Tests

True laser footprint position is NOT known !

Therefore:

No direct point to point correspondence between laser points (\bullet) and control points (\blacktriangle) .

Thus:

Correspondence via surface, e.g. DEM (+).

$\Delta H = H_{LP} - H_{CP-DEM}$

minimum ΔH maximum ΔH mean ΔH rms ΔH

Empirical Accuracy Interpretation

Mathematical Model

<u>Optech</u>

[Geo] Referencing – Principle

Rotation Matrices

	1	0	0 -		$\cos\beta$	0	$-\sin\beta$		$\cos \gamma$	$\sin \gamma$	0
$\mathbf{R}_{X}(\alpha) =$	0	$\cos \alpha$	$\sin lpha$	$\mathbf{R}_{Y}(\boldsymbol{\beta}) =$	0	1	0	$\mathbf{R}_{Z}(\boldsymbol{\gamma}) =$	$-\sin\gamma$	$\cos \gamma$	0
	0	$-\sin \alpha$	$\cos \alpha$		$\sin\beta$	0	$\cos\beta$		0	0	1

The rotations are positive in the counterclockwise sense as viewed along the axis toward the origin (right-hand-rule).

The rotation matrices are orthogonal:

$$\mathbf{R}^{-1}(\mathbf{\Theta}) = \mathbf{R}^{T}(\mathbf{\Theta}) = \mathbf{R}(-\mathbf{\Theta})$$

Thus:

Optech

 $\left(\mathbf{R}_{Z}(\gamma)\mathbf{R}_{Y}(\beta)\mathbf{R}_{X}(\alpha) \right)^{-1} = \left(\mathbf{R}_{Z}(\gamma)\mathbf{R}_{Y}(\beta)\mathbf{R}_{X}(\alpha) \right)^{T} = \mathbf{R}_{X}(-\alpha)\mathbf{R}_{Y}(-\beta)\mathbf{R}_{Z}(-\gamma)$

Laser Point Computation – Functional Model

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 19

Laser Point Computation – Functional Model

Sensor Model

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 22

Geo-Referencing - Orientation

Geo-Referencing – Orientation

$$\mathbf{R}_{SBF}^{ECEF} = \mathbf{R}_{LGF}^{ECEF} \cdot \mathbf{R}_{IBF}^{LGF} \cdot \mathbf{R}_{SBF}^{IBF}$$

with:

 $\mathbf{R}_{SBF}^{IBF} = \mathbf{R}_{Z}^{T} \left(E_{Z} \right) \cdot \mathbf{R}_{Y}^{T} \left(E_{Y} \right) \cdot \mathbf{R}_{X}^{T} \left(E_{X} \right)$

$$\mathbf{R}_{IBF}^{LGF} = \mathbf{R}_{Z}^{T}(\alpha) \cdot \mathbf{R}_{Y}^{T}(\chi) \cdot \mathbf{R}_{X}^{T}(\eta)$$

$$\mathbf{R}_{LGF}^{ECEF} = \mathbf{R}_{Z} \left(-\lambda\right) \cdot \mathbf{R}_{Y} \left(\varphi + \frac{\pi}{2}\right)$$

 $E_x, E_y, E_z = SBF-IBF$ relative orientation

 η, χ, α = roll, pitch, heading

 φ, λ = latitude, longitude

 $LGF = Local \underline{G}eodetic \underline{F}rame$

IBF = <u>I</u>MU <u>B</u>ody <u>F</u>rame

Laser Point Computation – Functional Model (Basic)

$$\begin{aligned} \mathbf{X}_{P}^{ECEF} &= \mathbf{X}_{PC}^{ECEF} + \mathbf{R}_{LGF}^{ECEF} \cdot \mathbf{R}_{IBF}^{IBF} \cdot \mathbf{R}_{SBF}^{IBF} \cdot \left(\mathbf{X}_{P}^{SBF} - \mathbf{X}_{PC}^{SBF}\right) \end{aligned} \\ \text{with:} \\ \mathbf{R}_{SBF}^{IBF} &= \mathbf{R}_{Z}^{T}\left(E_{Z}\right) \cdot \mathbf{R}_{Y}^{T}\left(E_{Y}\right) \cdot \mathbf{R}_{X}^{T}\left(E_{X}\right) \\ \mathbf{R}_{IBF}^{LGF} &= \mathbf{R}_{Z}^{T}\left(\alpha\right) \cdot \mathbf{R}_{Y}^{T}\left(\chi\right) \cdot \mathbf{R}_{X}^{T}\left(\eta\right) \\ \mathbf{R}_{LGF}^{ECEF} &= \mathbf{R}_{Z}\left(-\lambda\right) \cdot \mathbf{R}_{Y}\left(\varphi + \frac{\pi}{2}\right) \\ E_{X}, E_{Y}, E_{Z} &= \text{SBF-IBF relative orientation} \\ \eta, \chi, \alpha &= \text{Roll, pitch, heading} \\ \varphi, \lambda &= \text{Latitude, longitude} \\ \mathbf{X}_{PC}^{ECEF} &= \text{Sensor position center} \\ \mathbf{X}_{PC}^{ECEF} &= \text{Sensor position center} \\ \mathbf{X}_{PC}^{SBF} &= \text{Position center eccentricities} \\ \mathbf{X}_{PC}^{SBF} &= \text{Laser point in sensor body frame} \end{aligned}$$

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 25

Laser Point Computation – Functional Model (Basic)

Observations	
GPS antenna center position	\mathbf{X}_{PC}^{ECEF}
IMU roll, pitch, heading	$\eta, \chi, \alpha \Rightarrow R^{\scriptscriptstyle LGF}_{\scriptscriptstyle IBF}$
ALS scan angle, laser range	$\Theta, r \Rightarrow \mathbf{X}_{P}^{SBF}$
Mounting parameters	
ALS-IMU relative orientation	$\boldsymbol{E}_{X}, \boldsymbol{E}_{Y}, \boldsymbol{E}_{Z} \Rightarrow \boldsymbol{R}_{SBF}^{IBF}$
ALS-Position center eccentricities	\mathbf{X}_{PC}^{SBF}
Corrections	
Observation corrections	$\Delta r, \Delta \Theta, \Delta s$

Laser Point Computation – Stochastic Model

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 27

Covariance Law

Functional Model

 $\mathbf{x} = \mathbf{f}(\mathbf{I})$

with:

$$\mathbf{X} = \begin{bmatrix} x_1 & x_2 & \cdots & x_u \end{bmatrix}^T$$
$$\mathbf{I} = \begin{bmatrix} l_1 & l_2 & \cdots & l_n \end{bmatrix}^T$$

and

Optech

$$x_{1} = f_{1} \begin{pmatrix} l_{1} & l_{2} & \cdots & l_{n} \end{pmatrix}$$

$$x_{2} = f_{2} \begin{pmatrix} l_{1} & l_{2} & \cdots & l_{n} \end{pmatrix}$$

$$\vdots$$

$$x_{u} = f_{u} \begin{pmatrix} l_{1} & l_{2} & \cdots & l_{n} \end{pmatrix}$$

Stochastic Model

$$\mathbf{C}_{XX} = \mathbf{J} \cdot \mathbf{C}_{II} \cdot \mathbf{J}^{T}$$

with:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial x_1}{\partial l_1} & \frac{\partial x_1}{\partial l_2} & \cdots & \frac{\partial x_1}{\partial l_n} \\ \frac{\partial x_2}{\partial l_1} & \frac{\partial x_2}{\partial l_2} & \cdots & \frac{\partial x_2}{\partial l_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_u}{\partial l_1} & \frac{\partial x_u}{\partial l_2} & \cdots & \frac{\partial x_u}{\partial l_n} \end{bmatrix} = \text{Jacobian matrix}$$

 \mathbf{C}_{XX} = Covariance matrix of parameters **x**

 \mathbf{C}_{ll} = Covariance matrix of observations I

Laser Point Computation – Stochastic Model

$$\mathbf{C}_{XX}^{ECEF} = \mathbf{C}_{GPS}^{ECEF} + \mathbf{J}_{IMU} \cdot \mathbf{C}_{IMU}^{IBF} \cdot \mathbf{J}_{IMU}^{T} + \mathbf{J}_{XX} \cdot \mathbf{C}_{XX}^{SBF} \cdot \mathbf{J}_{XX}^{T}$$

with:

$$\mathbf{J}_{IMU} = \begin{bmatrix} \frac{\delta \mathbf{X}_{P}^{ECEF}}{\delta \eta} & \frac{\delta \mathbf{X}_{P}^{ECEF}}{\delta \chi} & \frac{\delta \mathbf{X}_{P}^{ECEF}}{\delta \alpha} \end{bmatrix}$$
$$\mathbf{J}_{XX} = \frac{\delta \mathbf{X}_{P}^{ECEF}}{\delta \mathbf{X}_{P}^{SBF}}$$

 \mathbf{C}_{GPS}^{ECEF} = Covariance matrix of antenna position

 \mathbf{C}_{IMU}^{ECEF} = Covariance matrix of roll, pitch, heading

 \mathbf{C}_{XX}^{SBF} = Covariance matrix of laser point in SBF

 \mathbf{X}_{P}^{ECEF} = Laser point in ECEF

 \mathbf{X}_{P}^{SBF} = Laser point in SBF

Optech

Stochastic Sensor Model $\mathbf{C}_{XX}^{SBF} = \mathbf{J}_{ll} \cdot \mathbf{C}_{ll}^{SBF} \cdot \mathbf{J}_{ll}^{T}$ with: $\mathbf{J}_{ll} = \begin{bmatrix} \frac{\delta \mathbf{X}_{P}^{SBF}}{\delta r_{obs}} & \frac{\delta \mathbf{X}_{P}^{SBF}}{\delta \Theta_{Obs}} \end{bmatrix}$ $\mathbf{C}_{ll}^{SBF} = \begin{bmatrix} \boldsymbol{\sigma}_{r}^{2} \\ \boldsymbol{\sigma}_{\Theta}^{2} \end{bmatrix}$ σ_r = Standard dev. of laser range σ_{Θ} = Standard dev. of scan angle

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 29

Stochastic Model – Error Propagation

Random Observation Errors

Laser range	$\sigma_{\rm R} = 0.050 \ {\rm m}$		
Scan angle (mechanical)	σ_{Θ} = 0.0025 deg		
GPS antenna position	$\sigma_{\rm X} = 0.050 \ {\rm m}$	$\sigma_{\rm Y} = 0.050 \ {\rm m}$	σ _z = 0.080 m
IMU attitudes	$\sigma_{\rm R}$ = 0.005 deg	$\sigma_{\rm P}$ = 0.005 deg	$\sigma_{\rm H}$ = 0.020 deg
Resulting Random Errors for I	aser Points (AGL	1000 m)	
East (Cross-Flight)	σ _{min} = 0.133 m	σ _{mean} = <mark>0.133</mark> m	$\sigma_{max} = 0.134 \text{ m}$
North (In-Flight)	σ _{min} = 0.101 m	σ _{mean} = <mark>0.124</mark> m	$\sigma_{max} = 0.162 \text{ m}$
Height	σ_{min} = 0.094 m	$\sigma_{mean} = 0.097 \text{ m}$	$\sigma_{max} = 0.103 \text{ m}$
Resulting Random Errors for I	aser Points (AGL	2000 m)	
East (Cross-Flight)	$\sigma_{\rm min}$ = 0.252 m	σ _{mean} = <mark>0.252</mark> m	σ_{max} = 0.252 m
North (In-Flight)	σ_{min} = 0.182 m	σ _{mean} = <mark>0.229</mark> m	$\sigma_{max} = 0.312 \text{ m}$
Height	σ_{min} = 0.094 m	σ _{mean} = <mark>0.107</mark> m	$\sigma_{max} = 0.129 \text{ m}$

Optech

Stochastic Model – Example AGL 1000

Stochastic Model – Example AGL 1000

Errors in Northing (In-Flight)

Optech

Stochastic Model – Example AGL 1000

Stochastic Model – Example

Optech

Errors in Easting (Cross-Flight)

Stochastic Model – Example

Errors in Northing (In-Flight)

Stochastic Model – Example

Optech

ALM Precision Map

ALS-Position center eccentricities

Corrections

 $\Delta r, \Delta \Theta, \Delta s$ Observation corrections

Lab (Manufacturer) Calibration

ALS sensor/observation parameters

Realization of sensor body frame (SBF)

Laser range offsets

Scanner offset

Scanner scale factor

•••

ALS-IMU relative orientation

Orientation Eccentricity

Optech

Optech

ISPRS Summer School 2007 – Requirements for generating a geometrically correct point cloud - 39

Lab Calibration – Sensor Body Frame

- X-SBF Physically realized by the scanner rotation axis Points into flight direction
- Y-SBF Physically realized by the incoming laser beam Incoming laser beam lies in a plane which is perpendicular to X-SBF Points to the right side of the aircraft
- Z-SBF Physically realized by the outgoing laser beam at zero scan angle To be perpendicular to XY-plane (completes right-hand cartesian system) Points down

Lab Calibration – ALS IMU Relative Orientation

X-SBF (scanner rotation axis) to be parallel to X-IBF (roll axis)

- Scanner angle Θ is equivalent to roll angle $\ \eta$

Y-SBF to be parallel to Y-IBF (pitch axis)

- Scanner angle Θ = 0 corresponds to roll η = 0 and pitch χ = 0
- · Permits scanning about local vertical

Optech ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 41

Lab Calibration – Laser Range Offset

- Place flat targets $(T_1 \dots T_n)$ at several accurately measured distances $(r_1 \dots r_n)$
- · Measure a large number of ranges to each of the targets
- · Compute the range offset from differences between "true" and measured ranges

Lab Calibration – Scanner Parameters

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 43

Laser Range Offset – Example

Optech

Scan Angle Scale Factor – Example

Scan Angle Offset – Example

IMU-ALS Relative Orientation E_y – Example

IMU-ALS Relative Orientation E_z – Example

Relative Kinematic Positioning – Empirical Accuracy Analysis

Relative Kinematic Positioning – Least Squares Solution

Relative Kinematic Positioning – KFS Solution

Relative Kinematic Positioning – Least Squares Solution

Laser Point Computation – Geo-Referencing

Observations	Sensor
GPS antenna center position	X _{AC,obs}
IMU roll, pitch, heading	$\eta, \chi, \alpha \implies R^{LGF}_{IBF,obs}$
Laser point in SBF	\mathbf{X}_{P}^{SBF}
Mounting parameters	
ALS-IMU relative orientation	$E_{X,Lab}, E_{Y,Lab}, E_{Z,Lab} \Rightarrow R^{IBF}_{SBF,Lab}$
ALS-Position eccentricities	$\mathbf{X}_{PC,Lab}^{SBF}$
Corrections	
GPS position corrections	$\Delta \mathbf{X}_{PC}^{ECEF}$
IMU attitude corrections	
ALS-IMU orientation corrections	$\Delta E_{X}, \Delta E_{Y}, \Delta E_{Z} \Rightarrow \Delta \mathbf{R}_{SBF}^{IBF}$
Eccentricities corrections	$\Delta \mathbf{X}_{PC}^{SBF}$

Optech

Optech

ISPRS Summer School 2007 – Requirements for generating a geometrically correct point cloud - 53

Laser Point Computation – Sensor Model

LP Block Adjustment – Approach

Analogy to photogrammetric block adjustment

- · Use of planes as tie and control features
- Determine a set of corrections for observations and instrument parameters by minimizing the weighted square sum of the observation residuals

Requires:

- Mathematical sensor model
- Automated planar surface extraction
- Automated planar surface correspondence
- ⇒ Parameter estimation (least-squares solution)

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 55

LP Block Adjustment – Goal

Optech

The goal is a geometrically correct point cloud with known accuracy characteristics

- free of blunders and systematic errors
- accuracy given in form of standard deviations for laser point coordinates

Correspondence Problem

Actual, true laser footprint is NOT known !

Therefore:

easy j

No^{^γ direct point to point correspondence between}

- laser points (•) and control points (▲)
- laser points (•,•) of overlapping flight lines

Thus:

Correspondence via surface, surface-features

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 57

Correspondence Problem – Interpolation & Matching

Principle

Matching techniques provide the horizontal position (X,Y) of a corresponding point

Interpolation techniques provide the height (Z) for the corresponding point

Thus, Interpolation & matching provide tie points

Requirements

Matching requires height variations provided by smooth surfaces with surface normal vectors pointing in three independent directions.

Limitations

Occlusion areas

Height jumps (e.g. on buildings)

Vegetation areas

Correspondence Problem – Surface Features

Principle

Analytically modeling surface features

Least squares fitting

Provides tie features (e.g. planes) with quality attributes

Requirements

E.g planar surface patches have to exist in project area

Limitations

Vegetation areas

?

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 59

Surface Feature – Plane

Surface Feature – Ditch

Vosselman G. 2002

Fitting an analytical model for a ditch height profile to the laser points for each flight line.

Fitting an analytical model for an intensity edge to the laser point intensity values before applying edge detection.

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 61

Surface Feature – Line

Intersection of laser point planes

- Roof lines are horizontal
- Roof lines are known

Laser point lines (2D, 3D)

- · Lines as tie feature
- Lines as control feature

➡ Simultaneous laser point and photogrammetric block adjustment

Empirical Studies – Runway Line 25

2500 m

Flight Parameters

- January 2, 2003
- One flight line approx. 2500 m long (41.24 seconds at 60.6 m/s ground speed)
- Flying height 1100 m above ground
- ALTM 2050 @ 35 KHz laser rep. rate, ± 20 deg scan-angle, 35 Hz scan-frequency

Optech ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 63

Empirical Studies – Runway Line 25: Plane- vs. None-Plane Points

- 997206 laser points total
- 26650 having two returns 2.7 %
- 280852 none plane points 28.2 %

689714 plane points 69.1 %

Empirical Studies – Runway Line 25

Building 3

Building 1

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 65

Empirical Studies – Runway Line 25 Building 1

Empirical Studies – Runway Line 25 Building 1

Optech

ISPRS Summer School 2007 – Requirements for generating a geometrically correct point cloud - 67

Empirical Studies – Runway Line 25 Building 3

Optech

Least Squares Adjustment – Observation Equation I

Observation equation

$$g_{i,j} = n_{X,j} x_i + n_{Y,j} y_i + n_{Z,j} z_i + d = 0$$

Implicit non-linear model

$$\mathbf{g}(\mathbf{l}+\mathbf{v},\mathbf{x})=\mathbf{0}$$

Implicit linear model at $(\mathbf{l}, \mathbf{x}_i)$

$$\mathbf{g}(\mathbf{l},\mathbf{x}_i) + \left(\frac{\delta \mathbf{g}}{\delta \mathbf{l}}\right)_{\mathbf{l}(\mathbf{l},\mathbf{x}_i)} \cdot \mathbf{v} + \left(\frac{\delta \mathbf{g}}{\delta \mathbf{x}}\right)_{\mathbf{l}(\mathbf{l},\mathbf{x}_i)} \cdot \mathbf{x} = \mathbf{0} \quad \text{or} \quad \mathbf{g} + \mathbf{D} \cdot \mathbf{v} + \mathbf{A} \cdot \mathbf{x} = \mathbf{0}$$

where:

- 1 Given observations
- Unknown residuals of the observations, with $\mathbf{v} \sim N(\mathbf{0}, \mathbf{C}_{yy})$ v
- Unknown parameters Х

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 69

Least Squares Adjustment – Observation Equation II

Observations

GPS antenna center position	$\mathbf{X}_{AC,obs}^{ECEF}$
IMU roll, pitch, heading	$\eta_{\scriptscriptstyle obs}, \chi_{\scriptscriptstyle obs}, lpha_{\scriptscriptstyle obs}$
ALS scan angle, laser range	Θ_{obs}, r_{obs}
Control plane information	$\Delta \lambda_{PS}, \Delta \varphi_{PS}, d, \text{ or } \mathbf{x}_{PS}, y_{PS}, z_{PS}$
(Pseudo-observations for all unknowns)	
Unknowns	
Plane parameters	$\Delta \lambda_{_{PS}}, \Delta arphi_{_{PS}}, d$
GPS antenna eccentricity corrections	Δx_{PC}^{SBF} , Δy_{PC}^{SBF} , Δz_{PC}^{SBF}
ALS-IMU relative orientation corrections	$\Delta \boldsymbol{E}_{\boldsymbol{X}}, \Delta \boldsymbol{E}_{\boldsymbol{Y}}, \Delta \boldsymbol{E}_{\boldsymbol{Z}}$
IMU attitude corrections	${\scriptscriptstyle riangle}\eta,{\scriptscriptstyle riangle}\chi,{\scriptscriptstyle riangle}lpha$
Position corrections	Δx_{PC}^{ECEF} , Δy_{PC}^{ECEF} , Δz_{PC}^{ECEF}
Laser range correction	Δr
Scan angle corrections	$\Delta\Theta, \vartriangle s$

Least Squares Adjustment – Solution

Best linear unbiased estimate $\hat{\mathbf{x}}$ for : \mathbf{x}

$$\mathbf{A}^{T} \cdot \left(\mathbf{D} \cdot \mathbf{C}_{vv} \cdot \mathbf{D}^{T}\right)^{-1} \cdot \mathbf{A} \cdot \hat{\mathbf{x}} = \mathbf{A}^{T} \cdot \left(\mathbf{D} \cdot \mathbf{C}_{vv} \cdot \mathbf{D}^{T}\right)^{-1} \cdot \mathbf{g}$$

and

$$\mathbf{C}_{\hat{x}\hat{x}} = \left(\mathbf{A}^{T} \cdot \left(\mathbf{D} \cdot \mathbf{C}_{vv} \cdot \mathbf{D}^{T}\right)^{-1} \cdot \mathbf{A}\right)^{-1}$$
$$\hat{\mathbf{v}} = \mathbf{C}_{vv} \cdot \mathbf{D}^{T} \cdot \left(\mathbf{D} \cdot \mathbf{C}_{vv} \cdot \mathbf{D}^{T}\right)^{-1} \cdot \left(\mathbf{A} \cdot \hat{\mathbf{x}} - \mathbf{g}\right)^{-1}$$

$$\mathbf{D} \cdot \mathbf{C}_{\hat{v}\hat{v}} \cdot \mathbf{D}^T = \mathbf{D} \cdot \mathbf{C}_{vv} \cdot \mathbf{D}^T - \mathbf{A}^T \cdot \mathbf{C}_{\hat{x}\hat{x}} \cdot \mathbf{A}$$

where

- $C_{\hat{x}\hat{x}}$ Covariance matrix of the estimated parameters
- ŷ Estimated residuals of the observations
- $\mathbf{C}_{_{\hat{v}\hat{v}}}$ Covariance matrix of the estimated residuals

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 71

LP Block Adjustment – Parameter Determinability I

Observation corrections			
Scan angle corrections	$\Delta \Theta$		
Scan angle corrections	Δs		
Laser range correction	Δr		
Mounting parameters			
- ALS-IMU orientation	ΔE_{X}		
ALS-IMU orientation	ΔE_{Y}		
ALS-IMU orientation	ΔE_z		
Position eccentricity	Δx_{PC}^{SBF}		
Position eccentricity	Δy_{PC}^{SBF}		
Position eccentricity	Δz_{PC}^{SBF}		
Geo-Referencing correction	ns per block		
Position correction	Δx_{PC}^{LPF}	Attitude correction	$\Delta\eta$
Position correction	Δy_{PC}^{LPF}	Attitude correction	$\Delta \chi$
Position correction	Δz_{PC}^{LPF}	Attitude correction	20
Optech		ISPRS Summer School 2007 – Requirements fo	or generating a geometrically correct point cloud - 72

LP Block Adjustment – Simulation Study I

Block Configuration

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 73

LP Block Adjustment – Simulation Study II

LP Block Adjustment – Parameter Determinability II

Position correction

Position correction

Optech

 Δz_{PC}^{LPF}

horizontal **control** plane(s) in the swath center

LP Block Adjustment – Parameter Determinability IV

(9 of 11)

Observation corrections			
Scan angle corrections	$\Delta \Theta$	ſ	an 'always' be determined
Scan angle corrections	Δs	ſ	can always be determined
Mounting parameters			
ALS-IMU orientation	ΔE_{Y}	J	sloped planes ($\geq 5^{\circ}$) with normal vectors parallel to the
ALS-IMU orientation	ΔE_z	ſ	flight direction
Position eccentricity	Δx_{PC}^{SBF}	}	two different flying heights required, but
Position eccentricity	Δy_{PC}^{SBF}	}	sloped planes (> 5°) with normal vector perpendicular to flight direction
Geo-Referencing correction	ns per b	loc	k
Position correction	Δx_{PC}^{LPF}	J	sloped control planes (> 10°) with normal vectors
Position correction	Δy_{PC}^{LPF}	ſ	perpendicular to each other
Position correction	Δz_{PC}^{LPF}	}	horizontal control plane(s) in the swath center
Optech			ISPRS Summer School 2007 – Requirements for generating a geometrically correct point cloud - 77

Empirical Test 'Rheine' – Flight Path

Optech

Flight Parameters

- November 5, 2003
- 4 h 25 m flight duration
- 950 m flying height AGL
- ALTM 1225
 - 25 KHz laser rep. rate
 - 25 Hz scan-frequency
 - ± 20 deg scan-angle

Empirical Test 'Rheine' – Sub-Blocks

Empirical Test 'Rheine' – Sub-Block Mesum

Optech

Empirical Test 'Rheine' – Sub-Block Mesum Area 01

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 81

Empirical Test 'Rheine' – Sub-Block Mesum Area 01

LP Block Adjustment

- 472 planes
- 152 371 plane points
- ~ 322 points/plane

Sub-Block Mesum Area 01 – Unknown Parameters

Observation corrections

Scan angle corrections	$\Delta \Theta$
------------------------	-----------------

Scan angle corrections Δs

Mounting parameters

ALS-IMU orientation	ΔE_{Y}
ALS-IMU orientation	ΔE_z

Geo-Referencing corrections per n-1 flight lines

Position correction Δz_{PC}^{LPF}

→ No control information

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 83

Sub-Block Mesum Area 01 – Unadjusted

Optech

Sub-Block Mesum Area 01 – Adjusted

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 85

Sub-Block Mesum Area 01 – Parameter Precision

Observation corrections

Scan angle corrections	$\Delta \Theta$	$\hat{\sigma}_{\Delta\Theta}$ =	0.000 07 deg
Scan angle corrections	Δs	$\hat{\sigma}_{\Delta s} =$	7.7 ppm
Mounting parameters			
ALS-IMU orientation	ΔE_{Y}	$\hat{\sigma}_{\Delta E_{Y}} =$	0.000 13 deg
ALS-IMU orientation	ΔE_{z}	$\hat{\sigma}_{\Delta E_z} =$	0.000 70 deg
Geo-Referencing correction	ns per n-1 fligh	t lines	
Position correction	Δz_{PC}^{LPF}	$\hat{\sigma}_{\Delta Z}$ =	1.6 – 2.5 mm

Accuracy Verification

The laser point accuracy can be verified at each of the tie-planes by

- computing the normal vectors n for the individual laser points
- deriving statistics for the normal vectors' components and lengths:

mininum dx, dy, dz, ds maximum dx, dy, dz, ds rms dx, dy, dz, ds

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 87

BIBLIOGRAPHY I

- Burman H., 2000. Calibration and orientation of airborne image and laser scanner data using GPS and INS, Dissertation, Royal Institute of Technology, Department of Geodesy and Photogrammetry, Stockholm, Sweden, ISSN 1400-3155.
- Filin, S., Csathó, B., Schenk, T., 2001. An analytical model for in-flight calibration of laser altimetry systems using natural surfaces. In *Proceedings of the Annual Conference of the American Society of Photogrammetry and Remote Sensing (ASPRS)*, St. Louis, MO, USA.
- Filin, S., 2001. Recovery of systematic biases in laser altimetry using natural surfaces. In *International Archives of Photogrammetry and Remote Sensing, Vol. XXXIV, 3/W4*, pp. 85 -91, Annapolis, MD, USA.
- Filin, S., Vosselman, G., 2004. Adjustment of airborne laser altimetry strips. In *International Archives of Photo-grammetry and Remote Sensing, Vol. XXXV, B3*, pp. 5-9, Istanbul, Turkey.
- Friess P., 2006, Towards a rigorous methodology for airborne laser mapping, International Calibration and Orientation Workshop EuroCOW, Castelldefels 2006.
- Kager, H., 2004. Discrepancies between overlapping laser scanner strips Simultaneous fitting of aerial laser scanner strips. In *International Archives of Photogrammetry and Remote Sensing, Vol. XXXV, B/1*, pp. 555-560, Istanbul, Turkey.

BIBLIOGRAPHY II

- Kraus, K., Briese, C., Attwenger, M., Pfeifer, N., 2004. Quality measures for digital terrain models. In *International Archives of Photogrammetry and Remote Sensing, Vol. XXXV, B/2*, pp. 113-118, Istanbul, Turkey.
- Lee, I., Schenk, T., (2001). Autonomous extraction of planar surfaces from airborne laser scanning data. In *Proceedings of the Annual Conference of the American Society of Photogrammetry and Remote Sensing (ASPRS)*, St. Louis, MO, USA.
- Maas H-G. (2000). Least-squares matching with airborne laserscanning data in a TIN structure, International Archives of Photogrammetry and Remote Sensing, 33 (Part 3A) pp. 548-555.
- Maas H-G. (2002). Methods of measuring height and planimetry discrepancies on airborne laserscanner data, Photogrammetric Engineering & Remote Sensing Vol. 68, No. 9, September 2002, pp. 933-940.
- Morin K.W. (2002). Calibration of airborne laser scanners, M.Sc. Thesis, University of Calgary, Department of Geomatics Engineering, UCGE Reports No. 20179
- Park, J.Y., 2002. Data fusion techniques for object space classification using airborne laser data and airborne digital photographs. PhD Dissertation, University of Florida, USA.

Optech

ISPRS Summer School 2007 - Requirements for generating a geometrically correct point cloud - 89

BIBLIOGRAPHY III

- Schenk T., 2001. Modeling and analyzing systematic errors in airborne laser scanners, Technical Notes in Photogrammetry No. 19, Department of Civil and Environmental Engineering and Geodetic Science, Ohio State University, Columbus OH.
- Sithole, G., Vosselman, G., 2003. Comparison of filtering algorithms. In International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, part 3/W13, Dresden, Germany, pp. 71-78.
- Toth C., et al 2002, Automating the calibration of airborne multisensor imaging systems, FIG XXII International Congress Washington, D.C., April 19-26 2002.
- Vosselman G., 2002a, On the estimation of planimetric offsets in laser altimetry data, In International Archives of Photogrammetry and Remote Sensing, Vol. XXXIV, 3A, pp. 375-380, Graz, Austria
- Vosselman, G., 2002b, Strip offset estimation using linear features. In *3rd International Workshop on Mapping Geo-Surfical Processes using Laser Altimetry*, Columbus, OH, USA.