

PRS Student Consortium Workshop			your information gateway	
SAR versus other Earth Observation Instruments				
	Lidar	Optical Multi-Spectral	SAR	
Platform	airborne	airborne/spaceborne	airborne/spaceborne	
Radiation	own radiation	reflected sunlight	own radiation	
Spectrum	infrared	visible/infrared	microwave	
Frequency	single frequency	multi-frequency	multi-frequency	
Polarimetry	N.A.	N.A.	polarimetric phase	
Interferometry	N.A.	N.A.	interferometric phas	
Acquisition time	day/night	day time	day/night	
Weather	blocked by clouds	blocked by clouds	see through clouds	
www.sarmap.ch			21 st June 200	

ISPRS Student Consortium Workshop	Sarma
The SAR System	
Real Aperture Radar - Resolution	
The spatial resolution of RAR is primarily determined by the larger the antenna, the better the spatial resolution. Other d pulse duration (τ) and the antenna beamwidth.	size of the antenna used: the etermining factors include the
Range resolution is defined as	
$res_{range} = \frac{c\tau}{2\cos\theta}$	
where c is the speed of light, and $\theta\;$ the incidence angle.	
Azimuth resolution is defined as	
$res_{azimuth} = \frac{\lambda R}{L}$	
where L is the antenna length, R the distance antenna-object systems where the antenna beamwidth is controlled by the p typical resolutions are in the order of several kilometres.	t, and $\boldsymbol{\lambda}$ the wavelength. For hysical length of the antenna,
www.sarmap.ch	21 st June 2007

ISPRS	Student Consortium Workshop Same
Co	herence (Interferometric Correlation)
Prii	nciple
Give or i	en two co-registered complex SAR images (S_1 and S_2), one calculates the coherence (γ) - nterferometric coherence - as a ratio between coherent and incoherent summations:
	$\gamma = \frac{\left \sum s_{1}(x) \cdot s_{2}(x)^{*}\right }{\sqrt{\sum s_{1}(x) ^{2} \cdot \sum s_{2}(x) ^{2}}}$
Not syst betv	e that the observed coherence - which ranges between 0 and 1 - is, in primis, a function o temic spatial decorrelation, the additive noise, and the scene decorrelation that takes place ween the two acquisitions.
In e	essence coherence has, in primis, a twofold purpose:
• T h p	o determine the quality of the measurement (i.e. interferometric phase). Usually, phases aving coherence values lower than 0.2 should not be considered for the further rocessing.
• T b	o extract thematic information about the object on the ground in combination with the ackscattering coefficient (σ^{o}).
www	v.sarmap.ch 21 st June 20

ISPRS Student Consortium Workshop	sarmap
Speckle	
General	
Speckle refers to a noise-like characteristic produced by coherent systems such as SAR and Laser systems (note: Sun's radiation is not coherent). It is evident as a random structure of picture elements (pixels) caused by the interference of electromagnetic waves scattered from surfaces or objects. When illuminated by the SAR, each target contributes backscatter energy which, along with phase and power changes, is then coherently summed for all scatterers, so called random-walk (see Figure). This summation can be either high or low, depending on constructive or destructive interference. This statistical fluctuation (variance), or uncertainty, is associated with the brightness of each pixel in SAR imagery.	
www.sarmap.ch	21 st June 2007

ISPRS Student Consortium Workshop	sarma	
Cartographic and Geodetic S	ystem	
Countral		
Country	UTM	
Zone	36	
Hemisphere	South	
Geodetic System	WGS-84	
www.sarmap.ch		21 st June 2007

1	SPRS Student Consortium W	orkshop	sarmap
	Geocoding (Orth	o-rectification)	
	Range-Doppler Approa	ch	
	The removal of geometri information. The geometri and thus must be based two relations must be fulfi	ric distortions requires a lic correction has to consider on a rigorous range-Dopple lled:	high precision geocoding of the image r the sensor and processor characteristics er approach. For each pixel the following
		R=S-P	Range equation
		$f_D = \frac{2f_0(v_p - v_s)R_s}{c R_s }$	Doppler equation
	where	$\begin{array}{llllllllllllllllllllllllllllllllllll$	backscatter element position backscatter element velocity -y ler frequency
	www.sarmap.ch		21 st June 2007

