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ABSTRACT: 
 
The problem of matching 3D TLS point clouds is a necessary stage which precedes any kind of modeling in order to perfect the 
object’s geometry and to control its accuracy. It has been studied extensively in many graphical and image-processing domains, 
However there is a lack of an adaptive study of this problem in the domain of laser scanning for architectural and urban purposes. 
Hence, our study aims to summarize the existing methods of point clouds registration. We introduce a line-based matching method 
which is so-called ICL (Iterative Closest Line). Some line extraction methods required by the ICL algorithm are also presented. We 
compare our method to the ICP (Iterative Closest Point) one as well, which is mostly applied in the domain of point cloud and range 
image registration. Our method is intended to handle the special case where both of the point clouds were obtained by means of as-
built topographic terrestrial laser scanner, which means that they are georeferenced and to be affined by the co-registration.  
 
 

1. INTRODUCTION 

In order to achieve a 3D architectural, urban or industrial model 
using the TLS point cloud, it is almost compulsory to perform 
multi-view scan from several stations because of field of 
scanner visibility, mask conditions, object dimensions and the 
work conditions. Hence the 3D/3D registration is a fundamental 
step which precedes any posterior treatment; it can even be 
considered as scanning step rather than treatment one. 
The problem can be expressed in simplified technical language 
by overlaying an erroneous space position cloud (usually called 
scene or data) on another correct space position one (usually 
called model). Since the random instrument errors are not 
concerned in this approach, the resulting internal cloud 
geometry is stable. This statement makes the transformation 
from data to model cloud a rigid one which consists of three 
rotations and three shifting parameters.  
The problem of 3D registration is traditionally solved by adding 
some easily-recognized targets or spheres around the wanted 
object to be scanned with it. The detection of these targets or 
spheres in both model and data cloud allows to calculate the six 
parameters of rigid transformation mentioned above.     
The new generation of scanner allows a setup of the scanner in 
a tacheometric way (back sight and front sight) in each station. 
This process enables one to capture a georeferenced point cloud 
in real time. The superposition of the resulting clouds is 
consequently guaranteed by previous tacheometric and 
topographic operations which also determinate the accuracy of 
the 3D final registration. Anyhow the 3D registration is not yet 
obsolete especially since the instrument setup is not always 
feasible. 
When the scanned object includes representative geometric 
features, one can use them instead of external supplementary 
targets or spheres for achieving the 3D registration. Thus the 
goal of this paper is to perform free-markers registration 
depending on linear features as it will be explained. 

The choice of linear features was privileged because of their 
large existence in the majority urban component. Straight lines 
are also useful when carrying out 2D/3D registration between a 
point cloud and a photogrammetric support. Nevertheless the 
proposed method meets its limitation when the question is to 
scan non-ordinary designed building. 
After having surveyed the related work in 3D registration 
domain two parts will be consecrated to explain the proposed 
method. In the first on, three methods of linear features 
extraction are shown, and then two approaches of making use of 
these features in registration are explained.      
  

2. PREVIOUS WORK   

The general problem of 3D shape registration is largely treated 
in other fields of science, rather than the TLS data processing. 
One can therefore benefit from what has been produced in these 
domains like computer vision, the medical images, matching 3D 
data with a CAD model, self localization and the robotic vision.  
Voting methods mean that a coordinate transformation is done 
then matched points from the two clouds (model-scene) are 
competed. When a suggested transformation achieves a 
maximum score of matched point pairs, it will be a candidature 
for the wanted one. It can be affined accordingly by using an 
estimation method as least square adjustment. (Wolfson and 
Rigoutsos, 1997) used the geometric hashing as voting method 
to accomplish the registration. (Hecker and Bolle, 1987) adopt a 
method which implements Hough transform with the geometric 
hashing for the same purpose.    
(Gelfand et al, 2005) have introduced another category of 
registration methods called underlying correspondence. This 
class of methods focuses on the geometric characters of each 
point cloud rather than the number of matched points. In this 
category, one can find herein DARCES method (Data-Aligned 
Rigidity-Constrained Exhaustive Search) based on RANSAC 
(Random Sample Consensus) proposed by (Chen et al, 1999). 



 

Another underlying correspondence method is NDT (Normal 
Distribution Transformation) suggested by (Ripperda and 
Brenner, 2005). ICP (Iterative Closest Point) proposed by (Besl 
and Mckay 1992) which is the most well-known method in this 
category will be discussed latter below in this paper.  
It can be noticed that all mentioned methods do not require a 
prior knowledge of any geometric features from the point cloud 
in opposite to another category of methods which can not be 
done without extracting some geometric features or building a 
mesh surface of point cloud. The invariant properties of 
extracted features facilitate their matching in a pair to pair set in 
order to carry out the rigid transformation later. This gain may 
compensate the lost time consumed while extracting the 
geometric primitives. Also, if one thinks about the use of 
extracted features in further modeling steps, the registration 
methods based on geometric primitive could be considered as 
an important category of registration methods. We can 
categorize herein the spin image method for surface matching 
(Johnson. 1997) and also the method based on the edges 
detection presented by (Sappa et al, 2001). 
Our proposed method is a feature based one, so it follows all the 
rules of this category starting by the features extraction stage 
which are straight lines in our case.    
 

3. STRAIGHT LINE EXTRACTION  

Since two points define a straight line, the number of possible 
trails to locate a true line representing crease or jump edge is 
equal to the combination Cn². To reduce this complexity 
explosion, many ergonomic algorithms are established. Three of 
these algorithms will be discussed below, but first of all we will 
restrict our search to points where a large difference in normal 
direction occurs. These points are “potential” to form edges in 
any object. RealWorks® program is capable of detecting the 
potential points and consequently exporting their coordinates 
and their normal directions in many forms. Execution time of all 
the three following methods improves remarkably when the last 
step is applied. It prevents also probable absurd solutions.  
 
3.1 Incremental method 

This method can be considered as projection of the method 
called “region growing” from 3D to 2D. Its simplicity is its 
main advantage. It starts by taking two points in some order and 
calculating the parameters of a line passing by them. A third 
point is then added and a line is adjusted to fit the three 
previous points by the least square method, which yields 
residuals and standard deviation estimation. The method 
imposes adding more and more points while the update rate of 
residuals is stable. When an incoherent residual occurs it should 
mean that the last added point dose not belong to the same line. 
In this case the process is halted and all processed points are 
modeled as line segment. The process is switched then to 
another segment starting by the last tested point and so on until 
the whole point cloud is tested. The criteria to accept or refuse 
the resulting segment will be the number of points represented 
by it and the standard deviation of this representation.  
Two enhancements have been introduced in this basic 
algorithm. The first imposes sorting the cloud points based on 
their distances to the first point or the scanner coordinates. It is 
preferable in order to assist the forward marching of the 
algorithm. The second modification is to impose another 
stopping condition based on the distance between two 
successive points which should not exceed certain threshold.  

3.2 RANSAC (Random Sample Consensus) algorithm  

The basic form of this method (Fischler and Bolles, 1981) is 
used to fit a model to a set of data in presence of outliers. It has 
been applied widely in the computer vision and image 
processing fields. Nonetheless RANSAC can not be applied as 
it is to detect the edge lines because in this case the waited 
output is not a single model but several lines.  
A method containing RANSAC core can be stated as follow: 
Two points are selected randomly then the parameters of a line 
passing by them are calculated. The distance of all cloud points 
to this line are calculated and the number of those less than the 
proposed threshold is stored as the best number so far. Another 
random point pair is processed in the same way and the stored 
number of close points is replaced if the current number is 
larger. When the number of the trials proposed by RANSAC 
probabilistic law is reached, the stored number should represent 
the highest score of the modeled line. If the last number is 
greater than a given threshold, a line is fitted to the selected two 
points and all close points to their passing-by line by least 
square method. The last sub-set is removed from initial point 
group and the method is reiterated.   
Since the number of RANSAC trails is related to the size of 
point cloud, one should be careful to change it once a sub-set is 
taken out. This number could even be proposed by the user in 
such a way that the cloud is sufficiently tested in each iteration.  
We must accept that a certain percentage of point cloud would 
not be modeled whatever number of trials. Hence the stopping 
condition can be driven: the remaining point cloud size after 
several removals is less than proposed ratio of its original size. 
RANSAC frequently produces a line segment with one or two 
points situated on its extension since the geometric condition 
does not prohibit this case. A condition then verifies the 
adjacency of the modeled points.       
 
3.3  Hough transform      

Hough transform is a habitual method for edge detecting in 2D 
images. Knowing that the conversion 3D/2D is always possible 
by projection without loosing accuracy and that the projection 
of the line is always a line, we can bring this method into the 
world of 3D terrestrial laser clouds by projecting them on xy, 
yz, xz or even an arbitrary plane.   
This method depends on the duality between the variable and 
the parameter spaces. Let’s be more accurate: any straight line 
in Oxy space has the implicit normal equation form: 

sin cosr x yθ θ= +  which can be read in the variable space: 

“infinity of (x,y) points that satisfy the equation for a unique 
( ,r θ )”. The same equation could be read differently regarding 

the parameters (,r θ ) as variables and the variables (x,y) as 

parameters: “for a unique (x,y) value, there are infinite number 
of ( ,r θ ) satisfying the above equation “. Nevertheless this 

lecture makes the last equation a sinusoidal one from ( ,r θ ) 

point of view or more formally in the parameter space. Hence 
one can state that the infinite number of lines passing by a point 
in the variable space is presented by a sinusoid in the parameter 
space or in short: each point is represented by sinusoid in the 
parameter space. The duality variable-parameters is illustrated 
in figure 1.  
Hough has noticed that when some points belong to the same 
line, the parameters can be retrieved from the intersection point 
of their sinusoid, which is the principal idea of the transform 
method.  



 

 
Figure 1. a Variable space. 1: point for whose a set of lines of 

different (r,
θ
) are shown. 2,3: two points belong to 

the same line L  

 
Figure 1.b Parameter space. 1,2,3 the sinusoids of the last three 

points. L: sinusoids intersection which represents 
the wanted common line L  

 
Since the representation of whole lines passing through each 
point is infeasible, certain discrete representation has to be 
considered. Hence a range of angles 

θ
∈[0, π] is proposed to 

accomplish the sinusoid associated to each point. We found that 
a range of 0.5-1° is sufficient to fulfil accuracy-processor time 
balance. All sinusoids are plotted in an accumulator image 
known (after scaling process) as Hough histogram. The next 
task is to find points where a substantial number of point-
sinusoids intersect each other. Unfortunately, these points are 
not clearly marked but they have very often a butterfly 
(figure.2). Thus the current task is to search the regional 
maximums in the histogram which impose again processing 
time and some additional thresholds definition.   
 

 
            

Figure 2. Hough histogram and its regional maxima  
 

The last step is to form line equations and transform them into 
3D space. If one searches all “close” 3D points to the found 
lines and then models them by the least square method, line 
detection accuracy will increase and the length of each segment 
can be determined. 

  
3.4 Comparison of three methods 

At this stage of research we can not give preference to one 
method rather than the other. Each method has its positives and 
negatives (table.1) and some failure cases. The major 
shortcoming of the incremental method is its sensitivity to the 
initial sequence of point cloud. For instance the incremental 
method is ideal for detecting the vertical edge lines for TLS 
scanners with vertical line of scan if no order change was made 
to the raw point cloud. RANSAC yields rarely different results 
when applied twice. Hough method meets its failure when the 
noise in the histogram does not allow detecting the picks in the 
histogram. In practice we apply a sequence of two or three 
methods in order to capture as many lines as possible.   
 

algorithm Incremental RANSAC 
Hough 

transform 
Speed - - + 

3D/2D Functionality  + + - 

Probability + -- - 

Required thresholds  ++ + -- 
Required segment 
merge  

-- + + 

Accuracy + + - 
Nombre of extracted 
lines  

++ + - 

  
Table 1. A comparative estimation of the three proposed line 

extraction methods 
           
Segment merge is usually carried out with respect of two 
conditions: the distance and the direction. This step follows line 
detection stage in both model and data point cloud in such 
manner that each of them has its own set of detected edge which 
is the key for starting the next step in our suggested method.      
    

4. 3D REGISTRATION METHODS 

For reason of consistency, we will depict briefly ICP method as 
presented in the initial paper of (Besl and Mckay, 1992) before 
introducing suggested methods. Then it will be rather effortless 
to set out the principal steps of ICL method afterwards. 
 
4.1 ICP method            

 Let A be a set of points
ia
r . The distance between a pointp and 

the set A is : 
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ICP method starts establishing a relation of bijection of each 
point of the “data” point cloud with the nearest point of the 
model one. (Zhang, 1992) suggests a filtering process which 
restricts the pairing on the overlapping zone and eliminates the 
effect of noisy data.  
The next stage of ICP is to calculate the rotation matrix R and 
the translation vector T which are the components of the final 
sought rigid transformation. ICP tries to minimize the following 
error function: 
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which signifies the sum of coordinate differences between each 
point of the “model” cloud xi and its paired one pi from the 
“data” cloud. The close form solution of equation (3) yield a 
provisional solution of R,T which will be applied to the “data” 
cloud. Another loop of coupling-transformation is carried out 
starting from the recent position of data cloud. Since it has been 
proven that the process has to converge at some final solution, 
the stopping condition will be that no “significant” rigid 
transformation parameters practically noticed.   
 
4.2 ICL method 

ICL (for Iterative Closest Line) has the same logic of ICP 
except that it operates lines instead of points. Two forms of this 
method will be presented. The one differs from the other in the 
second process stage which is the rigid transformation. 
Nevertheless the core of the two forms is line pairing from both 
point clouds. The condition of line coupling is the distance 
between them in the early iteration of the process. When the 
method begins converging, one can introduce a direction 
condition; the coupled lines have to be “parallels” within 
certain threshold. It is obvious that the number of coupled line 
N pairs is equal to minimum number of extracted line in both 
data and model cloud. Once the lines are coupled the 
calculation of rigid transformation can be started: 
 
4.2.1 ICP Form:  
 
Firstly lines have to be presented by a direction vector v and 
some point coordinate p the superscript ‘m’,’d’ will denote the 
model and the data cloud respectively. The rotation matrix can 
be concluded from lines direction only when minimizing the 
following function:  
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As in the ICP method, the solution of this function is of closed 
form. For doing so, the two following means are defined: 
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Cross covariance matrix of the two data sets is: 
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The cyclic components of the antisymetric matrix Aij are used to 
formulate the vector called ∆ used by its turn to formulate the 
matrix  ( )vvQ ′∑ ,

 :  
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          (7) 

It was proven that the vector of normalized eigenvector of the 
matrix (7) represents the optimal rotation quaternion 

[ ]0 1 2 3Rq q q q q
r . Euler angles rotation matrix is given by: 
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Once the rotation matrix is calculated, it can be used to find the 
shifting vector ( )T

x y zT T T T= . Let’s take two random points 

1 2( , )m ma a  belong to the ith line ( , )m m
i iv p detected in the model 

cloud; these points fulfil the triple of equation: 
        

1 1 2 2
m m m m m m m m

i i i ia p t v a p t v= + = +              (9) 

 
They have two homogenous points on the paired line i in the 
data cloud which satisfies too the triplet of equation: 
                  

1 1 2 2
d d d d d d d d

i i i ia p t v a p t v= + = +   (10) 

 
The relation between the both lines yields the following 
equations: 

1 1 1 1

2 2 2 2

( )

( )

d m d d d m m m
i i i i

d m d d d m m m
i i i i

a R a T p t v R p t v T

a R a T p t v R p t v T

= + + = + +

= + + = + +
  (11) 

 
This system of six equations has seven variables: three 
translations and four variables ),,,,,,( 2121 zyx

ddmm TTTtttt . Thus 

another pair of points is needed for accomplishing the 
calculation. When we have two or more pairs of lines, the over 
determined system (11) have to be solved by the least square 
adjustment method. 
 
4.2.2 Alternative form 
 
This form is more comprehensible for whomever is not familiar 
with the close-form of solution. It depends upon the basic idea 
suggested by (Habib and Ghanma, 2004) where they integrate a 
point cloud with a 3D photogrammetric model by conjugating 
the extracted linear features. 
In the figure (3); the two point A,B represent a segment of  the 
model cloud. 1 and 2 define the paired line segment from the 
data cloud.  

 
Figure 3. The rigid transformation for a line segment 

 
The rigid transformation for the segment 1,2 is given by the 
equations :  
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where

21,λλ  are two scale factors express the slide of one 

segment on the other. Subtraction of equation (12b) from (12a) 
gives:  

                        2 1
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)(1 12 λλλ −=  is a new scale factor, which could be eliminated 

by dividing the first and the second line by the third: 
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The last double equation in three variables is not sufficient for 
accomplishing the solution, so at least one equation of second 
line pair is needed. Usually we use all the available pairs from 
the previous coupling to process them by a least square 
adjustment method.  
After obtaining the rotation matrix, one can substitute its value 
into the equation (12a) for the first point: 
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To eliminate the scale factor we have to divide into the third 
line as well: 
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In the same way point 2 generates the same equations. The 
solution of all the paired lines equations by the least square 
adjustment gives the shifting vector directly.  
It is obvious from the two forms of ICL that two couples of 
non-coplanar lines are sufficient for carrying out the rigid 
transformation; nevertheless the growth of line number makes 
the solution more robust and eliminates the eventual errors.   
Both forms of solution reflect the separation of rigid 
transformation solution into a non-linear stage stating the 
rotation and a linear stage expressing the shift. Nonetheless ICP 
form saves a processor time needed by the iterative solution of 
the second form when computing rotation parameters.   
 

5. TEST RESULTS 

The chosen application herein is the documentation scan of the 
“Pontonniers international high school” in Strasbourg. This 
scan respects the survey workflow (Hanke et al, 2006). Hence, 
already registered point clouds allow comparing the result of 
ICL registration with data from the topographic methods. Figure 
4a shows the superposition of two point clouds in Realworks® 
according to the scanner attitude and position determined by 
posterior topographic operations. Table 2 summarizes the main 
characteristic of both point clouds acquisition and treatment. 
 
Scan origin I13 (model) R14 (data) 

X,Y,Z accuracy resp. 
(cm) 

0.4, 0.2, 0.3 
surveying traverse 

method 

-1.1, 1, -0.9  
resection by scanner 

itself 

Linear resolution 50 mm at 60 m 30 mm at 60 m 

Points number 292706 601952 

Potential points 15401 9527 

Number threshold 
(Ransac+ Incremental) 

20 30 

Distance threshold 35 mm 20 mm 

Extracted lines 33 48 

 
Table 2. Acquisition and processing parameters  

A combination of successive RANSAC and incremental method 
is applied in order to obtain the maximum number of lines. The 
thresholds shown in table 2 have been selected with respect to 
the scan resolution and density. The result of coupling by using 
previous conditions can be controlled visually by the user 
(Figure 4b). One can see that a more tolerant threshold yields 
more lines but at the cost of loosing the precision which affects 
the next step severely. 
 

 
Figure 4 a) Overlap zone between the two clouds. b) The 

potential points and the extracted edge lines  
 
To accomplish the pairing stage of ICL, we supposed that the 
final pairing distance threshold is 60 mm and the direction one 
is 0.5 gon. 13 lines remain to contribute in the afterwards rigid 
transformation calculation. The reason behind this fall is the 
modeling of the visible edges of cylindrical tiles used for 
covering roofs seals as invariant lines. Knowing that the boards 
of a cylinder seen from different points of view are not the 
same, two lines are generated which are not supposed to be the 
same. This error is eliminated by the direction and distance 
filter proposed by the pairing processes.      
The following table shows the results of the application of both 
ICL forms: 
 

ICL ( ICP form) 

axis 
Rotation 
mGon 

σ  
mGon 

Shift 
(cm) 

σ 
 (cm) 

Total 
(cm) 

x 12 0. 3 0.2 0.2 1.1 

y -5 0.3 -0.8 0.2 -1.2 

z 11 0.2 0.3 0.2 1.2 

RMS RMS : 0.5 mGon RMS : 0.2 cm 0.2 

ICL (alternative form) 

axis 
Rotation 
mGon 

σ 
mGon 

Shift 
(cm) 

σ 
(cm) 

Total 
(cm) 

x 2 0. 2 1.8 0.3 1.8 

y -4 0. 2 -1.5 0.3 -1.7 

z 9 0.2 0.6 0.2 1.3 

RMS RMS : 0.4  mGon RMS : 0.4 cm 0.4 

 
Table 3. The rigid transformation components when registering 

the two points cloud.  σ : The standard deviation of 
the estimation. “Total” is the effect of the calculated 
rotations at a distance of 50 m plus the shift as well.   

 
Although the tiny observed values (the two point clouds 
supposed to be already correctly overlapped), one can see that 
the form ICP tries to solve the problem of registration in its last 
steps by rotation when the form alternative accomplishes that by 
translation. This observation can be interpreted by the accuracy 
of the iterative and the closed form of the least square 



 

adjustment especially when it is a question of miniature 
displacements. If one admits that a small rotation about a frame 
situated fairly far can be translated as a linear shift, the two 
solutions will be fairly equivalent. It is enough to compute the 
effect of the given rotations around the frame axis at the centre 
of the cloud and then to add it to the calculated translations.  
 
The coordinate difference between the automatic overlapping of 
the two point clouds due to the acquisition process and ICL 
registration can be explained by the following factors: 

1. The imperfection of the prior surveying works.  
2. TLS random errors as eccentricity and bubble errors. 
3. TLS instrumental errors which affects the measured 
range and angles. 
4. TLS environmental and object related errors which 
affect the laser beam deflection. 

We can compare ICL registration results with the first error in 
this context of work especially because the second error is 
unknown and the rest are insignificant when compared to the 
first one. More particularly, ICL results are comparable with the 
accuracy of R14 which was the origin of the data cloud (table2). 
We can see obviously that the form ICP yields more accurate 
results (difference of 2-3 mm) than the alternative method 
(difference of 4-8 mm). Processor time saving is another factor 
which makes us advise the use of the form ICP of ICL.  
 

6. CONCLUSION 

As we have seen in this approach, the edge lines are firstly 
detected and then used for the registration. We are yet far from 
possessing a global edge-detection algorithm which digitizes all 
lines in a point cloud. Hence, we still use a combination of the 
three suggested methods to collect the maximum line segments 
and then we try to merge the needed segments. The ICL 
method’s final accuracy depends upon the line detection’s 
accuracy which is probably the major shortcoming of the 
method. Line directions affect directly the rotation components 
of the rigid transformation which affect in turn the sifting 
component’s computation. The use of large thresholds produces 
a greater number of lines but they are less accurate, while the 
use of strict threshold produces a more accurate solution but it 
has less redundancy.  However, a careful line detection 
controlled by the user yields a final matching accuracy better 
than the scan linear resolution which is sufficient for further 
application. 
 

7.  FUTURE WORK              

Up till now, the testes that we have done confirm only the 
scanner accuracy and help us to control the previous 
topographic work. We still need other some other tests to prove 
the method efficiency in the general case.  We work also 
hopefully to enhance some aspects of general 3D matching as: 

1. Straight lines extraction as contours of planes. 
2. Use of other geometric features like curves and planes 
3. Use other geometric relations like orthognality, 

parallelism and the intersection by known angles. 
4. Extend the method to be able to trait multiple point 

clouds simultaneously without accumulating the 
cloud-to-cloud registration error. 
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