MOVING POLYNOMIAL IN FILTERING OF AIRBORNE LASER SCANNING DATA

Grzegorz Jóźków

Wroclaw University of Environmental and Life Sciences

Institute of Geodesy and Geoinformatics

INTRODUCTION

Non terrain points are regarded as gross errors

POLYNOMIAL MODEL

Second rank polynomial:

$$Z(X,Y) = a_{00} + a_{10} \cdot X + a_{01} \cdot Y + a_{11} \cdot X \cdot Y + a_{20} \cdot X^{2} + a_{02} \cdot Y^{2}$$

Z - interpolated height of measured point $\{X,Y\}$ - coordinates of interpolated point

 $a_{i,j}$ - unknown parameters of local polynomial calculated from matrix equation:

$$A = (B^T \cdot P \cdot B)^{-1} \cdot B^T \cdot P \cdot H$$

$$A = \begin{bmatrix} a_{00} & a_{10} & a_{01} & a_{11} & a_{20} & a_{02} \end{bmatrix}^T$$
 - polynomial parameters matrix

 $P = diag\{p_1 \quad p_2 \quad \dots \quad p_n\}$ - weight matrix, where weight p_i is calculated based

upon distance between measured and interpolated point

 $\{x_i, y_i, h_i\}$ - coordinates and height of measured point

$$B = \begin{bmatrix} 1 & x_1 & y_1 & x_1 \cdot y_1 & x_1^2 & y_1^2 \\ 1 & x_2 & y_2 & x_2 \cdot y_2 & x_2^2 & y_2^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & y_n & x_n \cdot y_n & x_n^2 & y_n^2 \end{bmatrix} \qquad H = \begin{bmatrix} h_1 & h_2 & \dots & h_n \end{bmatrix}^T$$

ROBUST ESTIMATION

Polynomial parameters are calculated in iteration process:

$$A^{(K)} = (B^T \cdot P^{(K-1)} \cdot B)^{-1} \cdot B^T \cdot P^{(K-1)} \cdot H$$

 $A^{(K)}$ - polynomial parameters determined in step K of iteration

 $P^{(K-1)}$ - weight determined in step K-1 of iteration

New weights are calculated using damping function:

$$p_i^{(K)} = p_i \cdot q(v_i^{(K-1)})$$

 $v_i^{(K-1)}$ - residues between measured and calculated in step K-1 heights

 p_i - not modiefied (original) weights

q(v) - damping function

Damping function:

$$q(v) = \begin{cases} 1, & |v| \le \sigma \\ \frac{1}{1 + (\alpha \cdot |v - \sigma|)^{\beta}}, & |v| > \sigma \end{cases}$$

 α, β, σ - empirical chosen parameters

HIERARCHICAL MODEL (Briese et al., 2002)

partition area and choice for each sub-area one representative point

HIERARCHICAL MODEL (Briese et al., 2002)

- partition area and choice for each sub-area one representative point

heights interpolation in each representative point

HIERARCHICAL MODEL (Briese et al., 2002)

partition area and choice for each sub-area one representative point

removing all points, that were not included in the cache of terrain trend

heights interpolation in each representative point

HIERARCHICAL MODEL (Briese et al., 2002)

partition area and choice for each sub-area one representative point

removing all points, that were not included in the cache of terrain trend

heights interpolation in each representative point

heights interpolation in non-removed points

EXAMPLE 1 (samp12.txt, http://www.itc.nl/isprswgIII-3/filtertest/Reference.zip)

52119 points, area 204 m x 264 m, density about 1 point per square meter

Measured points

Identiefied terrain points

EXAMPLE 1 (samp12.txt, http://www.itc.nl/isprswgIII-3/filtertest/Reference.zip)

52119 points, area 204 m x 264 m, density about 1 point per square meter

Filtering results

Total (points)		Е	52119
Correct classified bare earth		Α	24455
Type 1 errors (bare earth as object)		В	2236
Type 2 errors (object as bare earth)		С	401
Correct classified object		D	25027
Reference	Bare earth	A+B	26691
	Object	C+D	25428
Filtered	Bare earth	A+C	24856
	Object	B+D	27263
Percentage of type 1 error		B/(A+B)	8.38%
Percentage of type 2 error		C/(C+D)	1.58%
Percentage of total error		(B+C)/E	5.06%
Ratio type 1 to type 2 errors		B/C	5.58

EXAMPLE 2 (ScaLARS)

127175 points, area 85000 m², density about 1.5 point per square meter

Measured points

EXAMPLE 2 (ScaLARS)

EXAMPLE 2 (ScaLARS)

SUMMARY

- algorithm is based upon the original data (without grid computing),
 - hierarchical approach is necessary in this method,
- polynomial surface fits good to the local terrain structures,
- algorithm description is simple, nevertheless determination of polynomial parameters in the iteration process for each point requests strong computing power
- filtering of airborne laser scanning data using moving polynomial surface give correct results.

THANK YOU FOR YOUR ATTENTION