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ABSTRACT:

A growing need exists for the collection of accarand up-to-date information on forest growth rdtesmanagement purposes.
Recent studies indicate that airborne laser scanfih§) offers a quicker and more cost-effective magh than the traditional
methods of forest inventorying. Indeed, individtrale growth studies by the likes of ‘et al., (2004, 2006) suggest that ALS has
the potential to revolutionise forest managementaso provide data concerning carbon stocks thyguklying a part in the current
global climate change debates. High quality ALSadmbm 2003 and 2006 from Kielder Forest providaseacellent, unique
opportunity to contribute to existing work whichshso far been limited in focus, looking primarilyiadividual tree growth in the
less densely stocked, slow-growing, cold climatrests of Scandinavia. This study aims to assespdtential of ALS to estimate
forest growth rates of the temperate Sitka sprueatation forests using canopy height distributimodels at Kielder Forest,
Northumberland. ALS point cloud data from first dadt pulse returns are filtered and classifiechuBd returns are used to create a
digital elevation model (DEM), which first returase then adjusted to, resulting in the formatiora afigital canopy height model
(DCHM). The processed ALS data from both years énthompared to estimate forest growth. The resulisvalidated against
ground truth data. Height correlations are stroRg= 0.98) yet growth correlations are very poor (RR%2). Suggestions for

improving such correlations in the future are pnésé and discussed.

1. INTRODUCTION

There is an increasing need for the collectioncoigate and
up-to-date information for commercial forest mamagat
purposes on a continuous timescale. Remotely senfestad
such as aerial photography, has long been usdwib/K to
help quantify the 1.4 million hectares of foressaerces
(Forestry Commission, 2004). Additionally, recentdsés
suggest that airborne laser scanning (ALS) nowfefaster
and furthermore, a cost-effective means of forest
inventorying. It offers significant advantages ierms of
multi-temporal surveying and data acquisition imestvise
difficult to access areas. Also, it has been suggdeshat
LIDAR remote sensing has the potential to providéada
concerning carbon stocks locked up within foresingd thus
play a part in the current global climate changbaties
(Drakeet al. 2002; Gobakken and Naesset 2004; Watt 2005;
Henning and Radtke 2006; i al. 2006).

Within the last decade or so, a number of studiaseh
indicated that ALS can be used to accurately ptefdiest
variables such as mean height, basal area, volumke a
biomass (Naesset 2002; Naesset and Bjerknes 20@%séta
and Okland 2002; Nelson et al., 1988; Nilsson 1996;
Popescu et al., 2002; Watt 2005; Yu et al., 2004;eY al.,
2006). Such studies have found high levels of tatioen
between LiDAR- and ground truth-derived forest riostr It

is often noted that LIDAR height estimates are afadf not
better accuracy than ground truth data or thatiobtaby
other remote sensing techniques. However, it hes aften
been reported that ALS systems consistently untierate
the ‘true’ height of the trees.

Yu et al., (2004) first studied the use of smalbtfoint
LIDAR systems for change detection within the cdichate,

slow growing Scandinavian forests to estimate gnoaitthe
individual tree level. Like others before them,ytmeted that
individual tree heights were underestimated. Is tda@se, the
underestimation caused the errors of growth esitmab be
larger than the estimated growth itself. Furtherdis in
2005 and 2006 built on this work to improve cortielas
between ground measured and LiDAR derived growtmfro
0.210 0.6.

Few studies have so far assessed LIDAR for estignatin
growth at plot or stand level however. Furthermargst
research has focussed on the slow growing, colthatt
forests of Scandinavia. Thus, the data collectest &elder
Forest provides a unique opportunity to assessutiee of
airborne laser scanning for quantifying plot ananst level
growth rates of a fast-growing, temperate conifamest in
Northern England.

2. STUDY AREA AND DATASETS
2.1 Study Area

The test site for this research is Kielder Forest i
Northumberland, England (Figure 1). The forest wened
and managed by the Forestry Commission and is tgeda
in the UK covering approximately 62,000 hectareglder is

a commercial plantation forest, comprised mainlyPafea
sitchensis (Sitka spruce), established in 1926 by the
Commission principally for timber production. Toddye
forest continues to produce up to 1300 tonneswfer daily
(www.kielder.org and given the anticipated rise in annual
British timber production in coming years (Watt 2D05
efficient management of this forest is paramourtisTis
especially true when considering the short foresations
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and fast growth rates of trees at Kielder. The taléon forest
lies at a mean altitude of 270m and has a mear slogle of

6°. Thinning is very rarely carried out which allowanopy
closure within  roughly 20 vyears of planting.
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Figure 1. Kielder Forest, UK. Field plots are matkg black dots.

2.2 Sensorsand Datasets

The multi-temporal laser data was collected durihg

summers of 2003 and 2006 using the Optech 2033
(Environment Agency) and 3033 (NERC-ULM) scanners

respectively (Table 1). These are small footpritiscrete
return systems which recorded first and last pulaed
intensity.

2.3 Reference Data

Ground truth data was collected by the Forestry Cimsion
in summer 2003 and by a field team from Durham ©rsity
in summer 2006 following standard UK forest invewyiog
practices.

Sensor Optech ALTM Optech ALTM
2033 3033
Date of Survey 26.03.03 05.05.06
Scan Angle 10 16.5
Pulse Density 2/f 4/n?
Flying Altitude 950m 1750m

Table 1. Technical Specifications.

A total of thirteen 0.02ha circular plots of vartoages were
assessed for growth in tree height and diametartbeethree
year period. Plots were navigated to using a hdddG@S
and plot centre and tree locations recorded usirigiea
series 300 differential GPS. A Vertex hypsometes waed
to measure all trees >1.37m tall and a tape medsutese

<1.37m. Diameter at breast height (dbh) was medsusing

a diameter tape. Tree status (e.g. double leaded dtc) and
species were also noted, although only a handfulrexfs
throughout the entire study area were not SitkacgprFigure
1 displays the plot locations and an overview dfctiptive

statistics for these sixteen plots is shown in &&hl

Mean | St. Dev Min M ax

Age (years) | 35.31 | 19.33 | 11.00] 62.0D

Density
ooy | 024 | 007 | 015 039
Height (m) | 11.0 | 4.33 | 4.00| 16.60
Diameter | 1445 | 545 | 590| 22.70
(cm)

Table 2. Summary of statistics for 16 field plaekén from
2006 data).

3. METHODOLOGY
3.1 Filtering and Classification

Last return laser points were loaded into the Roaa
software and classified as ‘ground’ and ‘non-gréumsing
the embedded TIN densification algorithm develogsd

Axelsson (2000). The specific ground classification

parameters chosen were based on work by Watt (20@%)
are shown in Table 3.
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Ground Classification Setting
Par ameter
Max. Building Size 100m
Terrain Angle 88
Iteration Angle 8
Iteration Distance 0.5m

Table 3. Ground Classification Parameters

3.2 DTMsand DCHMs

A Digital Terrain Model (DTM) for each year was the
created by generating a Triangulated Irregular Netw(TIN)
of those points classified as ground. Next, fietirns were
added to any remaining last returns in TerraScanttad not
been included in the DTM. All these points wereuassd to
represent tree canopy hits and therefore were tadjus the
DTM to give them a height above ground level, rattman
just an elevation value. In an attempt to remoeedtfiects of
low lying vegetation, all first returns that fellithvin 2m of
the last returns were excluded. This practise idl we
documented and also helps reduce data file sizesdier to

improve processing speeds (Naesset 1997; Naesskt an

Bjerknes 2001; Naesset and @kland 2002).

Following this, points were exported into the siatal
software package STATA for extraction of key valisb
This program gridded the data into 5m pixels aridutated

key variables within each of these cells. Such aldes
included mean, maximum and minimum height, standard
deviation and a number of height percentiles. \tdeialata
was then exported as an ASCII file for display irmest
packages, such as ArcMap.

Given that the LIDAR surveys were conducted using
different instruments and at different times inecessary to
ensure that they are registered correctly befoosvigr may

be estimated. It was found that the 2006 datasgetofiset by

as much as 7m in x and y from the 2003 dataset Wak
corrected by georeferencing using easily identiéigbatures

in both datasets.

3.3 Growth Estimation

Growth between 2003 and 2006 was then calculatedhe
whole study area) as the difference between ertact
variables. Reference data from the thirteen grouutth plots
were regressed against laser derived values faetsame
plots as a means of validation.

4, RESULTS
4.1 Growth Estimates

Figure 2 shows the LiDAR derived growth for the stadea,
calculated from mean heights. Areas of clear felh de
clearly seen in dark blue, as can other smalléonsgwhich
have been affected by wind blow. Areas where nmgédas
occurred are observed in lime green and represpah o
ground. Growth of stands is seen in light greemugh to
orange and allows a range of growth to be seen.

For each of the reference plots height and growdtrios
were calculated (Table 4). Lorey’s Mean Height (&pn 1)
averages tree height per plot using basal areavnasgting
function. Unweighted mean height takes an averdgallo
trees within the plot.

ho=%i gh 1)

2iG

where g =basal area
h = tree height

In terms of extracting height and growth estimdtesn the
5m pixel LIDAR growth map, two plot averaging metkod
were used. The first of these weighted all pixéliga within
each plot by the number of trees falling within tthpaxel
(Equation 2). The second took the unweighted mdaallo
pixels falling within the plot area, regardlesdhfs was the
entire pixel or otherwise. This unweighted meanwghois
the same as that displayed in Figure 2.

hw=Yi tn (2
it
where t = number of trees within plot

p = pixel value

4.2 Validation using Ground Truth Data

421 Height Correlations

Height metrics from reference data were regresgminst
those from the LIDAR surveys (Table 5). High levels
correlation were found between all mean values,h bot
weighted and unweighted. For the 2003 data, thd bes
correlation was between Lorey’'s Mean Height (LMHida
Weighted LIDAR Mean Height. For 2006, the best
correlation was between Lorey's Mean Height and
Unweighted LIDAR Mean Height. The mean difference
between LMH and Unweighted LIiDAR Mean Height for
2006 is -1.79. That is, the LIiDAR underestimatesgtaind
truth height by an average of 1.79m. The standaxdation

of this difference is 0.97m. Therefore, althoughe th
correlation is positive and strong, there is stilich variation
within the data.

4.22  Growth Correlations

Regressions calculated between ground truth and RiDA
growth metrics are shown in Table 6. The correfatim-
efficients are all low, showing no clear relatioipshetween
ground truth and LIiDAR growth estimates. For the mos
positive correlation (UMH and Weighted Mean LiDAR
Height- Figure 3), the mean difference between gdotuth
and LiDAR values is 0.89m. The standard deviatiorthis
difference is 1.09m. When negative data was remdnad
this regression, the correlation co-efficient waspioved
slightly to 0.1998.
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Reference Data LiDAR Data
Lorey's Mean Height (m) Unweighted Mean | Weighted Mean Height | Unweighted Mean Heigh
Height (m (m) (m)

2 |9 © =2 ® © = ) © S ) © £S

— o o E o o E o o E o o E

o o o (=} o o o o o o o o o
o N N (‘5 N N (’5 N N (’5 N N (’5

2 14.03 13.77 -0.26 13.10 12.80 | -0.30 9.58 12.41 2.83 9.55 12.19 2.64
3 16.43 17.92 1.49 15.40 16.60 1.20 13.59 15.85 2.26 13.08 15.94 2.86
4 16.17 17.33 1.16 14.70 15.60 0.90 13.15 15.10 1.95 12.87 15.05 2.18
10 9.41 11.08 1.68 7.70 9.52 1.82 5.54 7.78 2.24 5.62 7.96 2.34
29 0.00 4.58 4.58 2.80 4.00 1.20 1.05 1.56 0.51 1.06 1.46 0.40
30 0.00 4.81 4.81 2.70 4.30 1.60 1.13 1.91 0.78 1.08 1.87 0.79
52 18.66 18.35 -0.31 14.88 1453 | -0.35 14.77 16.82 2.05 14.34 17.18 2.84
53 15.64 15.89 0.25 13.07 13.21 0.14 14.07 14.33 0.26 14.50 14.65 0.15
54 7.60 7.98 0.38 5.40 5.80 0.40 4.76 5.66 0.90 4.80 5.95 1.15
61 8.03 8.31 0.28 7.10 7.30 0.20 4.83 6.10 1.27 4.67 6.08 1.41
62 15.23 15.11 -0.12 12.20 12.10 | -0.10 12.83 14.25 1.42 12.87 14.31 1.44
63 16.41 16.29 -0.12 13.30 13.00 | -0.30 15.58 16.08 0.50 15.29 16.30 1.01
64 16.01 15.73 -0.27 14.50 14.20 | -0.30 14.39 15.05 0.66 14.29 14.94 0.65
Table 4. Ground Truth and LiDAR Data by Plot

A

Figure 2. Growth Map. Plots shown by black dots.

LiDAR Derived Metrics
2003 UMH WMH
LMH 0.9277 0.9317
xe)
5 % § g UMH 0.9130 0.9225
gpgg 2006 UMH WMH
LMH 0.9841 0.9837
UMH 0.9254 0.9338
Table 5. Co-efficients of Determination for
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Figure 3. Scatter graph and regression line betiieleh
measured and LIiDAR derived Unweighted Mean Height

Ground
Truth
Metrics

Growth.
LiDAR Derived Metrics
Growth UMH WMH
LMH -0.0763 -0.0498
UMH 0.0019 0.0082

Table 6. Co-efficients of Determination for

Correlations

Growth
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5. DISCUSSION

5.1 Relationship between LIDAR and Ground Truth
Metrics

5.1.1 Ground Truth Metrics

For height regression it is evident that Lorey'savieHeight
provides stronger correlations between ground traiid
LIDAR height values than unweighted mean height.e@iv
that LMH is weighted by basal area, this averageggmore
weight to trees with a larger diameter. Such traes also
likely to be the tallest and most dominant withire tplot.
Consequently they are also most likely to be detebtethe
ALS system rather than those lying beneath thehheifjithe
main canopy. Thus the strength of the correlatien i
improved. However, in terms of growth estimatiob®H
causes problems in very young stands. In plots eviilee
majority of trees were smaller than 1.37m in 208131 and
therefore basal area is recorded as 0. Of couiselties not
represent the true average plot height in 2003thackfore
skews growth estimations, making them seem largen t
they really are. In comparison, unweighted mean ppéight
for ground truth data takes no account of basa ared is
therefore less well correlated with the LIDAR dedveeight
metrics. However, it is not distorted by plots ofaler trees
and consequently performs better for growth reguass

5.1.2 LiDAR Metrics

Weighted Mean LIiDAR Height, which takes into accothre
number of trees falling within each plot pixel, doaot
perform significantly differently from Unweighted é4n
LIiDAR Height with respect to height or growth coatbns.
When correlated with Unweighted Mean Ground Truth
Height it produces the most significant growth éfceent of
determination. However the relationship is very kvea

5.1.3 Height and Growth Correlations

Very strong, positive relationships exist betwedingeound
truth and LiDAR derived height metrics. This refiedhe
findings of other height studies and is encouragMagesset
2002; Naesset and Bjerknes 2001; Naesset and ORGORY
Nilsson 1996; Popescu et al., 2002). It should béeah
however that despite these strong correlationseldewof
variation within the data are high. For examples thean
difference between LMH and Unweighted LiDAR Mean
Height for 2006 is -1.79m. The standard deviatidrthis
difference is 0.97m. This shows that the LIDAR is
underestimating the ground truth tree heights byesrage
of 1.79m plus or minus 0.97m. LiDAR height
underestimation is well documented in studies saglthis
and is widely accepted to be due to laser pulses-ov
sampling the shoulders of dominant trees, rathen ttheir
peaks (Aldred and Bonner 1985; Nelson 1988; Nilsk@86;
Naesset 1997; Naesset 2002; Popescu et al., 2Q02t .,
2004). However, such variation means that errorbeifht
estimation by the LIiDAR may be as large as 2.76mefiVh
growth over the 3 year period rarely rises above &m
becomes indistinguishable from height error. Ineotivords,
the errors of growth estimation are larger thandbs&mated
growth itself and thus no correlation is observed.

5.2 Possible Error Sourcesand | mprovements

It becomes evident then that the errors of treegttei
estimation need to be reduced if growth at ploelés to be
accurately predicted using ALS. This might be aqgolished
in a number of ways.

« Assessing growth over a longer timescale. This may
allow the amount of growth to be greater than the
height error, meaning it can then be observed.
Other studies have found this to improve the
strength of LIDAR and ground truth correlations
(Yu et al., 2005).

* Removal of all negative growth values within the
ground truth data. These result partially from
recording errors yet largely from dead trees where
the top of the tree is breaking off. Such treestipos
lie beneath the main canopy and therefore are not
observed by the LIDAR. Consequently the ground
truth data becomes skewed, reducing the strength of
the correlation with the LiDAR data.

¢« Use of LIDAR systems with the same technical
specifications. Despite Goodwin et al.,’s findings
that platform altitude has a negligible effect on
canopy height estimation (Goodwin et al., 2006), it
is likely that some errors result from the use of
different ALS systems under different survey
conditions (Table 1).

* Assessment of the error associated with the calect
of ground truth data. It is taken for granted et
reference data collected in the field represengs th
‘true’ height of the trees. Instrument accuracy and
the effects of user variability have largely been
ignored in the literature to date. Consequently, it
seems that if any conclusions concerning the
‘accuracy’ of LIDAR growth estimates are to be
relied upon, it is first necessary to obtain areidé
the accuracy of the reference data.

Furthermore, it is important to recognise that anber of
assumptions are made during processing of the LiDAR.
Such assumptions are necessary for the efficiemimng of
the processing sequence, and it is likely that tieeglo not
adversely affect the process for the majority of time.
However, it remains important to be aware of such
assumptions.

The first is that the lowest returns are presuneerepresent
the ground surface. Filtering of obviously erroneqoints
goes most of the way to removing this problem, sate
errors may remain due to recording inaccuracigbénTime
Measurement Unit (TMU) or multi-pathing of the netu
pulse (Hurn 1993; Watt 2005).

Secondly, during creation of the TIN it is assurntteat there
is at least one laser return per window. Howevarrgthe
window size of 100m x 100m used in this particigardy, it
is highly unlikely that this would cause any prabtehere.

6. CONCLUSION

In conclusion then, this paper has shown how nteitiporal
LIDAR surveys can be used to confidently predictetre
heights at the plot level in a temperate, coniferfarest in
Northern England. Therefore, it can be confirmeat tALS
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has a great deal to offer to the forest manageo@mnmunity
in terms of tree height estimation.

However, it has also been found that tree growthiattlevel
cannot be predicted using ALS. Despite strong pasit
correlations between height metrics, the errorsheight
estimation are larger than any estimated growth thethree
year period. This essentially causes the growthedlost’
and therefore no correlation between ground trutid a
LiDAR growth metrics is observed.

It is anticipated that regression relationships magy
improved in a number of ways, these include; ingir@athe
timescale over which growth is analysed; ignorinlj a
negative ground truth growth values; using multiveral
LIDAR surveys taken by the same system under thessam
conditions; and by investigating ground truth instent
error and variation introduced by different usdrsleed, if
any conclusions concerning the accuracy of LiDARwgho
estimates are to be relied upon, then issues Hiaset listed
must first be addressed. Such research is of hetefi
researchers and non-academics, foresters and clogats
alike and therefore should not only continue buebbanced
in the future.
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