mMH flood risk
management
research consortium

Modelling Extreme Flood Events
and Assoclated Processes

Professor Roger A. Falconer FRENg

Professor of Water Management and
Past President of IAHR (2011-15)

Hydro-environmental Research Centre
School of Engineering, Cardiff University

PRIFYSGOL

(CA'RDY

CARDIFF
UNIVERSITY




il

flood risk

management
research consortium

e General

Flooding essentially a natural process = we need to live
with rivers, climate change and increasing storm events

Flooding not only be caused by high rainfall = also poor
drainage, groundwater saturation, debris flows etc.

Flooding usually also leads to water pollution = large loss
of life in many countries due to epidemiological outbreaks
Flooding damage extent often exacerbated by:

» Inadequate data, poor warning systems and planning

» Inadequate defences and insufficient upstream storage

> Use of crude modelling tools and inexperienced operators
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e Floods are on the Rise

Location Map, Year 1985
Major floods reported by news services, £ L
Updated April 12, 2002 : w /7

Base image from NASAJPL
1985 - Global Flood Archive - Dartmouth Flood Observatory
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Floods Causé Loss of Life
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e Floods Bring Contamination
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e Cumbria Floods 2016 — Short Steep River Basin
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e Overview of Research for Steep Catchments

e Increasing concern of flooding along steep river basins
and levee breeches — particularly in Wales

e Traditional 2-D and 1-D models not ideal for such flows
and need refining for trans- and supercritical flows

e Full shallow water equations solved using a finite volume
scheme on a collocated grid

e Model also refined to include surface and sub-surface flow
interactions and extended to include floodplain flows in
urban regions
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e DIVAST-ADI vs. DIVAST-TVD

Dam-Break Problem
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e DIVAST-ADI vs. DIVAST-TVD

‘0
S22 R
<2
S50 %
<SS
KSR
N 4
RN - .‘
= 2 2 ’ ":’
RS

(w) yrdaq

O
D
©
—
>
~
3
=

8 “‘0’0.0.0
QIR
>

DIVAST-ADI PIVAST-TVD



mMH flaung del:n |esnk

e Dyke Break Experiment (TU Delft)
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e Dyke Break Experiment
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e Dyke Break Experiment
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e Refined Treatment of Buildings

e Three modelling approaches considered:

» Modelling buildings as solid blocks making buildings
Impervious

» Remove buildings and increase local roughness = not ideal
for water quality predictions

» Remove buildings and treat as porous media = better for
predicting water quality in buildings
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e Flood Building Interaction
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e Flood Building Interaction 1 — Solid Building

Model Building |
as solid block
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e Flood Building Interaction — Water Levels
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e Flood Inundation of Glasgow

research consortium

City in Scotland prone to urban flooding
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e Flood Inundation of Glasgow

Porous media and solid block methods
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e Interaction Between Flood and Buildings

Water depth variance at G3:
Solid block method
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e Boscastle Flood 2004

e Small picturesque town in South West of UK

e Short river basin with steep valley terrain = similar to
many river basins in Wales and Northern England

e Up to 200 mm rainfall fell in 5 hr and predicted to have 1
in 400 yr return period event

e Extensive damage to properties, bridges, highways and
other infrastructure

e One of best recorded extreme flood events in UK with
trans- and super-critical flows
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B \/icw of Boscastle and Valency Valley
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e Model Study Objectives

e Determine type of model scheme most appropriate for
predicting key parameters for extreme flood events

e Three different schemes compared:
» Simplified DIVAST (i.e. NI — No Inertia)
» Standard DIVAST (i.e. ADI — Alternating Direction Implicit)
» DIVAST — TVD (i.e. Total Variation Diminishing)

e (Case studied: 2004 Boscastle flash flood

e Predicted main flood parameters (i.e. water elevations and
flood inundation extent) compared with observed data
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e Boscastle Study Domain
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e Predicted Flood Simulation (TVD Scheme)
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e Flood Inundation Extent Predictions
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e Predicted and Measured Water Levels
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e Summary

e Models can be extended to include treatment of buildings
on floodplains using surface/subsurface models = offering
attractive options for flood modelling (e.g. health impact)

e For rivers with trans- or supercritical flows, or levee
breeches, then need to use more complex models and
replicate hydrodynamic processes more accurately

e Computational models with shock capturing algorithms
provide more accurate predictions of flood elevations

e Debris and vehicles can increase flood risk by blocking
bridges and culverts to reduce local discharges
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For more clips go to
www.rawcutarchive.com
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e Incipient Velocity for Vehicles in Floodwaters

e Study first undertaken to determine incipient velocity for
fully submerged vehicles

e Subsequent studies undertaken for partially submerged
vehicles based on:

» Based on physics derived formulae
» Flume experiments based on similarity laws
» Parameter determination and formulae validation

» Based on incipient velocity for prototype vehicles
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e Formula Derivation

Different forces acting on a partially submerged vehicle

Fs: Effective weight

Fo: Drag force

Fy : Normal force

Fr: Frictional force
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e Flume Experiments for Vehicle Instability

e Experiments conducted in HRC flume Cardiff University. Flume: 15 m
long, 1.20 m wide and 1.00 m deep, plastic bed and glass sides

e To estimate critical conditions for prototype vehicles - scaled model
vehicles used, with 3 similarity laws used to design flume experiments
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Design of Flume Experiments

Prototype can be analysed from experiments if similarity occurs with:
form (geometric), motion (kinematic) and force (dynamic) .

Scale ratios of model experiments

Sunilarity Scale Symbol Design scale
Geometric similarity Horizontal or vertical scale A = Ay 18
Kmematic stmilarity Velocity scale = J18
. . . /?g - E - FN - _ 3
Dynamic sunilarity Force scale X ) ) 18
w, —w, T

Flow and dimensions used typical for Taff
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Incipient velocities for
partially  submerged
vehicles in floodwaters
estimated using two
methods: (i) using
model scale ratios, (ii)
computations  based
on derived formulae

0 —— Eq.(12)(Ford Focus ST)
— Eq.(12) (Ford Transit)
5.0 — Eq.(12)(Volvo XC90)
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Comparison between estimated incipient
velocities using two different approaches
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e Assessment of People Safety

Previous studies carried out using two approaches:

e Empirical or semi-quantitative criteria

e Stability analysis validated by experimental data
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Keller and Mitsch (1992) established balanced forces acting on a flooded
person:- buoyancy, weight, frictional resistance and drag due to flow:-

0.5 : .
F F. = restoring force due to friction;
UC — r A = submerged area normal to flow;
jor Cd A C4 = drag coefficient .

— Child
—= Adult

i O

00 02 04 06 08 10 12 14 16 18 20
h (m)

Instability curves for child and adult in floodwaters
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e |ncipient Velocity for People in Floodwaters

e Similar approach adopted to previous study on incipient
velocity for vehicles

e Current study for partially submerged people
» Formula derivation
» Flume experiments following similarity laws
» Parameter determination and formula validation

» Estimation of incipient velocity for prototype people
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e Formula Derivation

e 186 tests undertaken in China using 1:5.54 scale models
e Different forces acting on partially submerged person

(b) toppling_‘\
STk y ,"

Fs : Effective weight
Fo: Drag force
F,: Buoyancy force

F\ : Normal force

Fr: Frictional force
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Critical condition for toppling instability, given by moment
around pivot point O :

F. L +F. L —F.L, =0

Gy —gy GX —gx

Giving for velocity v. depth:-:

U:a(h—f)ﬁ ﬂ(cosé’ﬂ/siney(a“r by )(a,m_+hb,)
h,” \'hip, h?  h.h P

P f''p

where: a, y = coefficients (see paper), m, = body mass,
h, = body height, h, = flow depth,
a,,a,,b,,b, = body shape coefficients
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e Scaled Incipient Velocity vs. Depth
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e Empirical or Semi-quantitative Criteria

Defra (2003) in UK use simple
method to assess flood hazard —
based on velocity, depth and
debris:

HR =hx (U +1.5) + DF

flood hazard rating; Low
depth of flooding (m); Hazard
velocity of floodwaters (m/s); — |
debris factor (=0, 1, 2 varies 02 04 08 10 12 20
with probability that debris will
lead to greater hazard)

14 et T

1.0 —

Velocity (V m/sec)

€L
I T

Depth of Flood at Site (D metres) |
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o Determinatic;n of Hazard Degree

Incipient velocity formula from our studies used to assess
vehicle and people safety

Expression used to determine degree of hazard:-

HD=Min(1.0, U/Uc)

U = depth-averaged velocity in a cell (m/s);

h = flow depth in a cell (m);

Uc = critical velocity for depth (h) = for vehicle or people(m/s);
HD = Hazard degree for vehicle or people in floodwaters

Safe if HD=0, Dangerous if HD =1.0
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e Comparison of Hazard Formulae

4.50 . <
\ % Extreme hazard
‘\ "W 8 (dangerous for all)
4.00 \ ° ' Y ‘."-_.
‘\ N Significant hazard e
° \ ° N (dangerousformost) T
3.50 = Moderate hazard Moo T T
° o N (dangerous for some, i.e. children) - T
° e Yo e
b \\ '~ L e
3.00 » X S
® % Super-critical flow "~ .
Z 250 o =
g
=
2200
=
-
1.50
o L
= -
100 = ~ -
Low hazard X Sl ‘e
(caution) 2 "---____
0.50 ” Bl
0.00 - : . ~ : . ; : : ' :
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Water depth (m)
e Experimental data of Xia et al. (2014) ~—— Physicaily based and experimentally calibrated method
= = = Empirical method: d(v+0.5)=0.75 = - = Empincal method: d(v+0.5)=1.5

--------- Empirical method: d(v+0.5)=2.5 = == Froude mumber =1



FRARR faad pisk

e Model Application

1. Glasgow flood in the UK

2. Boscastle flood in the UK
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Maximum water depth (m)
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Predicted maximum water depth distribution
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Predicted maximum velocity distribution
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Hazard degree of Pajeor JPs In the floodw ater Hazard degree of Mini CP s in the floodwater
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e Boscastle Flood

e \Water depths on streets over 2 m, with high velocities
transporting debris and cars

e Over 100 vehicles washed away, but no fatalities
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Rating curve Discharge hydrograph
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Distribution of water depth and velocity at Q,
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e Conclusions

e Accurate modelling of flooding in steep catchments and
levee breaches requires shock capturing models and
DIVAST-TVD provides engine for Flood Modeller Pro

e Novel treatment of buildings using high roughness or low
porosity and Darcy flow attractive for modelling floods

e New formulae developed for critical velocity of vehicles
and people under flood conditions

e New formulae developed for flood hazard risk = based on
fundamental physics vis-a-vis empirical formulae

e Models tested successfully for two sites predicting hazard
levels for people and vehicles = new algorithms provided



FRARR faad pisk

Thank You

Professor Roger A. Falconer
Email: FalconerRA@cf.ac.uk




